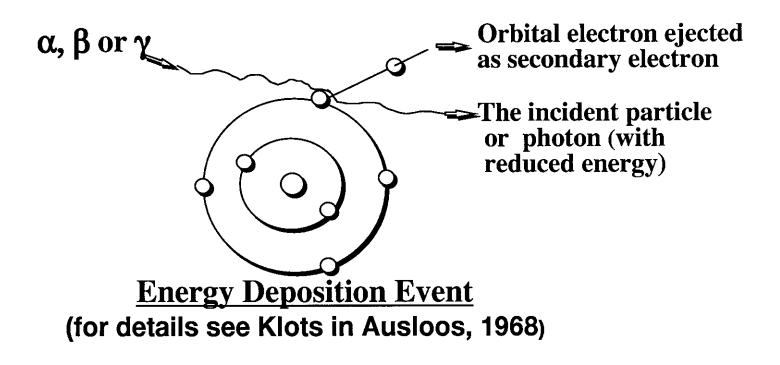
Dosimetry

Process Validation Quality Assurance

Radiation Effect


- Magnitude of radiation effect depends on the quantity of the energy absorbed by the substrate
- Quantity of the energy absorbed is called "dose"
- Essential to determine the dose required for a process

For definitions and details, see ASTM E-170-92, IAEA Technical Report 178 (1977), and Mehta(1988)

Interaction of Ionizing Radiation with Matter A Simplified Picture

 The energy transfer mechanism involves interactions between the incident particles or photons and orbital electrons of the atomic/molecular constituents of a substrate

Interaction of Ionizing Radiation With Matter

- The probability of interaction follows the order, $\alpha > \beta > \gamma$ and hence the order of their penetration in matter
- Energy loss per event, mainly 20-100 eV
- Radiolysis similar to vacuum UV photolysis

Energy Absorption in Mixtures

- Components of a mixture absorb energy in proportion to their respective electron densities (number of orbital electrons per unit weight)
- A reasonable approximation is that the components of a mixture absorb energy in proportion to their weight
 - Biol. System, 75% water, 25% organic
 - Energy absorbed, water ~75%, organic ~25%
- In materials with very different densities, e.g., syringes containing metal parts, the metal would absorb much higher dose and could get quite hot (Zagorski, 1992)

Dose

 Dose can be expressed in erg/g Joules/g, kiloJoules/kg

The SI unit for dose is the <u>Gray</u> (Gy)

1 Gray = 1 Joule per kg 1 kiloGray = 1 kiloJoule/kg

Rad was the conventional unit for dose

1 rad = 100 erg/g; 1 Gy = 100 rad 10 kGy = 1 Mrad

Dose Measurement Dosimetry

Based on Known Chemical and Physical Effects

- 1. Primary Standard Dosimetry
 - Does not need calibration against another standard dosimeter
 - Maintained by many National Laboratories
 - Two most common are ionization chambers and calorimeters (accuracy \pm 1%)
 - Temperature rise, 2.39 x 10⁻⁴ °C Gy⁻¹ in water 14.06 x 10⁻⁴ °C Gy⁻¹ in graphite

Standard Dosimeters

- 2. Reference Standard Dosimeters (± 1-5%)
 - Traceable to a National Primary Standard
 - Fricke Dosimeter most commonly used Fe²⁺ → Fe³⁺, 10-400 Gy (ASTM E 1026-32)
 - Ceric sulfate, Ce⁴⁺ → Ce³⁺, 10³ 10⁵ Gy (ASTM E 1205-93)
 - Potassium dichromate, Cr⁴⁺ → Cr³⁺, 10³ - 10⁵ Gy (ASTM E 1401-91)
 - Alanine, free radical by ESR, 1-10⁵ Gy (ASTM E 1607-94)

Transfer Dosimetry

- 3. Transfer Dosimeters (± 5%)
 - Stable, rugged, can be transported without loss of signal and reproducibility
 - Used for calibration of reference standard dosimeters against a primary standard dosimeter
 - Thermoluminescence dosimeters (LiF, CaF₂)
 - Radiochromic dye dosimeters
 - Solutions of colourless dye precursors, e.g. cyanides or methoxides of pararosaniline and malachite green as liquids (10-10⁴ Gy) or solids (10² - 10⁶ Gy) (ASTM E 1275 93 and E 1540-93)
 - (ASTM E 1275-93 and E 1540-93)
 - Radiochromic optical wave guides (ASTM E 1310-89)
 Alanine dosimeter can also be used as a transfer
 - Alanine dosimeter can also be used as a transfer dosimeter

Routine Dosimetry

- 4. Routine Dosimeters (±10%)
 - For routine in-house use for dose mapping, dosimetry, process control and quality assurance
 - Radiochromic dye dosimeters
 - Polymethyl methacrylate (PMMA) dosimeters
 - Clear
 - Dyed
 - (ASTM E 1276-93)
 - Lyoluminescence, glutamine (10-10⁵ Gy)

Solid State Dosimeters

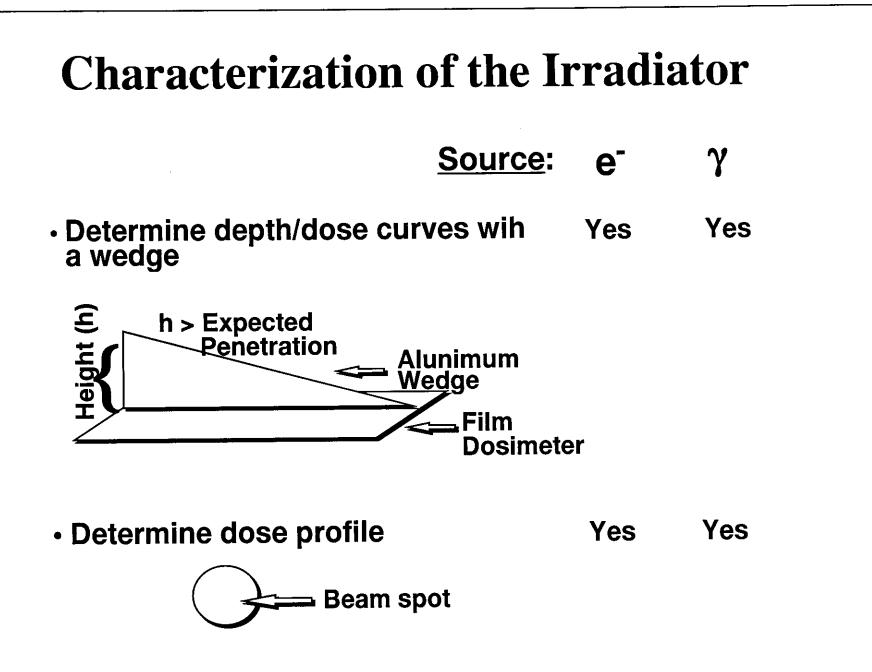
Dosimeters	Dose Range kGy	
Radiochromic Dye Film		
Gafchromic	0.1 - 40	
FWT-60	0.5 - 100	
B3 (Riso)	5.0 - 100	
Cellulose Triacetate Film	5.0 - 300	
Alanine (rod and film)		
PMMA		
Gammachrome	0.1 - 3	
Amber Perspex	1.0 - 30	
Red Perspex	5.0 - 50	
Radix	5.0 - 50	

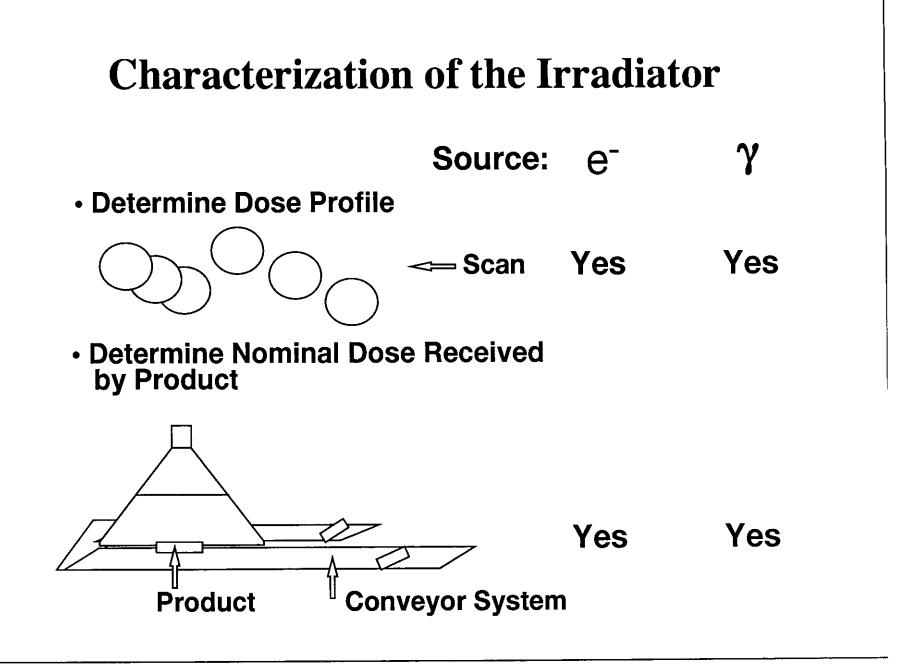
Woods and Pikaev, 1994; Kovacs et al., 1992.

Dosimetry in Radiation Processing

 Dosimetry is very important in various stages of radiation processing

0


AF

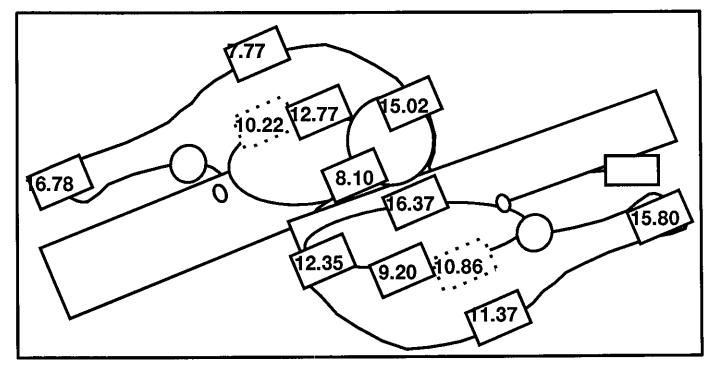

Stages in Radiation Processing

1	Characterization of the Irradiator	C	ł
	- Energy	yes	yes
	- Beam profile	yes	ýes
	- Nominal dose	yes	yes
	 Dose uniformity and scan width 	yes	yes

- 2. Validation of the irradiation process
- Effect of irradiation on product yes yes - Determination of process dose yes yes - Process qualification yes yes
- 3. Process control during production yes yes

Kovacs et al., 1992

Process Validation


- The Objective is to Establish Well Documented Evidence that the Irradiation Process Will Reliably and Reproducibly Achieve the Desired Effect
- Selected dose for the process is an extremely important parameter; therefore dosimetry plays a key role in process validation

Mehta (1992)

Validation of an Irradiation Process

•	Process Dose	e [.]	γ
	Determine the required minimum (D _{min})		
	and maximum (D _{max}) doses	yes	yes
•	Materials compatibility		
	Determine the acceptability of the		
	materials irradiated to the process dose	yes	yes
•	Process qualification		
	 Optimization of accelerator (beam current 		
	beam energy, pulse rate) and other (conveyor		
	speed, temperature) parameters, including		
	dose mapping, and dose monitoring	yes	yes
	- Verify reproducibility of irradiation effect under		
	optimized conditions on selected number (~10)		
	of product units	yes	yes

Dosimetry of Chicken Drumsticks

Placement of dosimeters showing dose received in kGy
 Placement of dosimeter on opposite side of drumstick

Routine Process Control

- Measure absorbed dose at regular intervals (dosimeters on selected boxes, or in between boxes), as decided during process validation
- Monitor key operating parameters (conveyor speed, electron beam current, electron beam energy, electron scan width, γ–source position)
- Keep appropriate detailed records
- Follow GMP (Good Manufacturing Practice) and QA (Quality Assurance) procedures (Mehta et. al., 1991)

Quality Assurance

- Appropriate checks on the quality/specification of the product to be irradiated
- Tracking of each product through the irradiation zone
 - Colour-change labels (ASTM E 1539-93)
- Routine periodic dosimetry at selected position of the product (1 in 100, or suitably selected number)
- Periodic comparison of the routine dosimeter
 with the reference standard dosimeter
- Periodic comparison of the routine dosimeter with the National standard dosimeter
- Follow post-irradiation procedures decided upon during the product/process development and validation, including reading of the dosimeters

Quality Assurance (contd)

- Monitor and Record, Regularly
 - Electron energy
 - Electron current
 - Electron scan width
 - Electron scan frequency
 - Electron pulse repetition rate
 - Electron pulse width
 - Product conveyor speed
 - Rotation of product for multi-sided irradiation
 - Coupling of dose rate and conveyor speed
 - Irradiator shut down if conveyor stops accidently
 - Position of the γ-source
 - Intended dose and dose received by the product

Conclusions

- Dosimetry plays a key role in product and process development, irradiator and process qualification, and process control
- Good dosimetry expertise and facilities are very important for the success of a radiation processing business