Radiation Polymerization Coatings and Inks

Radiation Curing of Coatings, Inks and Adhesives

- Electron curing or UV Curing
 - Only electron curing covered here
- Fast cure, no residual monomers
- Quality of the product much better (than UV or thermal cure)
- Environmentally friendly
 - Drastically reduced emissions (no solvents)
- Generally, cost-competitive
 - Energy efficiency, initial attraction
- Ambient temperature cure
 - Good for heat-sensitive materials
- Includes polymerization, crosslinking and grafting

Wide Variety of Products

Coatings

- Magazines
- Record albums
- Paper currency
- Release paper
- Hardwood Floors
- Wood surfaces
- Abrasive films
- Metallized film
- Vinyl flooring
- Tapes, CD's
- Cans (soft drink, beer)

Woods and Pikaev (1994)

Inks

- Magazines
- Posters
- Wall coverings
- Graphics

Adhesives

- Labels, decals
- Packaging material
- Bonding of abrasives

Typical Formulation for Coating, Ink or Adhesive

- Base oligomer for basic properties of cured polymer, e.g., acrylated epoxy
- Monofunctional monomer, diluent to control viscosity
- Specific application-oriented additives
- Appropriately coloured pigments, for inks and graphics
- Tailor components to give desired properties to the final product

Relative Product Characteristics for Selected Resins

Property	Selected Resins				
	SR-399	SR-2000	SR-5000	SR-9503	SR-3000
Abrasion Resistance	X			Х	Х
Adhesion	X	χ	Х		X
Chemical Resistance	X				X
Flexibility	X	X	X	X	• • • • • • • • • • • • • • • • • • • •
Hardness	X				X
Impact Resistance	****************	X	X		
Low Shrinkage		X	X	X	X
Water Resistance		X	Χ		X
Weatherability	Х			X	

X-imparts specified property to the cured polymer

Typical Oligomers (MW 400-700)

Acrylated urethanes

- Tough, flexible product with good abrasion resistance (inks, wood finish)
- Acrylated epoxies
 Harder product (metal coatings, composites)
- Acrylated polyesters
 Soft product (pressure-sensitive adhesives, strong adhesives)
- Acrylated silicones
 Soft product (release coatings)
- All of these polymerize via free radical reactions, which are inhibited by oxygen
- Inert atmosphere required for electron or gamma curing

Diluent Monomers

•These participate in polymerization, crosslinking and grafting reactions

Multifunctional Monomers

Trimethylolpropane triacrylate (TMPTA)

O
$$CH_2$$
-O-C-CH = CH_2

CH₂ = CH-C-O-CH₂-C-CH₂CH₃

CH₂-O-C-CH = CH_2

Tripropylene glycol diacrylate (TPGDA)

O O
$$| | |$$
 CH₂=CH-C-O-CH₂-CH-O-CH₂-CH-O-CH₂-CH-O-C-CH=CH₂ $| | |$ CH₃ CH₃ CH₃

These enhance crosslinking and grafting reactions

Cationic Curing

Epoxies or vinyl ethers + arylsulfonium salts

UV ↓ γ,e⁻ polymer

- Epoxies and vinyl ethers are being used in coatings and adhesives, and in advanced composites
- Cationic curing is not inhibited by oxygen

Health Hazards

- Equipment
 - Consult equipment supplier
 - Check regulations
 - Partly covered under equipment, earlier
- Chemical
 - Consult chemical supplier
 - Check regulations
 - Consult databases, e.g. Sax and Lewis (1989)
 - Primary hazard, irritation of skin and eyes
 - Potential for occupational dermatitis, phototoxicity, photoallergy and carcinogenicity
 - Important to control exposure of workers
 - Important to be able to deal effectively with spills and wastes

Conclusion

- The use of radiation processing for curing coatings and inks would continue to grow, primarily because it is cost-effective and gives very good product
- This is primarily an application for low energy electron accelerators (~0.3 MeV)