Radiation Polymerization

Grafting

Grafting

- Chemical bonding of a monomer, to a polymer, by a polymerizing reaction
- Results in a polymer with short chains of another polymer on its surface
- A good method to change surface properties of a polymer
- Products include specialty textiles (wrinkleor fire-resistant), battery separators, immobilized biomaterials, slow-release drugs

Grafting Methods

Pre-irradiation

RH
$$\longrightarrow$$
 R' + H'

H' + RH \longrightarrow R' + H₂

R' + M \longrightarrow Grafted Polymer

Peroxidation

$$R' + O_2 \longrightarrow RO_2'$$
 $RO_2' + RH \longrightarrow ROOH + R'$

ROOH or $RO_2' + M \longrightarrow$

Extrusion Injection moulding

Grafted Polymer

Grafting Methods (contd)

Simultaneous irradiation

RH
$$\longrightarrow$$
 R· + H·

R· + M \longrightarrow RM·

RM· + nM \longrightarrow RM·_{n+1} Grafted polymer

M \longrightarrow M· + H

M· + nM \longrightarrow M·_{n+1} Grafted polymer

Variables Affecting Grafting Yields

- Solvent
 - Grafting yields may depend on the solvent, and on any additives present

Effect of Monomer Concentration, and Acid, on the Grafting Yield (%) of Styrene on Polypropylene, on Irradiation to 3 kGy

Solvent	Styrene (%)			
	20	20 ^a	40	40 ^a
Methanol	29	214	50	86
Ethanol	44	176	65	72
n-Butanol	123	214	34	83
n-Octanol	49	154	68	128
Dimethylformamide	24	32	43	56
Dimethylsulfoxide	11	17	66	93
Acetone	13	20	24	32
1,4-Dioxane	6	14	15	30

^a The solution contains 0.2 mol.dm⁻³ H₂SO₄ (Dworjanyn and Garnett , 1992)

Variables Affecting Grafting Yields (contd)

Comparison of Acid with Polyfunctional Monomers for Enhancing Grafting Yield (%) of Styrene to Polyethylene Film on Irradiation to 2.4 kGy

Styrene (%) in Methanol **Additives**^a None H+ DVB DVB + H+ **TMPTA** TMPTA + H+

a H+, 0.20 mol.dm³ H₂SO₄; divinylbenzene (DVB) and trimethylolpropane triacrylate (TMPTA) at 1 vol %
 Dworjanyn and Garrett, 1992

Variables Affecting Grafting Yields (contd)

Dose Rate

- At low dose rates

$$R \cdot + M \longrightarrow RM \cdot$$

- At high dose rates

 At high dose rates crosslinking of the polymer and homopolymerization of the monomer are favoured over grafting

Effect of Dose Rate on Grafting Yield (%) of Styrene to Polyethylene from Methanol Solution

(Dworjanyn and Garnett, 1992)

Styrene (%)	100 Gy/h	410 Gy/h	1120 Gy/h
20	24	14	7
30	61	37	14
40	51	76	23
50	409	109	25

Grafting on Textiles

- Cotton/Polyester Material
 - N-Methylolacrylamide grafting reduces electrostatic charging, gives the material permanent-press and non-wrinkle properties (electron irradiation process introduced in USA in 1960)
- Cotton Fabrics
 - Grafting with fluorinated acrylates and silicones makes them water-repellant
 - Grafting with vinyl bromide triallyl phosphate and vinyl phosphonate oligomers makes them fire-retardant

Woods and Pikaev (1994)

Other Products

- Oil Resistance
 - Radiation grafting of acrylic acid and acrylonitrile improves oil resistance of butadienestyrene copolymer, and of ethylene-propylenediene terpolymer
- Encapsulated Fertilizer
 - Successive radiation grafting of methyl methacrylate, followed by vinylidene chloride, on carbamide (carbamide/polymer, 95/5) to a dose of ~ 30 kGy, results in slow-acting (≥ 30 days) fertilizer

Conclusions

- The use of radiation processing for grafting would continue to grow
- This is primarily an application for low energy electron accelerators (~0.3 MeV)