Radiation Processing

Basic Aspects

Radiation Chemistry: Developments

- Discovery of X-rays, Röentgen 1895
- Discovery of Radioactivity, Becquerel 1896
- Since the fifties, our understanding of radiation physics, chemistry and biology has increased tremendously

Radioactivity

- Consists of α , β and γ emissions with energies characteristic of the emitting nucleus
- α particles: Helium nucleus, He²⁺ ion, emitted from the nucleus
- **β** particles: Fast electrons emitted from the nucleus
- γ rays: Uncharged electromagnetic radiation emitted from the nucleus, usually along with β -particle

Different Penetration of Vacuum UV, α , β and γ

• The difference in penetration is a result of different probabilities of interaction of α , β , γ and vac-UV radiation with orbital electrons of a molecule

Induced Radioactivity

 Induced radioactivity produced by nuclear reactions of H⁺, D⁺, He²⁺, neutrons and γ- rays

$$^{27}\text{Al} + {}^{4}\text{He}^{2+} (\alpha) \longrightarrow {}^{30}\text{P} + n$$
$${}^{30}\text{P} \longrightarrow e^{+} + {}^{30}\text{Si}$$

 Neutrons are the most important initiators of induced radioactivity

Neutron-Induced Radioactivity $n + {}^{2}H \longrightarrow ({}^{3}H) \longrightarrow {}^{3}He + e^{-} (t_{1/2} \sim 12.4y)$ $n + {}^{27}Al \longrightarrow ({}^{28}Al) \longrightarrow {}^{28}Si + e^{-} (t_{1/2} \sim 2.3min)$ $n + {}^{113}Cd \longrightarrow ({}^{114}Cd) \longrightarrow {}^{114}Cd + \gamma$ $(t_{1/2} \sim 43d)$

Some Threshold Values for Nuclear Activation

²H + γ (2.23 MeV) \longrightarrow ¹H + n ¹⁸¹Ta + γ (7.64 MeV) \longrightarrow ¹⁸⁰Ta + n ¹⁹⁷Au + γ (8.07 MeV) \longrightarrow ¹⁹⁶Au + n ²⁰⁴Pb + γ (8.38 MeV) \longrightarrow ²⁰³Pb + n ⁷⁰Zn + γ (9.29 MeV) \longrightarrow ⁶⁹Zn + n ⁶⁵Cu + γ (9.91MeV) \longrightarrow ⁶⁴Cu + n

(IAEA Technical Report No. 188, 1979)

Induced Radioactivity

- The energy levels permitted for use in food irradiation are specifically selected to avoid any conditions which could induce significant levels of radioactivity in the treated commodities
- The permitted energy levels are: X-rays (or γ -rays) \leq 5 MeV Electrons \leq 10 MeV
- For radiation processing of items other than food, electrons or X-rays up to 10 MeV can be used as needed, without concerns about induced radioactivity

Induced Radioactivity vs Electron Energy

Natural and Induced Radioactivity from Various Sources (Becker, 1979)

 In "pure" organic polymers, induced radioactivity should be lower than in foods; in metals it would be higher

Sources for Radiation Processing

- Natural radioactive isotopes are not suitable for radiation processing
- Radiation processing feasible with artificially produced radioactive isotopes

 $^{60}Co(\gamma), \ ^{137}Cs(\gamma)$

 Radiation processing helped by the development of electron accelerators to produce

Electron (e⁻) beams, X-rays

e[−] (≤10MeV) — X-rays

- In electron accelerators one can choose the electron energy, as required for a given application
- The mode of action of γ and X-rays is exactly the same
- The mode of action of e⁻ from accelerators and β -particles from radioactive isotopes, is also the same

Decay Characteristics of Some of the Natural and Artificial Radioactive Isotopes

isotope	Half-Life	Type and Energy (in MeV) Principal Radiation Emitted
Natural Isotopes		
226 _{Ra}	1620 y	α , 4.777 (94.3%) α 4.589 (5.7%)
222 _{Rn}	3.83 d	α, 5.49
Artificial Isotopes		
137 _{CS}	30.2 _, y	β , 1.18 (max) (8%) β , 0.52 (max) (92%) 0.24 (av)
⁶⁰ Co	- 5.27 y	γ , 0.6616 (82%) β , 0.314 (max) 0.093 (av) γ , 1.332 γ , 1.173
³ H (tritium) 32p	12.26 y 14.22 d	β, 0.018 (max) β, 1.710 (max)

Radioactive Decay of ¹³⁷Cs and ⁶⁰Co

Interaction of Ionizing Radiation with Matter A Simplified Picture

 The energy transfer mechanism involves interactions between the incident particles or photons and orbital electrons of the atomic/molecular constituents of a substrate

Interaction of Ionizing Radiation With Matter

- The probability of interaction follows the order, $\alpha > \beta > \gamma$ and hence the order of their penetration in matter
- Energy loss per event, mainly 20-100 eV
- Radiolysis similar to vacuum UV photolysis

Energy Deposition

- Clusters of ionization and excitation (spurs) produced in liquids by irradiation
- Each dot represents a spur (~100 eV), a small region where energy is absorbed producing excited and ionized species

$$H_2O \longrightarrow H_2O^* + H_2O^+ + e^-$$

RH \longrightarrow RH* + RH⁺ + e⁻

A Typical Spur in Water

Adapted from Singh and Singh, 1982. Initial concentration, (a) averaged over total spur volume (diameter 4.6 nm); (b) within the spur core (diameter 1.5 nm)

Distribution of Ions and Excited Molecules in the Track of a Fast Electron

- The quantity of energy deposited determines whether an individual event will give rise to a spur or a larger group of ions and excited molecules
- Blobs (100-500 eV) and short tracks (< 5000 eV) can be considered as groups of overlapping spurs
- Delta rays are secondary electrons of energy less than 10,000 eV
- For 10 MeV e⁻ : 75% spurs, 17% short and branched tracks, 8% blobs (Spinks and Woods, 1990)

Basic Similarity of Radiolytic Effects by Different High Energy Radiations

 Steps in Energy Deposition (Cascade Effect) Leading to Radiation-induced Product Formation Basic Similarity of Radiolytic Effects by Different High Energy Radiation (contd)

- So, despite different types of high-energy radiation (charged particles or γ-rays or x-rays), the actual chemical effects are brought about by low energy electrons (10-100 eV). That is the reason for the similarity of the radiolytic effects
- However, the dose rate for the different radiations is different. This leads to different concentrations of spurs and reactive species affecting the product yields

Energy Absorption in Mixtures

 Components of a mixture absorb energy in proportion to their respective electron densities

> Electron density = number of orbital electrons per unit weight

 For gamma and electron irradiation of organic aqueous systems, a reasonable approximation is that the components of a mixture absorb energy in proportion to their weight

> Biological System, 75% water and 25% organic Energy absorbed, ~75% by water and ~25% by organic

LET

- Linear Energy Transfer (LET) is the rate of energy transfer from charged particles or photons to matter
- Its value increases with the mass of the particle
- However, this concept is of no direct interest for food irradiation, though it is of interest in other radiation processing applications and in radiotherapy

LET (contd)

Some Typical Values for Accelerated Particles

Particle	Energy (iVieV)	Range in Air ^a (mm)	Range in Aluminum (mm)	Range in Water (mm)	Average LET in Water (keV μm ⁻¹)
Electron (e [.])	1 3 10	[•] 4,050 14,000 42,000	1.5 5.5 19.5	4.1 15 52	0.24 0.20 0.19
Proton (H+)	1 3 10	23 140 1,15 0	0.013 0.072 0.64	0.023 0.14 1.2	43 21 8.3
Helium nucleus (He²+)	1 3 10	5.7 17 105	0.0029 0.0077 0.057	0.0053 0.017 0.11	190 180 92

Check

^a at 15°C, 100 kPa

Radiation Processing Physical Effects

Widely Used in

- Welding
- Industrial Radiography
- Ion Implantation
- Gemstone Irradiation

See Woods and Pikaev (1994), for details and references

Radiation Processing Chemical Effects

- 1. Background
- 2. Basic Aspects
- 3. Formation and Reactions of Short-Lived Reactive Species
- 4. Products From Typical Organic Compounds

 Generally, higher the yields of excited states, the lower the overall decomposition, e.g., aromatic compounds degrade less than aliphatic compounds

 Bond breakage generally from S₁ or higher levels (dependent on energy of quanta and bond dissociation energies)

High Energy Radiation (Radiolysis)

- Ionization and excitation
 - Singlet and triplet states
 - Variety of bonds broken
 - Bond dissociation energy still important
- Ionic reactions also important

Comparison: Pyrolysis (Heat Treatment) Photolysis and Radiolysis (Irradiation)

Factor	Pyrolysis	Photolysis	Radiolysis
Temperature	High	Room Temp	Room Temp
Energy Distribution in Liquids/Solids	Homoge neo us	Homogeneous	Heterogeneous
Free Radicals	Yes	Yes	Yes
lons	No	Rarely	Yes
Excited States	Rarely	Yes	Yes

Energy Required for Ionization: W and IP

- W-value is the energy required for one ionization event (one ion pair, e.g., $H_2O^+ + e^-$)
- Ionization potential (IP) is the minimum energy required to produce one ion pair

Comparisc	n of W-values	s and IP1
Cas.	W-value	
1	(eV)	(eV)
H_2O	29.6	12.6
CH4	27.3	13.0
Calic	25.0	11.7

¹ From Swallow (1960)

Energy Required for Ionization W and IP

- Comparison of the W-value and the IP data suggests that excited molecules are formed in addition to the ionized species, since W > IP
- The difference between W and IP is the energy going into excitation

```
W - IP = Excitation Energy
```

 Evidence for the formation of both ionized species and excited species is available in literature

Charge Transfer

In general, a cation (positive charge) will transfer its charge to a molecule whose ionization potential (IP) is lower. For example

Cyclohexane++ + Benzene

Cyclohexane + Benzene+ (IP = 9.2 eV)

- IP Cyclohexane > IP Benzene

Molecular Energy Transfer

- Excited state formation can lead to the formation of the lowest excited singlet and triplet states of organic molecules
- Again, energy transfer can take place from excited molecules. For example
 - Benzene \longrightarrow Benzene^{*} + Benzene^{*} + e^{*}, etc. Benzene^{*} + Naphthalene \rightarrow Benzene + Naphthalene^{*}
- The excited singlet and the excited triplet levels of naphthalene are lower than the corresponding ones in benzene

Singlet and Triplet Energy Levels of Donors and Acceptors

- The singlet energy levels of c-hexane and 2-butene are estimates (Ausloos, 1968)
- Singlet state transfers energy to lower singlet state and triplet state only to lower triplet state

Bond Breakage and Formation and Bond Energies

Chemical reactions are accompanied by bond formation or breakage

Bond breakage Energy + $H_3C - CH_3 \rightarrow H_3C + CH_3$

Bond formation $H_3\dot{C} + \dot{C}H_3 \rightarrow H_3C - CH_3 + energy (heat)$

Generally, bond breakage requires energy and bond formation results in energy release

Typical Bond Dissociation Energies

Bond Broken AH, kcal/mole Bond Broken AH, kcal/mole

1 cal = 4.2 J

Reactions of Ionic and Excited States and Free Radicals

 Free radicals are formed in radiolysis, from both ionic reactions and from excited states. For the case of water, these can be illustrated as follows

 $\begin{array}{cccc} H_2 O & & & & H_2 O^{\ddagger} + e^{-} + H_2 O^{\ddagger} \\ H_2 O^{\ddagger} & & & H_2 O^{\ddagger} + \cdot OH \\ H_2 O^{\ddagger} + H_2 O & & & H_3 O^{\ddagger} + \cdot OH \\ H_3 O^{\ddagger} + e^{-} & & & H_2 O + \cdot H \end{array}$

 Both ·OH and ·H can react by hydrogen abstraction as well as addition reactions with an organic substrate

 $\begin{array}{ccc} \cdot H + RH & \longrightarrow & \cdot R + H_2 \\ \cdot OH + RH & \longrightarrow & \cdot R + H_2O \\ \cdot OH + C_6H_6 & \longrightarrow & \cdot C_6H_6OH \end{array}$

Water is the most studied liquid in radiation chemistry

Radiolysis of Water

Transition From Inhomogeneous to Homogeneous Distribution of Free Radicals in Liquid Water

a. Averaged over total spur volume; b. Initial Concentration within the spur core; c. γ - Irradiation; d. e⁻- Irradiation

Transition From Inhomogeneous to Homogeneous Distribution of Free Radicals in Liquid Water

- (i) Represents spur formation on energy absorption from a single gamma photon in 10⁻¹² s or less
- (ii) Shows homogeneous distribution of reactive species on diffusion of spurs in about 10⁻⁷ s
- (iii) Represents spur formation on energy absorption from a single electron in 10⁻¹² s or less. The higher spur concentration [spur] on electron irradiation is not drawn to scale

Singh (1991)

pH Dependence of Yields on Radiolysis of Water

The pH range of most foods lies between 2 and 8

- Excitation longer lived and more important in organic systems, than in water
- Ionic species formed but much shorter lived than in water
- In the presence of air/O₂, peroxy radicals and O₂, formed

- Excitation longer lived and more important in organic systems, than in water
- Ionic species formed but much shorter lived than in water
- In the presence of air/O₂, peroxy radicals and O₂ formed

Biological Effects

- Biological Effects Studied soon after Röntgen Discovered X-rays in 1895
- Irradiation of human skull led to loss of hair (1896)

Basis for Beneficial Effect of Irradiation

 These differential senstivities of different functional entities to inactivation are the basis of beneficial effects of irradiation

Irradiation Microorganism Inactivation

- Irradiation used to control microorganism levels (food, sewage, medical devices)
- Irradiation harmful to humans; so, exposure of humans kept within safe limits

E.coli cultured aerobically in broth and irradiated in O_2 -saturated or N_2 -saturated buffer (Casarett, 1968)

Concluding Remarks

 Physicists, chemists and biologists have contributed to the high level of understanding of the basic aspects of radiation science, which forms the foundation of radiation processing

 One of the biggest industrial applications of radiation processing, crosslinking of polyethylene and the heat-shrink phenomenon, were discovered by Prof. Arthur Charlesby in 1957 when he was investigating the effects of high energy radiation on polymers