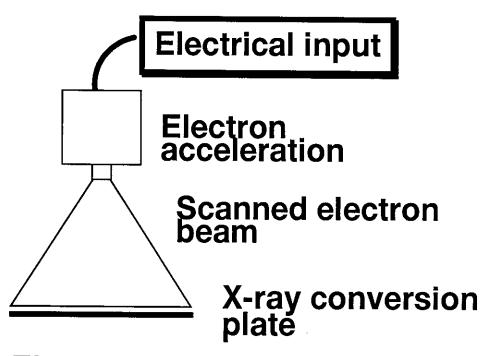

Industrial Irradiators for Radiation Processing

Radiation processing beacame a reality with the availability of particle accelerators and artificially produced radioactive sources (⁶⁰Co and ¹³⁷Cs)


Industrial Irradiators

- Electron accelerators widely used, 0.1 to 10 MeV
- X-rays, mostly used in medical diagnostics and radiography; some used in radiation processing (3 to 10 MeV)
- Isotope sources; medical sterilization and food irradiation
- Heavy ion accelerators, mostly for ion implantation
- Synchrotrons, mostly for resist work
- Nuclear reactors, for producing radioisotopes

Radioisotope vs Electron Accelerator Source

⁶⁰Co or ¹³⁷Cs photon emission, continuous, in all directions

Electron or X-ray beam available when needed, in the desired direction

Components of an Irradiation Facility

1. Radiation Source

- Electron accelerator of specified power and electron energy
- ⁶⁰Co source of specified strength

2. Radiation Shielding

 Concrete (≤3 m, for 10 MeV electrons) or lead shielding, or pool of water between the irradiator and workers

3. Target Room

The area where actual irradiations are done

Components of an Irradiation Facility (contd)

- 4. Product Conveyance
 - Conveyor system for the product through the shielding to the target room for irradiation
- 5. Control Room
 - Outside the shielded area; computer control of product conveyance and irradiation times
- 6. Human Safety
 - (i) Operation by trained operators only
 - (ii) Appropriate interlocks
 - (iii) Single key for irradiator room door and the control panel
 - (iv) Pre-irradiation inspection of target room
 - (v) TV camera/monitors
 - (vi) Emergency shut-off systems

Components of an Irradiation Facility (contd)

7. Shipping and Receiving Areas

 They should be well separated from each other to prevent mixing of irradiated and unirradiated products

8. Safety Devices and Monitors

- Radiation monitors, set to shut off the system at predetermined dose
- Air conditioning temperature fluctuations detrimental to processing
- Large air flow to maintain ozone and NO_X levels low
- Ozone monitors to show when it is safe to enter the target room

60Cobalt Irradiators

- ⁵⁹Co (pellet, slugs or disk) + n \rightarrow ⁶⁰Co
- Enclosed in stainless steel casing
- Lead shielding for Laboratory sources (~25,000 Ci)
- Concrete shielding, and pool storage, for Industrial sources (~1 MCi)

60 Cobalt Industrial Irradiators

Total ~150 in 45 countries

- Service facilities ~60
- In-house facilities ~90
- Food irradiation ~20
- Medical sterilization and miscellaneous applications ~130

Characteristics and Cost of 60Co and 137Cs

Characteristics	60C0	137Cs
Half-life (years) Gamma Energy (MeV)	5.27 1.25 (average)	30.2 0.66
Specific Activity (Ci/g)	'up to 400	~25
Dose Rate (Relative/Ci @ 1 meter)		0.25
Chemical Form	metal	salt (CsCl)
Density (g/cm³)	8.0	3.9
Melting Point, °C	1493	545
Cost (in 1993)	~\$1.45 (US)/Ci	unavailable

⁶⁰Cobalt Irradiators

Advantages

- Simple
- Reliable (availability > 95%)
- Good penetration
- Insensitive to cost of electricity

⁶⁰Cobalt Irradiators

Disadvantages

- Radiation not fully used (hours of operation, geometry of irradiation)
- Cost higher than electrons, for large volumes
- Low dose rate
- Disposal of low activity ⁶⁰Co required (20-50 years)
- Source needs to be periodically recharged

Electron Accelerators

Basic Features

- Electrons emitted by a cathode (tungsten, tantalum, lithium hexaboride)
- Accelerated under vacuum by electrostatic or electromagnetic field
- Beam exit from a thin metal window (tantalum, aluminum)
- Beam scanned by electric or magnetic field

Electron Accelerators

Advantages

- Various power and electron energy levels available
 - Very high dose rates
 - Generally, short processing times
- Cost increases only marginally with power
- Cost increases with electron energy
- · Can be switched off when not required
- Can be used for electrons or X-rays
- Directional beam (horizontal or vertical)
 - Better utilization of beam energy >95% availability reported

Electron Accelerators

Disadvantages

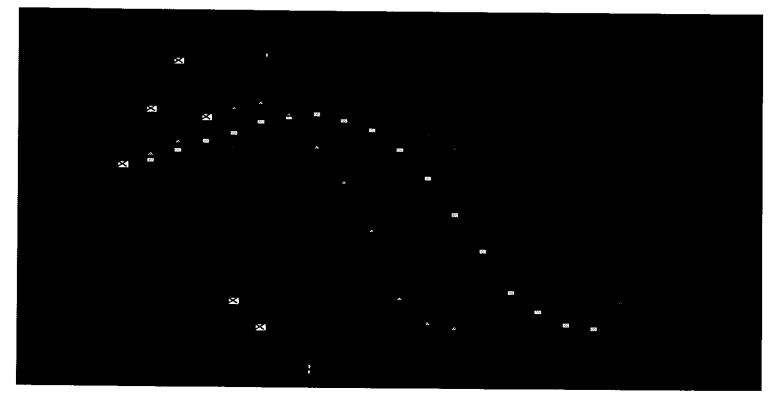
- High-tech equipment, expert maintenance needed
- Relatively limited penetration of electrons
- Conversion efficiency to X-rays energy dependent (5 MeV, ~8%; 10 MeV, 20%)
- Sensitive to cost of electricity

Safety Considerations for Industrial Electron Accelerator Facility

- Radiation Hazards
 - Bremmstrählung (X-ray)
 - Neutrons
 - Induced radioactivity
 - Radio-frequency radiation
- Direct and Scattered Radiation
 - Accelerator level
 - Upper and lower levels

Safety Considerations for Industrial Electron Accelerator Facility (contd)

Conveyor System


- Prevent recontamination of irradiated product by unirradiated product
- Prevent material being caught in conveyor system
- Accelerator shut down if conveyor under the scan horn stops

Energy Control

Interlocks between various entrances and the control panel

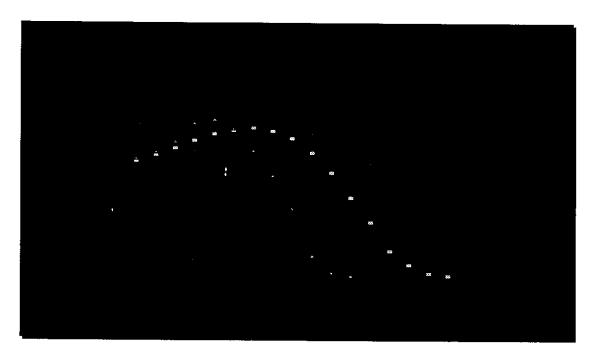
Barnard and Wilkin (1987)

• The penetration of electrons increases with increasing electron energy as shown by the depth/dose curves

Depth (g/cm²)

• The dose uniformity increases with increasing electron energy

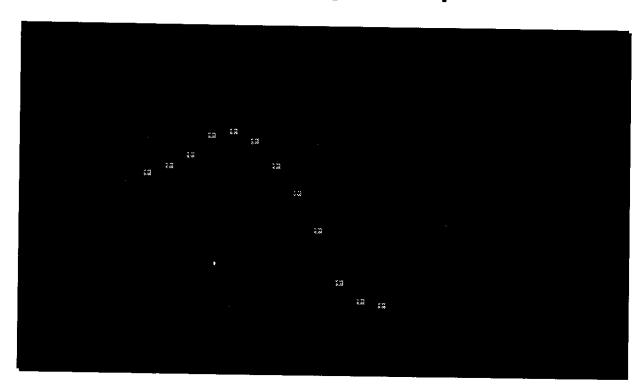
 The penetration of electrons increases with increasing electron energy as shown by the depth/dose curves



Depth (g/cm²)

The dose uniformity increases with increasing electron energy

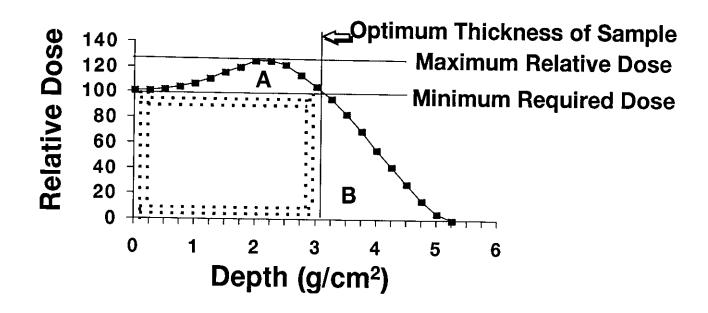
 The penetration of electrons increases with increasing electron energy as shown by the depth/dose curves



Depth (g/cm²)

The dose uniformity increases with increasing electron energy

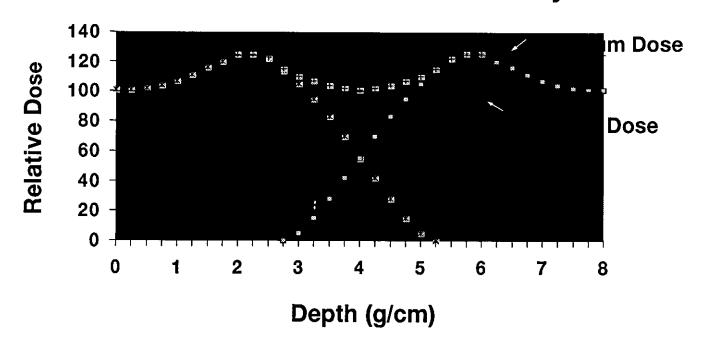
 The penetration of electrons increases with increasing electron energy as shown by the depth/dose curves


Relative Dose

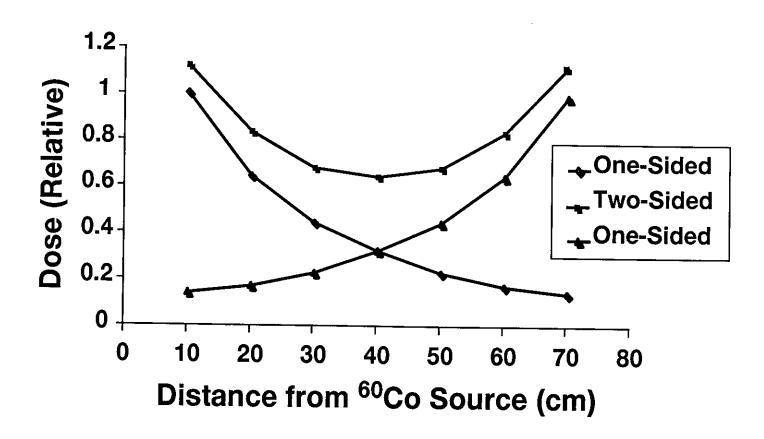
Depth (g/cm²)

The dose uniformity increases with increasing electron energy

Electron Beam Penetration Typical Depth/Dose Curve for 10 MeV Electrons



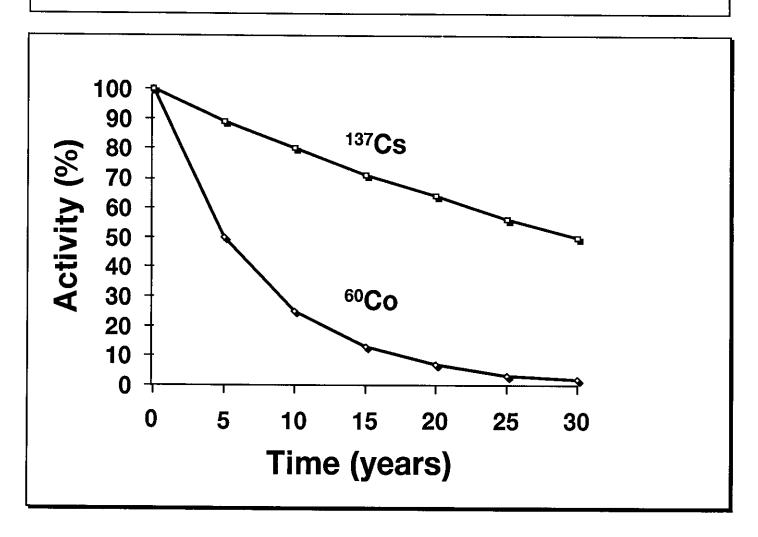
- Dose first increases with penetration and then decreases
- Penetration proportional to 1/density
- At optimum thickness, dose uniformity is ±12.5%


ELECTRON BEAM PENETRATION

One-Sided vs Two-Sided Irradiation for 10 MeV Electrons

• By optimizing two-sided irradiation, the effective penetration of e- beam can be increased by a factor of >2

Dose Distribution in Water as a Function of Depth (Gamma Radiation from ⁶⁰Co; Saylor, 1997)


Comparison of Relative Dose vs Depth For ⁶⁰Co γ-Rays and 5 MeV X-Rays

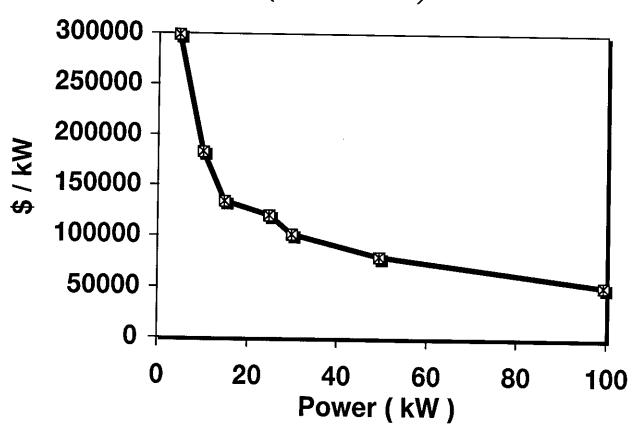
Relative Dose (%)

Depth in Product (cm)

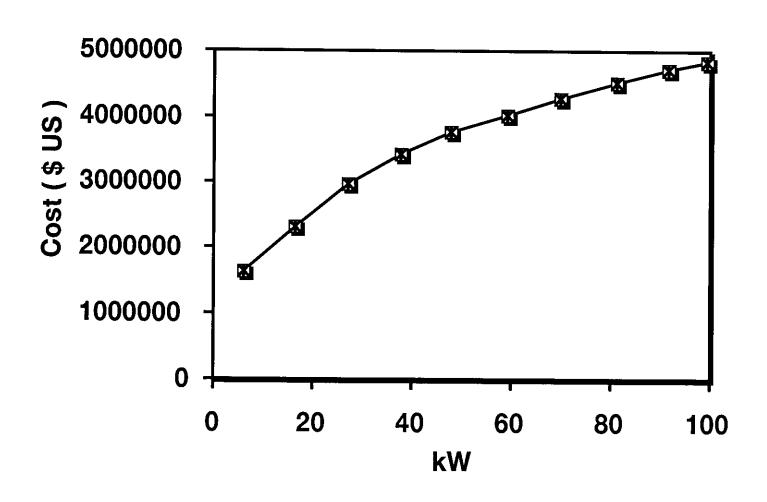
For sterilizations of typical packages of medical disposables

Radioactive Decay of ¹³⁷Cs and ⁶⁰Co

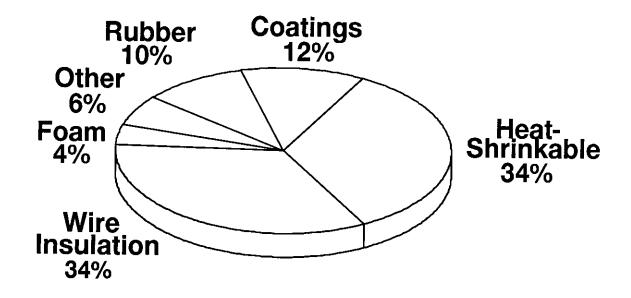
Cost of Electron Processing (Cleland, 1992)


- Electron accelerator, 0.5-10 MeV, \$0.5 to 3M
- Cost calculation

		ost S
(1) C	Capital cost \$3M; Annual cost \$0.45M 6000h/a) cost per hour	75
(2) 1 e	100 kW power; line power 200 kW; electricity, \$.10/kWh, cost per hour	20
(3) L	abour, 2 persons, \$10/h	20
(4) F	Facility and Equipment Maintenance, per hour	20
(5) O	Overheads, per hour	40
	Total Cost	175/h

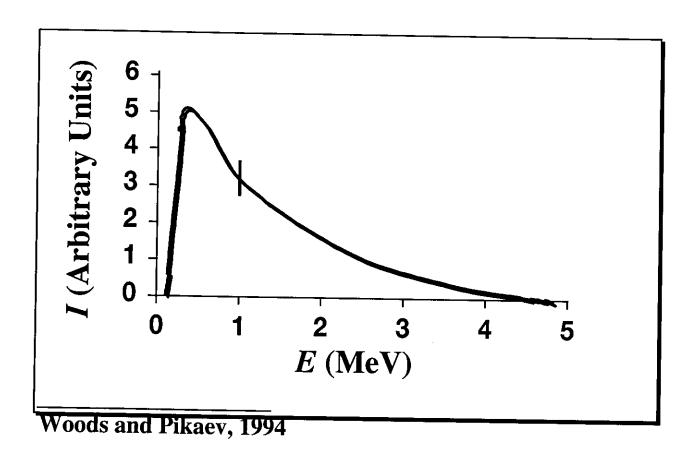

Cost of Electron Processing (contd)

- Material processed, 2500 kg/h
- According to Cleland (1992), the cost of irradiation would be \$0.07/kg for a dose of 100 kGy (10 Mrad)
- More recent estimates (Borsa, 1993) give the cost as \$0.2 to 0.4/kg for a dose of 100 kGy


Capital Cost per kW of Electron Accelerator (10 MeV)

Cost vs Power of 10 MeV Accelerators

Electron Processing

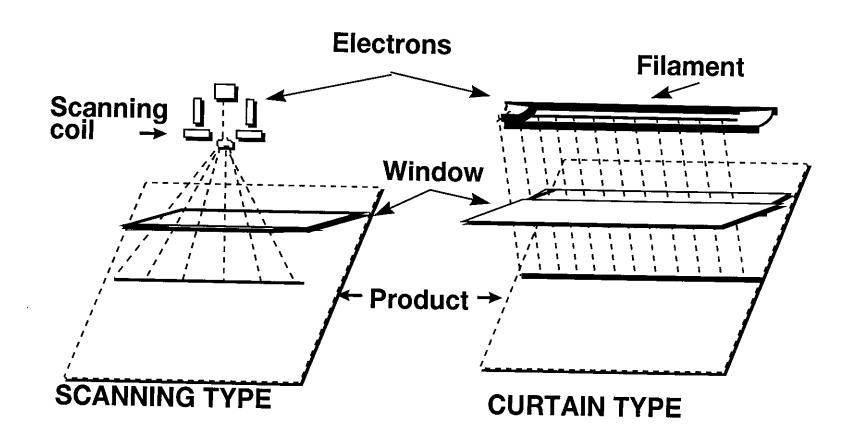


- ~500 Accelerators Worldwide (Saunders, 1988; now ~1000)
- ~150 γ Sources Woldwide for Medical Sterilization and Food Irradiation

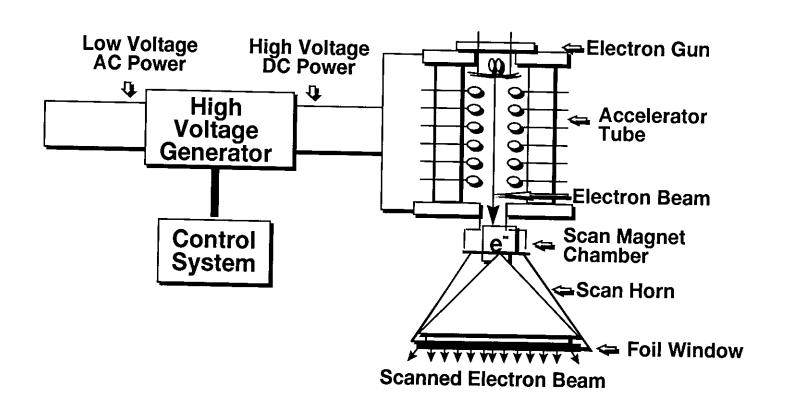
X-Rays

- Produced when accelerated electrons stopped by materials
- Intensity of X-rays function of
 - Increasing electron energy
 - Increasing atomic number of the target
- The conversion efficiencies for electron energy into X-rays are ~8% for 5 MeV and ~20% for 10 MeV electrons; the rest is converted into heat

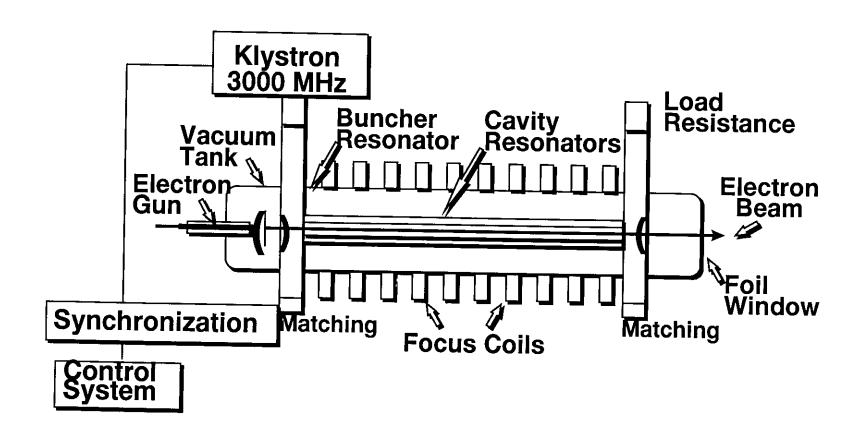
Energy Spectrum of X-Rays from 5 MeV Electrons



The average energy of X-rays is 1.06 MeV


Nominal Equivalence of Electron Accelerators and ⁶⁰Co

- 50 kW of electron beam = 3.38 MCi ⁶⁰Co
- X-rays from 5 MeV, 200 kW electron accelerator
 = 16 kW ≈ 1.1 MCi ⁶⁰Co
- X-rays from 10 MeV, 50 kW electron accelerator
 = 10 kW ≈ 0.67 MCi of ⁶⁰Co


Types of Scanning in Low-Energy Electron Accelerators

Direct Electron Accelerator Principle Of Operation (Cleland,1992)

Traveling-Wave Linear Electron Accelerator

I-10/1 Electron Linear Accelerator (I=Industrial; 10 = 10 MeV; 1 = 1 kW)

- · Pulsed Beam, 19 to 300 Hz
- Pulse Width, 4 μs
- Vertical Beam Bent 270° from Horizontal
- · Scanned Beam, 2-7 Hz, 60 cm wide
- Spot size at Conveyor Level, 10 cm
- Dose Rate at Conveyor,

Pulsed: 5.7 Gy/pulse

1.4 MGV/s

Average: 1.7 kGy/s (unscanned)

130 Gy/s (50 cm scan)

IMPELA 10/50 Electron Linear Accelerator

(IMPELA=<u>I</u>ndustrial <u>Materials Electron Linear <u>A</u>ccelerator 10=10 MeV; 50=50 kW)</u>

- Pulsed Beam, 250 Hz at Full Power
- Pulse Width, 250 μs
- Vertical Structure, beam not bent
- Scanned Beam, 2-7 Hz, 100 cm wide
- Spot size at window, 10 cm
- Dose Rate at Beam Window

Pulsed: 340 Gy/pulse

1.9 MGy/s

Average: 85 kGy/s (unscanned)

6 kGy/s (50 scan)

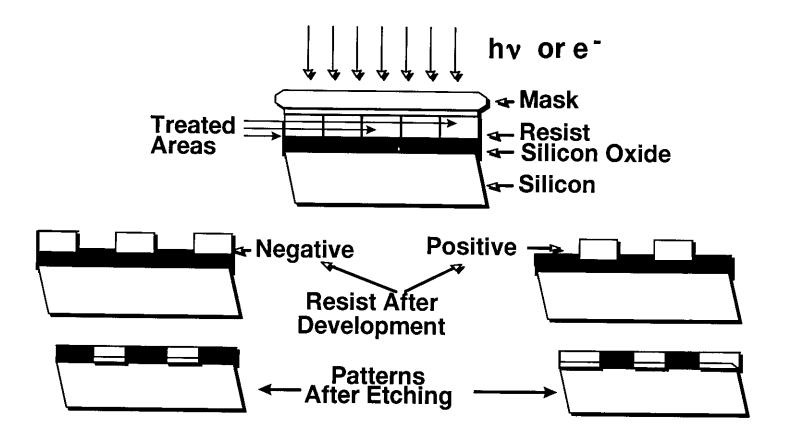
Rhodotron T T200 (IBA, Electron Accelerator, 10 MeV)

Beam Power

1 to 80 kW

 Power Consumption (at 80 kW beam power)

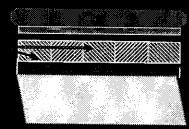
260 kW


Diameter

3 m

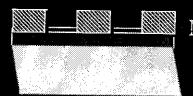
Height

2.4 m

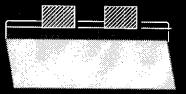

Silicon Lithography

Silicon Lithography

hv or e


Treated Areas

Mask

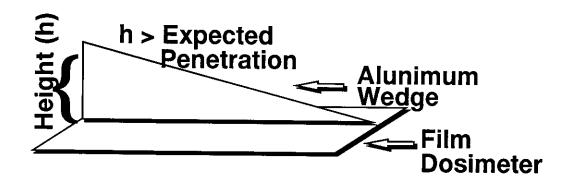

Resist Silicon Dioxide

Silicon

Negative

Positive

Resist After Development

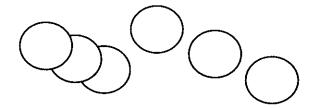

Patterns After Etching

Characterization of the Irradiator

Source: e⁻ γ

Determine depth/dose curves wih Yes Yes a wedge

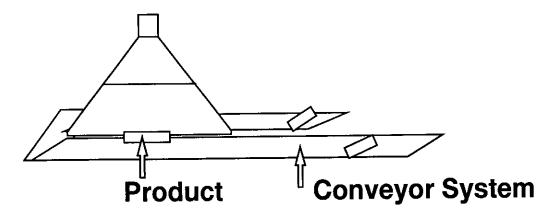
Determine dose profile


Yes Yes

Characterization of the Irradiator

Source: e

Determine Dose Profile



<= Scan

Yes

Yes

 Determine Nominal Dose Received by Product

Yes

Yes

Conclusions

- Gamma irradiation would continue to be an important component of industrial radiation processing
- Industrial electron irradiation would continue to grow for most of the current products
- Areas of major growth for electron accelerators are most likely to include environmental (water purification, sewage sludge irradiation, flue gas irradiation), viscose, and advanced composites
- The availability of a good variety of electron accelerators in a wide energy range (0.2 to 10 MeV) is conducive to growth of the radiation processing industry
- Continued effort to increase understanding and usefulness of the technology would also help the growth of this industry