Food Irradiation

Dose Rate Effect

Dose Rate Effect in Food Irradiation

- Aim of all food processing methods is to minimize damage to the nutrients while maximizing damage to microoganisms
- Codex Alimentarius Commission concluded that nutrient losses insignificant up to 10 kGy
- Losses may be even lower, if irradiation done at high dose rates (Brasch and Huber, 1947; Singh, 1991)

Typical Irradiators and Their Dose Rates¹

Irradiator ²	Beam Voltage (MeV)	Dose Rate (Gy·s ⁻¹)
High Voltage Engineering Corporati	0.3 to 3.0 on	2.5 x 10 ⁴ to 2.5 x 10 ⁶
Nissin High Voltage	0.5 to 3.0	8 x 10 ⁵
Radiation Dynamics	0.4 to 4.5	10 ⁶
AECL, I-10/1	10	2 x 10 ³
AECL, I-10/50	10	10 ⁵
Nordion, Co-60	1.17, 1.33	4 to 10

¹ Singh, 1991; ² Electron accelerators, except for the last item

Transition From Inhomogeneous to Homogeneous Distribution of Free Radicals in Liquid Water

(i)
$$\gamma$$
- Irrad \circ \circ \circ \circ \circ [Spur] -Low number $\sim 10^{-12}$ s \circ \circ \circ \circ \circ \circ \circ \circ [e⁻_{aq}] \approx [•OH] \approx 0.1 mol.dm⁻³ (Av)^a [•OH] \approx 2 mol.dm⁻³ (Spur Core)^b

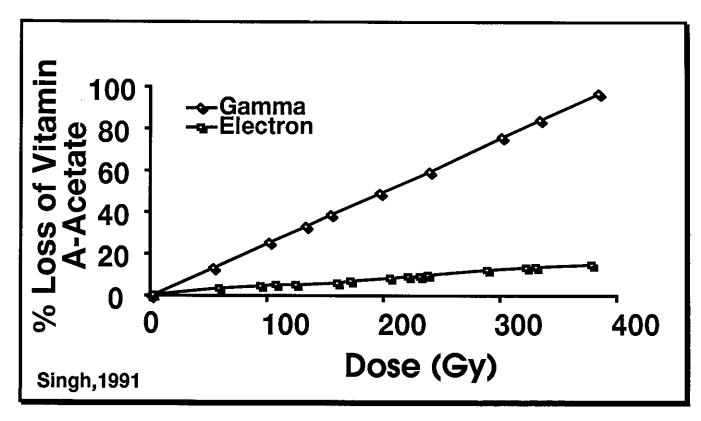
(ii)
$$G(e^-_{aq})$$
 Homogeneous ~ 2.7 Distribution $(\cdot OH, e^-_{aq}, \cdot H)$ $= (-OH)^{\approx} 10^{-9} \text{ mol.dm}^{-3}(\gamma)^{\circ}$ $\approx 10^{-3} \text{ to } 10^{-6} \text{ mol.dm}^{-3}(\gamma)^{\circ}$ $= (-OH)^{\circ} \cdot (-OH, e^-_{aq}, \cdot H)^{\circ}$

a. Averaged over total spur volume; b. Initial Concentration within the spur core; c. γ - Irradiation; d. e⁻- Irradiation

Transition From Inhomogeneous to Homogeneous Distribution of Free Radicals in Liquid Water

- (i) Represents spur formation on energy absorption from a single gamma photon in 10⁻¹² s or less
- (ii) Shows homogeneous distribution of reactive species on diffusion of spurs in about 10⁻⁷ s
- (iii) Represents spur formation on energy absorption from a single electron in 10⁻¹² s or less. The higher spur concentration [spur] on electron irradiation is not drawn to scale

Singh (1991)


Dose Rate Effect on Product Formation from Linoleic Acid¹

Dose Rate ² (Gy/min)	Product (10 ⁻⁵ mol.dm ⁻³)
~ 0.10	28.2
~ 0.33	11.8
~ 0.98	5.0
~ 5.40	2.0

¹ Linoleic acid, 5.8 x 10⁻³ mol•dm⁻³ in borate buffer, pH 9, containing 5% CH₃OH
² Total dose ~10 Gy

•OH +
$$CH_3OH \longrightarrow \cdot CH_2OH + H_2O$$

•H + $CH_3OH \longrightarrow \cdot CH_2OH + H_2$
•CH₂OH + Linoleic Acid \longrightarrow Reaction Products
•CH₂OH + ·CH₂OH \longrightarrow (CH_2OH)₂

Effect of Dose Rate on Vitamin A-Acetate in Isopropanol Solution

• Dose Rate: Electron, ~10⁴ and Gamma ~10 Gy/s

Dose Rate Effect on α -Tocopherol in Sunflower Oil

Dediction	Dose Dose		Tocopherol Loss (%)		
Radiation Source	(kGy)	Rate (Gy/s)	In Nitrogen	In Air	
⁶⁰ Co	1	1.8	30.1	36.5	
	10	1.8	89.4	94.6	
X-ray (5 mA)	1	4	30.1± 1.0	34.8± 0.6	
(20 mA)	10	16	86.0± 1.3	90.7 ± 1.2	
Van de Graaff	1	2.5 x 10 ⁴	27.8± 0.4	33.5± 0.3	
(1 MeV)	10	2.5 x 10 ⁴	91.1± 1.4	95.9± 0.5	
Linear accelerator (10MeV)	1	10 ⁷	27.0	32.2	

Singh (1991)

• The losses are rather similar, with a hint of lower losses at higher dose rates

Effect of Gamma and Electron Irradiation on Ascorbic Acid (Vitamin C) Content of Citrus Fruit Section¹

	Ascorbic Acid Content (mg per fruit section)				
Treatment	Dose (kGy) 1 2 3 5				
Unirradiated (control)	16.6	21.2	18.9	18.6	
Electron irradiation (1 MeV,0.4 μA/cm²)	17.0	22.5	18.9	17.9	
Gamma irradiation (0.6-2.3 kGy/h)	17.2	21.2	18.6	17.2	

¹ Singh (1991)

At low doses, vitamin C loss appears to be insignificant

Dose Rate Effect on Vitamins in Sweet Potatoes¹

Dose Rate	Time of Irrad ²	Thiamin	Riboflavin	Ascorbic Acid	Carotenoids	
(Gy/s)	(min)	mg/100 g (fresh weight)				
3.75	4.4	0.016a	0.036a	16.43 ^{a b c}	11.4 ^{a b}	
2.88	5.7	0.015 ^a	0.036 ^a	16.34 ^{a b c}	12.8ª	
2.06	8.0	0.017a	0.03 ^a	16.93 ^{a b}	7.7°	
1.37	12.1	0.016a	0.04 ^a	15.05°	8.6 ^{b c}	
0.27	60.0	0.017a	0.04 ^a	14.65°	7.6 ^c	
0	-	0.018ª	0.026 ^a	17.30 ^a	12.6 ^a	

¹ Singh (1991)

² Time of irradiation (⁶⁰Co source) at 24°C for a total dose of 1 kGy

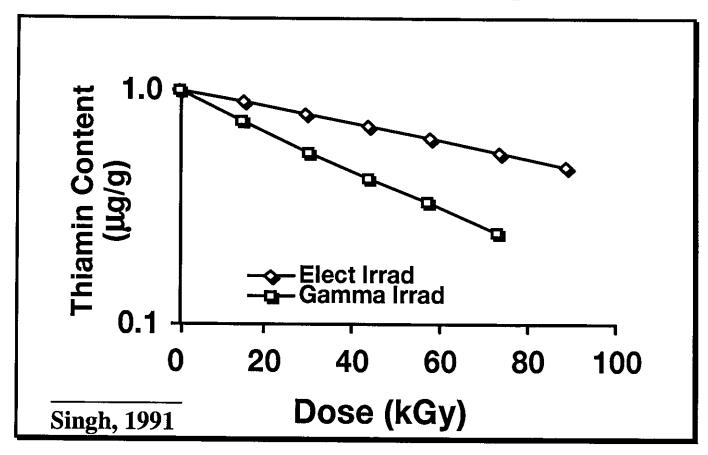
³ Mean values with the same superscripts (a, b, c) in the same column are not significantly different at the 5% level

Dose Rate Effect on Water-Soluble Vitamins in Enzyme-Inactivated Radappertized Chicken¹ (45-68 kGy at -25 ± 15°C)

Vitamin	Frozen Control	Gamma	Electron
Biotin ²	93.0 (100) ³	98.0 (105) ³	103.0 (111) ³
Choline	952.4 (100)	1096.0 (115)	1001.0 (105)
Folic Acid	0.8 (100)	1.3 (152)	1.5 (177)
Niacin (bound)	218.6 (100)	209.8 (96)	212.1 (97)
Niacin (free) Pantothenic	212.9 (100)	197.9 (93)	208.2 (98)
acid	24.0 (100)	23.5 (98)	24.9 (104)
Riboflavin	4.3 (100)	4.5 (103)	4.9 (113)

¹ Singh (1991)

² Biotin content given in μg/kg chicken (dry weight), other data mg/kg


³ Values in brackets give percentage of frozen control

Dose Rate Effect on Vitamins in Meat $(-30 + 10^{\circ}C)$

		Average Total	Gamma	Electron
Vitamin	System	Dose (kGy)	Percent	Retention
Thiamin	Beef	58¹	23	44
	Chicken	58¹	26	66
	Chicken	45-68 ²	~68	~86
Pyrid- oxine	Chicken	58¹	50	62
	Chicken	45-68 ²	73	93

- 1. Gamma and electron dose rates assumed to be ~14 Gy/s and ~10⁶ Gy/s respectively (Singh, 1991)
- 2. Gamma and electron dose rates 9.6 and ~106 Gy/s, respectively (Thayer, personal communication)

Effect of Dose Rate on Thiamin in Pork Irradiated at -45°C

- Initial thiamin concentration about 9 μg/g in pork
- Dose Rate: Electron, ~106 and Gamma ~14 Gy/s

Amino Acid Content (g/100g Protein) of Irradiated Enzyme-Inactivated Chicken at High Doses (45-68 kGy at -25 ± 15°C)

Amino Acid	Frozen Control	Electron (10 ⁶ Gy/s)	Gamma (9.6 Gy/s)
Alanine	5.76	5.85	5.84
Arginine	6.24	6.38	6.37
Aspartic acid	8.94	8.84	8.98
Cysteine	0.91	0.93	0.96
Glutamic acid	14.33	14.37	14.19
Glycine	5.83	5.87	4.21
Histidine	4.05	4.36	5.96
Hydroxyproline	0.28	0.28	0.27
Isoleucine	4.51	4.67	4.70
Leucine	7.53	7.64	7.69
Lysine	8.34	8.49	8.55
Methionine	2.52	2.57	2.48
Phenylalanine	3.78	3.79	3.74
Proline	4.02	4.34	4.45
Serine	3.72	3.60	3.73
Threonine	4.11	3.94	4.14
Tryptophan	1.16	1.20	1.25
Tyrosine	3.38	3.22	3.34
Valine	4.79	4.93	5.02

Singh (1991)

Dose Rate Effect on the Amino Acid Content (g/100g Protein) of Raw Beef at Low Dose (6 kGy)

Amino	Control	⁶⁰ Co Irradiation	2	Electro MeV	n Irradiati 4 N	
Acid			Dose Ra	ite (Gy/s)		
	0	5.3	2 x 10 ²	2 x 10 ³	2 X 10 ²	2 X 10 ³
Cystine Lysine and	0.72	0.86	0.71	0.87	0.65	0.62
histidine Arginine	15.42 7.95	14.95 7.23	13.46 7.72	15.07 8.09	14.29 7.32	13.79 7.65
Aspartic acid Serine Glycine	7.04 2.82 3.37	7.15 2.79 3.42	6.85 2.97 3.39	6.65 2.60 3.61	6.41 3.04 3.91	6.78 2.96 3.75
Glutamic acid Threonine	11.82 4.64	11.50 4.67 4.82	11.75 4.23 5.10	11.11 4.52 4.95	12.04 4.52 5.12	11.72 4.54 5.19
Alanine Tyrosine Methionine Valine	4.64 2.84 2.48 5.35	3.03 2.52 5.15	2.74 2.38 5.21	2.89 2.46 5.08	3.02 1.91 5.71	2.77 2.30 5.63
Phenylalanine Leucine and isoleucine	4.10 9.19	4.15 9.32	4.57 10.04	4.90 9.74	4.69 9.96	4.96 9.93

Singh (1991)

Dose Rate Effect on Selected Amino Acids in Enzyme-Inactivated Beef (-40°C)

Amino Acid	Frozen Control	⁶⁰ Co (47-71 kGy)	e ⁻ , 10 MeV (47-71 kGy)
Cystine	0.28	0.26	0.28
Methionine	0.53	0.57	0.59
Tryptophan	0.25	0.25	0.26

Singh (1991)

The data suggest absence of a dose rate effect

Some Volatile Radiolysis Products Isolated from Irradiated (45 kGy at -30°C) Chicken Meat

	Frozen Control		Gamma Irrad		Electron Irrad	
	No. 1 ^b	No. 2 ^b	No. 1 ^b	No. 2 ^b		No. 2 ^b
Ethane	_	_	110	134	161	196
N-Pentane	2	3	107	138	157	191
N-Hexane	2 9	3 5	173	219	248	301
N-Nonane	-	_	101	131	153	187
Ethylene	-	-	13	21	21	26
Nonene	•	-	51	55	79	86
Methyl alcohol	-	-	31	35	48	52
Ethyl alcohol	-	-	50	55	l 77	84
Acetone	1	1	41	43	63	69
Ethyl mercaptan			6	7	3	6
Dimethyl sulfide	+	+	6 3	4	63 3 4	6 3
Tetradecadiene		<u>-</u> 	17	1 7	26	28

Based on data of Merritt (1984), μg/kg chicken meat
 Samples of two different production lots (No. 1 and No. 2) were processed simultaneously; experimental error high

Dose Rate Effect on Percentage of Tuber Sprouting in Two Varieties of Potatoes

Potato Total Dose (Gy)	- -	Dose	Dose Rate (Gy/min)				
	0	2.5	30				
			Percent Sprouting				
Gola	60	100	15	0			
Up-to-Date	90	100	20	0			

Singh (1991)

 The higher dose rate appears to be more efficient in perventing tuber sprouting

Sensory Evaluation of Gamma- and Electron-Irradiated Walla Walla Onions¹

Irradiation Treatment	Fresh				Cooked ²		
	Dose (kGy)	Firmness	Flavour	Taste	Firmness	Flavou	ır Taste
Electron (2 MeV, ~10 ⁵ Gy/s)	0 0.1 1.0 2.0	7.0 ^a 6.1 ^a 6.6 ^a 6.8 ^a	6.7 ^a 7.3 ^a 6.7 ^{a,b} 5.6 ^b	6.4 ^a 6.8 ^a 6.6 ^a 6.4 ^a	6.4 ^a 7.3 ^a 5.9 ³ 7.0 ^a	4.8 ^b 7.3 ^a 5.5 ^{a,b} 6.5 ^{a,b}	4.9 ^c 7.0 ^a 5.4 ^{b,c} 7.0 ^a
Gamma (22.8 Gy/s)	0 0.1 1.0 2.0	6.6 ^{a,b,c} 6.2 ^{a,b,c} 7.0 ^{a,b} 6.8 ^{a,b,c}	6.4 ^a 6.0 ^a 7.2 ^a 6.6 ^a	6.6 ^{a,b} 6.0 ^b 7.1 ^{a,b} 6.5 ^{a,b}	6.8 ^{a,b} 6.4 ^{a,b}	6.5 ^a 6.3 ^a 5.5 ^a 6.2 ^a	7.0 ^a 6.5 ^a 5.9 ^a 5.9 ^a

Singh (1991). A nine-point hedonic scale: 9=like extremely; 1 = dislike extremely Mean values with the same superscripts (a,b,c) in the same columns are not different (P < 0.05)</p>

² Chopped onions cooked for 2 min at 250°C

Expert Panel Evaluation of Dose Rate Effect on the Sensory Characteristics of Enzyme-Inactivated Radappertized Chicken Meat¹

Treatment	Overall Score ²						
	Colour	Odour	Flavour	Texture			
Gamma ³	6.28 ^b ± 0.73 ^b	6.04 ^a ± 0.53 ⁶	5.43a ± 0.386	5.40 ^b ± 0.58			
Electron ⁴	6.30 ^b ± 0.73	$5.98^{a}\pm0.58$	5.40 ^{a,b} ± 0.56	5.35 ^b ± 0.54			
FC ⁵	6.45 ^b ± 0.44	6.68 ^b ± 0.48	6.40 ^b ± 0.47	6.11℃± 0.42			

Singh (1991)

Expert panel, n= 10; average data for 4 storage times x preparations for serving (n=80)

³ ⁶⁰Co, dose rate ~ 5 x 10² Gy/s

⁴ 10-MeV LINAC, ~10⁶ Gy/s

5 Frozen control

Mean values with different superscripts in the same column (a,b,c) are significantly different (P < 0.05)

Consumer Preference Ratings of Irradiated Roast Beef¹

		Average Preference Rating ²			
Experiment No. of No. Raters		⁶⁰ Co ³	Electron ³	Control ³	
1 2 3 4 5 6 7	32 32 32 32 32 30 30	5.5 6.2 5.4 6.6 5.6 5.0 5.8	5.4 5.6 5.8 5.9 6.3 5.6 6.3	5.5 6.1 6.0 6.2 6.0 4.8 5.4	

Singh (1991)
 Nine-point hedonic scale: 9=like extremely; 5=neither like nor dislike extremely
 Dose 47 to 71 kGy at -30 ± 10°C