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CHAPTER 5

GROWTH AND DECAY OF RADIOACTIVITY
DURING AND AFTER IRRADIATION

I. Laws of Radioactive Decay - Exponential Law

(A) Sprere Case

- Consider the case of a radicactive nucleus (1) decaying into a stable

nucleus (2); N
(1) = (2) (stab.) (6.1)

This oase can be compared to a monomolecular reaction. The
reaction rate (nuraber of disintegrations per second, D) is proportional
to N the number of atoms of (1) present:

dy

E = -om = D (5-2)
A is a constant, characteristic of the partioular redicactive species,
and is called the decay constant, having the dimension of a reciprocal
time, #=1, The integral of this simple differential equation is given by

N{t) = N'exp (~X) (8.3)

Here, N{t) represents the number of atoms (1) at a time ¢, N° the
number at ¢ = 0. The radioactive decay is thus governed by an ex-
ponential law. Combining (5.2) and 5.3) one can write:

D{t) = D° exp (—X) (5.4)

Measuring a fraction 2 of the real number of disintegrations (ie. the
experimentally observed activity 4) one obtaina:

A = zD = zAN
and
Aff) = A%exp (—X) {6.5)

The coeflicient z is called the detection coefficient and will depend on
the nature of the detection instrument, the efficiency for the recording
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124 &> NEUTBON ACTIVATION ANALYSIS
of the particular redistion with that particuler instrument, and the
geometrical arrangement of sample and detector.

T}fo characteristio “rate of a radicactive decay” may conveniently
be given in terms of the half-life Ty,, ie. the time required for an

initial (Iarge) number of atoms to be reduced to half that value. Thus,
até{ = Ty, N = N2 and

In} = =2Ty, or Ty, = 0.603/4 (5.6)

‘Thi.s half-life can conveniently be determined graphically by plotting
Alt;s. ¢ on a semilog scale giving a straight line with a slope -2 (Figurs
5.1).

10° — b
Y
AN
N
Tl \
goz ——H0h -

Activity

0 10 X 30 40 50
Tiene(h}

Fig. 5.1. Radioactive decay of a single radionuclide (T'ysy = 5.0 L)
Alt) m A% exp (- X)
log A(t) = log A¥— X

5. GROWTH AND DECAY OF RADIOACTIVITY

(B) MixTURES OF IRDEFERDENTLY DECAYING ACTIVITIES

In the above equations the radioactivity, corresponding to the
transformation of & single atomie species, was considered. In the more
general case, the observed total activity ia obviously the sum of all
the independent activities, i.e.

A=A1+A'+...lel‘l.hrl"‘z’A’N.'l‘--- (5-7)

The detection coeffivients 2, z, . . . can be quite different, depending
on the nature and the energy of the radiation of the different species.

For a mixture of several independent activities the result of plotting
log A vs. & is slways an upward concave curve (Figure 5.2). In the case
of two radioactive species one can write:

A(t) = 4,()) + A,(t) = AJexp (~A) + AJexp (=)  (5.8)

Assuriing that (1) decays more rapidly than (2), le. A; > A,
equation (5.8) simplifies to

A(t) & A exp (—Aql) (5.9)

after a sufficiently long time. Extrapolating this straight line in the

semilog plot to ¢ -0, onle can subtract the value 4 ,(f) for any time,
from the corresponding total activity 4; this allcws one to tind 4,
a8 a funotion of ¢, i.e. A] exp (—At). The complex decay curve is
analyzed into its two components, from both of which now, in the
usual way (c¢f. Figure §.2), Ty, may be determined.

Due to experimental uncertainties in the observed data, this pro-
ceduro is limited {o mixtures of only two or three radioisotopes, and
even two compenent curves may not be satisfactorily resolved if the
two hall-lives differ by less than about a factor of two or if the rates
differ by a large factor. -

In Figure 5.3 a complex decay curve is analyzed into four com-
ponents, The accuracy in the determination of the half-lives of the
short-lived components is however poor.

During the past years a number of computer methods for analyzing
multicomponent radicactive decay curves have been developed. As
expected, the earlier codes had rather limited capabilities, while the
later modifications became increasingly complex and sophisticated
(see Chapter 9, seotion III, C, 3).

F.
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Fig. 5.2. Analysis of composite decay curve {mixture of two indspendently
decaying activities)
& = composite decay curve: A() = Af exp (~2,0)+42 exp (— Ay}
b = longer-lived component: 4 4{t) = A3 exp (~ 1)
¢ = shorter-lived component: A,(f) = A$ exp (—A,f)

Normally & least-squares fitting operation is performed (1,2). The
data of s radioactive decay ourve consist of m measurements of the
counting rates 4; of the sample at times ¢, If n independent nuclear
species are present, then the set of data satisfies m equations of the
form

Jun
4 ",Z, A exp (= Mt) + 2Z4 (5.10)

where an individual term in the sum, 47 exp (—Ag) represents the
contribution of the jth component in the total activity at time ¢;. The
residual Z; at that point is due to statistical fluctuations and experi-
mental errors. Since the # coefficients A7 enter thess equations linearly

I

-i\;.
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Fig. 5.3. Decay curve of irradiatéd ruthonium,

& solutinn by the least-squares method is poasible. The condition for
such a solution is that

e .
‘E': W2} = minimum (5.11)

where IV, is the weight assignad to the square of each residual (W =
1/of). It is convenient to adopt & matrix notation for furtheér calcula-
tions. The code is normally intended to be run by the “monitor”
system, i.e. all reasonable errors will cause & suitable comment to be
printed by the machine before it takes appropriate action.

The data needed to begin the least-squares fitting calculation
include: time, counts, length of count, background, and the half-lives
for each component. The data obtained from the calculation include:
the activity of each component. at the time of the first count, the
deviation of each point from the caloulated curve, weighted by 1/o*
for that pcint and the “error matrix”.

On the average the machine resolution of decay curves gives better
results than those obtained by hand. Not the least advantage is the
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speed of the calculation. On an IBM 7090 a typical calculation involving
30 data points and including data read-in and evalu ation, resolution of
three components, recaleulation if hecessary, print out of answers and
tabulaticn of collected deta will take about ten seconds of machine
time,

In none of the above methods does the number of components
“fall out” of the analysis and if the number of components is not known,
any “‘accurate” estimate of the Pparameters begins to lose its meaning,
The two essential difficulties inherent in this technique are, that one
must deal with data that only approximate 4(¢) over a finite ranpe in ¢,

- and that the exponential series Posseases such strongly non orthogonal

properties, that the parameters are extremely sensitive to minor .

fluctuations in the data. The approach of Gardner ef al (3,4) is based
on the fact that the exponential series can be represented by a Laplace
integral equation:

) =5 alowp (~h) = [C g oxp (- dr  (5.12)

Here g()) is & sum of delta functions, but due to the error inherent
in the experimental eatimate of A(t) and in the numerical computations
Recessary to obtain g{2), & plot of g(A) ve. A appears in the form of a
frequency spectrum. The presence of & tiue peak in the spectrum
indicates & component, the abacissa value at the center of the peak
being the decay constant ); whereas the height of the peak is propor-
tional to the coefficient A{. The function g(A} is obtained by Fourier
transforms, as described in full detail by Gardner e al (4).

This method is applicable both to the decay of independent species
and also to the case of growth and decay chains. One advantage of the
method lies in the fact that it is not necessery to have initial estimates
of the parameters (particularly ;) before the analysis as in curve
fitting procedures, such as the non-linear least-squares method.
Furthermore it is an approach where the number of components
automatically “falls out” of the analysis, Full use is made of the
accuracy inherent in the data since they aro treated as a whole, as
opposed to some “subtraction type” methods, wherein all but the

*

shortest-lived components are determined nsing fewer points than are _

actually available. Finally, the ocourrence of very similar A values does
not endanger the entire solution as in othar methods.

2
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II. Growth of Radioactive Daughters

(4) Two Svocesstve Droays

Consider the simple case of a radioactive epecies (1), which decays
to produce another radioactive species (2):
(1) ——> (2) —> (3) (stable) (6.13)

Decay of (1) and growth and decay of (2) are described by the follow-
ing differential equations,

dN.

-El = ~A;N; where Ny = N0 exp (=) (5.14)
.
_dt—’ = LN, - AN, (5.18)

23 the second species is formed at the rate at which the firat decays
(A N,) and decays at a rate ~A.N,.
From (5.14) or (5.3) and (5.15) it follows that

awn
76! + AN, = A N? exp (—At) (5.16)

This is a linear differential equation of the first order. The general
form of this so-called Leibnitz equation is given by

:-:-: + Py=Q (Leibnitz equation) (5.17)

where P and @ can be tunctions of x and explicitly independent of ,
or constant. As this equation is of great importance, it will be treated
in detail. The general solution is given by:

g = exp(..fpd;)fgexp(jpde)dz+c.exp(-jpdz) (5.18) -
In the case of (5.18): y = Ny, Z e t, P = Ay, @ = A N0exp (= ).
Thus

¢ (]
Ny(t) = exp (=) [, W3 exp (—Aif) exp () &t + Cooxp (=Ayf)

Ny = 030 (-3 00 exp 3y ~ At = 1]+ Coxp (=)

Nyjt) = A‘N“;I [exp (=Ay#) — exp (—A4)] + Cexp (=Ay)

A‘-‘
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Finally, if ¢ = 0, N} = 0 4 0, 50 0 = N?,
The final solution is thus given by

A
A' —

Nyft) =

AIN?[orp(-M) — exp (= Aqt)] + Nfexp {—2y)

(6.19)
Equation (5.19) is the general expression for the decay of a radio.

" nuclide, formed from another radionuclide,

The last term gives the contribution at any time from the daughter
atoms present initially. Assuming that, for ¢ = 0, N? = 0 (the case

of a daughter activity, growing in the freshly purified parent fraction),

equation (5.19) is simpified to

A .
F) = =5 Milemp (~2) —exp (=\)]  (5:20)
1= M
In equation {5.19) and (5.20) two general cases can be distinguished,
depending on which of the two substances (parent or daughter) has the
longer half-life. This discussion will be limited to equation (5.20), i.e.
assuming that N = 0,

1. Transient Equilibrium
Al < -A’, e-g. (le’)! = 5.0 h and {Tﬂl)l = 0.5 h, i-e- A. b 1011.

Consider first the number of parent atoms as a function of time,
At ¢ = 0, N; = N} and-the corresponding activity 42 == A,N? (e.g.
A} = 90 epm). .

Hence, as a function of time, one can write ¥, = N? exp (—Ay) or
4, = A} exp (—\yt) (Figure 5.4 curve aa}, assuming z, = 1.

To calculate the daughter activity in the parent-plus-daughter
fraction, equation (5.20) must be applied. After ¢ becomes sufficiently
large, exp (— A4t} is negligible compared to exp (—Af), hence:

L h : A,
Ny o Aleexp(-A,I) and A, x Py

assuming z, = 1. Substituting A, = 10),, this becomes:

Npexp (—Ay)

Ay = 1—; A Nexp (—Af) (Figure 5.4 curve l;h)

Tidy
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Fig. 5.4. Translent equilibrium; (T';,); = 6.0 h and {Tyy)y= 0.8 h;
(A, = 104,) o
curve aa: activity due to parent
ourve bb: daughter activity in tha parent-plus-daughter fraction
curve b'bb: daughter activity growing in freshly purified parent fraction
curve oo: decay of freshly Isslated deughter fraction
ourve dd: total activity of an initially pure parent fraction.

f.e. the daughter activity in the parent-plus-daughter fraction decays
with the halflife of the parent. Extrapolating this straight line in the
semilog plot to ¢ = 0, one finds

19—0)« 1 V% = 100 cpm,

since A = 90 opm.

For amall values of ¢, the general equation (5.20) haa to be applied
to calculate N, or A,; actually, (5.20) can be written as the algebraio
sum of two exponential terms:

10 10
4y = ) A NT exp (= Ayf) ~ o A N] exp (~Ag).
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The first term is represented by curve bb (Figure 5.4). The second
term which haa the same extrapolated value as the first one

10
(—Q—AIN‘,'M.:=0). .

describea the decay of a freshly isolated daughter fraction (separated
from the parent), and is represented by curve cc.

Thus, curve bb minus curve ce (= curve bb’) represents the daughter
activity in the parent-plus-daughter fraction as a function of time.
At f =2 0, A4 = 0. After ¢ becomes sufficiently large, A, = ocurve bb;
between these extreme values, there is a continuous transition.

The total activity of an initially pure parent fraction is given by

10
A=A+ Ay = M NYexp (-A) + 'b-f‘xN?“P(‘“'\;‘)

10
Y AN exp (—Ag)
or, graphically: curve aa plus curve bb’ = curve dd (Figure 5.4) e.g.
at t =0, A°= A} + A3 = A = 90 cpm;atét =50h, 4 = 45 + 50
= 95 cpm.

Remark: The figure assumes 2z, = z, = 1 and N3] = 0 (initially pure
parent fraction).

Conclusions for transient equilibrium. After ¢ becomes sufficiently
large, the daughter activity and the total activity decay with the hali-
life of the parent. The daughter can, of course, only decay after being
formed; so, its decay rate is determined by its formation; the latter is
equal to the decay rate of the parent. :

In thess conditions, the ratio “number of atoms of parent to number
~ of atoms of daughter” is constant.

N, A
, N o h-M

Multiplying both numbers of this equation with z,A,/z,a,, one finds

an analogous equation:

‘A_.'- - z'l\’N’ - z.A’
4, AN, (A - Ay)

(5.21)

or

5. GROWTH AND DEOAY OF RADIOACTIVITY

%4, A
254, A=A
Notice, however, that the right-hand sides of equations (5:21) and
{6.22) are not the same.
In the case of the example (2, = z,, A, = 10],), this becomes
4, 104, 10

(5.22)

“and

A+ A, A 19 A+ 4, A4 19

[ = —_— - T r—
4, 4 9 ¥ T4, AT
whish ean be verified on Figure 5.4.

2. Secular Equilibrium

If Ay € A,, one has a limiting case of radioactive equilibrium and
the same considerations can be made as in IT, A, 1. It is called secular
equilibrium, Setting (7'y4); = o0 and {T;,)5 = 1.0 h, the number of-
parent atoms is given by

Ny = N} exp (=At) & N? (xconstant)
a8 }, is very small. The l;a.rent activity is given by
4y m A% = A N? = constant = R (Figure 5.5 curve aa)
ie. the parent activity does not decrease measurably during many
daughter half-lives.

After ! becomes large compared to (T',);, the daughter activity
in the parent-plus-daughter fraction can be caloulated from

R”
Ny= N‘fexp(—l,t)z)‘—andA,zR
2

. S
A’ hand Al
(in Figure 5.5, same curve aa as for parent activity). Extrapolating

this constant to ¢ = 0, one finds of course, R.

For small values of ¢, the general equation (5.17) must be applied to
calenlete N, or A,

AN
Nywm J\._l-l_x [exp (= Ayt) —exp (—At)) & f[l —oxp(—Ag)] {5.23)

and
Ay = B[l —exp (~Ag)or 4, = R ~ Rexp (=)
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Fig. 5.5, Becular equilibrium; (T'y;4); = © and (T'y,}, = 1.0h
curve aa: activity due to parent
' curve co: decay of freshly isclated daughter fraction
curve ba: daughter activity growing in freshly purified parent fraction
curve dd; total activity in an initially pure parent frastion.

Thus, one can conclude that 4, is given by the difference of a con-
stant term R (Figure 5.5 curve aa) and an exponential term R exp
(—=Agl). The latter term, which has the same extrapolated vaiue as the
first one (R at ¢ = 0), describes the decay of a freshly isolated daughter
fraction and is represented by curve ce.

Curve aa minus curve co = curve ba = A,
At t =0, 4, = 0; for ¢ sufficiently large, A4 = curve aa = R,
The total activity is caloulated as follows:
A=A, + Ay =R+ R ~ Rexp(~Ay)
i.e. curve aa plus curve ba gives curve dd.

At t=m0: A= R+ R~R=R (-At) for ¢ sufficiently large:
A=R+ R~0=2R

5. GROWTH AND DEOAY OF BADIOACTIVITY

Between these extreme values, there is a continuous transition.
Figure 5.6 assumes z, = z, = 1and N} = 0.

3. Case of no equilibrium
Al > l\’, e.g. (Tlf‘)l = 0.5 h and (Tﬂ’). = 5.0 h, i.e. Al = 1033-

Further assume: z, = z, = L and N = 0.
The number of parent atoms ag a function of time is given by

Ny = N{exp (—Ay)
and the corresponding activity by
A, = AN} exp (— ) (Figure 5.8 curve aa; 43 = 800 ¢pm)

The daughter activity in the parent-plus-daughter fraction is again
calculated from equation (5.20). After ¢ becomes sufficiently large,
this equation is simplified to:

Ny=

T Mexp(-0A) and Ay = B0 N exp (-2
A, Ay = Ay

In the case of the numerical example, thiz becomes:
A, = 1—: A NTexp (—Ay) (Figure 5.6 curve bb).

This means: the daughter decays with its own half-life. Extrapolating
this straight line in the semilog plot to ¢ -0, one finds
A,N°=Mn-=ﬂ-1000pm.

For smaller values of §, the general equation (5.20) must be used;
A, is given by the difference of twn exponential terms: ‘

: AA
Ay = =0 Nilexp (=) ~ exp (—Ay)]
1 t

= 2 oy () = 2 oy

The first term is represented by curve bb (Figure 5.6). The second
term, which has the same extrapolated value as the first one (100 cpm
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Fig.5.8. Caseof no equilibrium (T'y;,), = 0.5hand (T,,}, = 5.0h; (2, = 104,).

curve aa: activity due to parent

curve bb; dnughter activity in the parent-plus-daughter fraction
curve b'b: daughter activity growing in freshly purified parent fraction
curve db: total activity in an initially pure parent fraction.

8t £ = 0) is 1/8 (=A,f(X; — 2,)) of curve as, and is represented by
curve a'a’, Curve bb minus curve a’a’ = curve b'b = 4,

Att = 0, 4, = 0; after ¢ becomes sufficiently large, A, = curve bb.
Between these extreme values, there is a continuous upward concave
curve.

The total activity is given by:

A=A1+Ag"n+b'h=db

At =0, A% m A} = 900 cpm; after ¢ becomes sufficiently large,
4 = 4, (curve bb),

o
£
i
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8

Remark: Observing in practice the total activity of an iiiitially pure
perent fraction, one obtains in a semilog plet a curve as db. After a -
sufficient time, the longer-lived daughter ectivity entirely dominates
and ita half life, (T'y/,)s = 6.0 h, may be read from this portion of the
decay curve.

Extrapolating this straight portion to ¢ — 0, one finds

O Al’\’

ZgAiAs
[ L] ’ “1 - A' No

Al - A. ¥

N} orbetter

Extrapolating the first part of the total decay curve to t -» 0, one
gets
A9 = AN? orbetter 2,A,N?,

From these two equations follows:

4 LN - Ay oA .31 =

= 5.24
A 2 A A4} 23 Ay (624
If A; 3> A, this reduces to
4 _n M =5 Tysh (5.25)

.,-42" = z—l ) Ay zg (Tya)y

i.e. graphical interpretation of the total decay curve enables one not
only to find (7'y,)y, but also (7'y,),, provided 2z, and 2, are known.

In the numerical example one finds (7'y,), = 5.0 h (see ssmilog plot,
Figure 5.6). A9, 42" = 900/100 = 9, thus (A; — A;)fAy = 0; Ay = A,
= OAy; Ay = 10\, (if 2, = 2,) or (T'ys4), = 0.5 b1,

(B) Maxy Svcorssrve Droays
Consider a series, where transformation from one member to another
ocours by radioactive decay,

A Ay

(1) s (2) s (3) —p ... (n) —s (5.26)

The rates of nuclide transformation are described by the following
set of differential equations:
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dy,
=z = W

‘_d% = AN, - AN, (6.27)
%_ A‘N’ -— I\'N' etc.

where N,(t) and N,(t) are given by equations (5.3) and (5.19) reapec-
tively. Substituting (5.19) in the third differential equation, N,{f) can
be caloulated. This substitution method of the i** diferential equation
into the (s + 1) is, however, rather cumbersome. H. Bateman (5)
has given the solution for a chain of n members, assuming that at
¢ = 0 the parent fraction alone is present, i.e. N3 = N} = ... N = 0.
This solution can be formulated as follows:

fun
Na(t) = 324, .. A.._,N;’.Z;IG. exp (~ ) (5.28)
whera: ] Eind B |
O = ., .
=5 (s # 7} {5.29)

Ezample 1,
Case number (5.13), i.e. & chain of only two members, can of course
be treated in the same way, with the special assumption that N? = 0.

1 1
R Wy W b weey v

exp (—Ayf)  exp (—A)
Ml = A:Ng[ Ay = A i A=A ]

A

T R (= M) - oxp (-2

This is identical to equation (5.20). -

Example 2. )
" Caleulate N, as & function of time for a chain of three members,
assuming that N3 = N3 = 0 at ¢ = 0.

Applying equations (5.28) and (5.29), one finds:

6. GROWTH AND DECAY OF RADIOACTIVITY

1 (. = 1 .
Pa=A) A =2)" " (=2 (A, =2y’

i
v 7 v w

exp (—’\1‘) _ exp (-)‘z‘)
'mm=MMMLM-MHM—MﬂWM—MHM-M)

exp (= Ay) ]

01—

MO

Remark: If a solution fs required for the more general case with N2,
N)...N? % 0, one can construct it by edding to the Bateman solution
for Ny in an n.membered chain, a Bateman solution for Ny in an
(n — 1)-membered chain with species 2 as the parent (thus Ny = N?
&t ¢ = 0 replaces N} in equation (5.28)), and an analogous Bateman
solution for N in an (n — 2)-membered chain with speciea 3 as the
parent (N, = N? at ¢ = 0 replaces N? in equation (5.28)), etc.

(C) BraxncamNg DEoay

Consider a radionuclide (1), decaying in two different ways forming
radionuclides (2) and (2') respectively.
' x(2)—(3)
it (.30
4 M 3) - (3)

A, and )] are partial decay constants, related to the formation of (2)
and (2') respectively; (2) is formed at a rate A, V; (2') at & rate A[N;
(1) decays at a rate (A; + A[)N,. )

Applying the Bateman equation to such a chain, one must replace
equation (5.28) Ly

f=n
Na(t) = AMAS ... A‘,“,_,N‘I"EI 0 exp {— M) (5.31)

i.e,, the A's before } must be replaced by partial decay constauts
(A*): x* is the decay constant for the transformation of the §*® chain
member to the (i + 1)* one, In the chain (1)~(2')~(3") (5.30), A? is
equal to A], but A, (5.31) = (A; 4+ Af) (5.30).
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If & decay chain branches and subsequently the two branches are

Jjoined, the two branches are treated by this method as separate chains;
the prodnetion of a common member beyond the branch point is the
sum of the number of atoms from the two paths. (See for instance
II1, C, 2 and III, D, 2).

I, Transformation in a Neuiron Flux

These transformation equations will be stated for the case of &
nentron flux. They are, of course, equally applicable for any other
activating particle,

{A) SnreLe Case

Consider first the simple case of a transformation in a neutron flux,
represented by the scheme

LY Ay .
(1) —— (2) —— (3) (stable) {5.32)

Ezample: **Na —(:'—?:—:r- $Na L:h» Mg (stable).
n, ¥,

Thus, stable nuclei (1) are activated by neutron capture (cross
section o,) and transformed into radioactive nuclei (2), decaying to
the stable nuclei (3) (decay conatant A,).

1. Solution of the Lesbnitz Equation

During irradiation, the growth of nuclei (2) is proportional to the
activation cross section oy, to the neutron flux ¢ and to the number of
atoms N, (thus o, NV,); one can assume that in most cases N, remains
constant during the irradiation, i.e. that the burn.up is negligible
(¥ = N?}). On the other hand, the radioactive nuclei (2) decay during
the irradiation process at a rate A,N,. Consequently the following
differential equation can be formulated:

dy
o = el = AN, (5.33)
b

This equation is of the general form (5.17), where x = ¢, (irradiation
time), P(z) = A, = constant, Q(z) = po,N? = constant, and y = ¥,.
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6. GROWTH AND DECAY OF RADIOACTIVITY

The solution is given by:

Hyfts) = oxp (=) [ pou¥] oxp (3,44) dip + Cexp (= Ah)

N yits) P?N? exp (—~Aqts) [exp (Aghy) — 1] -+ Cexp (—ALy)
. |

Nyo0) = T — oxp (-2, + Coxp (—2,0)

Finally, if tp = 0, N? = 0 + C, hence ' = N2,
So, the final solution is given by

- .
Hyfts) = A1~ oxp (= 2,0)] + Nexp (=2ds)  (539)
]
If at t; = 0, N] = 0, equation (5.34) is simplified to
N =P80 e 639)
, _

The disintegration rate of the nuclei (2) as a function of the irradiation
time is given by: :

Dyfts) = A4l y(ts) = go N} [1 — exp (—Ayhs)] (5.36)

The factor 1 — exp {=—A,f;) is called ssturation factor 8. For ¢ >
(Ty2)2r exp (~Aytp) — 0 and S — 1; hence D, reaches a maximum.
Foriy € (Tys)s e5p (—Agds) & 1 — Agpand § & Aty i.e. the activity
inereases proportionally to ¢y. The disintegrationrate after an irradiation
time ¢, and a waiting time ¢ can be caloulated, by substituting (5.33)
in (5.4), setting £, = f,: '

D(ts, t) = Djits).exp{=—Asf) = ¢ N3[1 — exp {(=2,fe)] . exp (—A4t) _
(5.37)

{sea Figure 5.7). ]

2. Solution by the Generalized Baleman Egqualion

The problem can also be solved by raeans of & generalized Bateman
equation (5.28), as propossd by Rubinson (). For that purpose, & new
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Fig. 8.7. Growth and decay of radioactivity
A ylh) = 9o NY(1— exp (—A )]
Ay, §) = 90N} (1— exp (—Agh)] exp (—Axt)

modified “disappearance constant” is introduced: A = A + po. If one
considers N atoms of & radioactive species, with & decay constant
A {s-1) and a total (effective) reaction cross section o (cm3) in a constant
neutron flux ¢ (cm? s-2), the disappearance of this species is no longer
governed by radioactive decay alone (AN s—1); the disappearance by
the transmutation reaction must also be taken into account (poiN' s=1).
8o, the total rate of disappearance is given by (A + o) -1 = AN s-1
(setting A + po = A). A can be considered as a modified ““disappearance
constant”, If a given nuclide disappears by a nuclear reaction only,
A = go; if a given radionuclide disappears by radioactive decay only,
A=A

If one considers & chain in which the transformation from one
number to the next ocoura by a nuclear reaction and by radioactive
decay, equations {§.28) or (5.31) can be applied, provided that X; or A?
is replaced by A¢ = X + poy or Af = A} 4+ gof, where the asterisks
serve as & reminder that in either branching decay or branching
activation A? ia the partial decay constant and o is the partial reaction
oross section.

ke

4

6. GROWTH AND DECAY OF RADIOACTIVITY

Assuming Ng = N3 = ... N% = 0, the sclution is given by:

fen
N’l(‘b) = AI‘A: e A;"'XN%‘ZIG‘ exp (“Aitb) (5.38)
where =t 1 '
G=Tlg—g G#9 (6.39)

Applying this procedure for the simple case (5.32) one finds:

Ay = A} = go,
A.HA’
Thus
1 1 ‘
0& -
A=A A=y
1 P!
o EX -
: Ay — A, Ay — goy
Hence

Ny(ts} = AIND[C, exp (—Ats) + Cyexp (=Agdh)]

N
Bifts) = 772 foxp (~poyts) ~ exp (~2,)]

In practically all cases (flux and cross section not extremely high,
irradiation time not extremely long) one has Ay > ¢ o,. Consequently
the last equation can be simplified to:

N?
Nyfty) = "—"i-‘ [1 — exp (—A)]

corresponding to equation (5.35), The disintegration rate after a waiting
time ¢ is already given in equation (5.37).

(B) GrowTm or A RapioactIve DAUGETER IN 4 NEUTRON FLUX

Another case of transformation in a neutron flux, whicix is also of
practical interest, is represented by the scheme:

(1) =2 (2> (3) = (4) (table (5.40)
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where F, is the fraction of disintegrations of nuclides (2) which pro-
duces nuclides (3).

Ezample: et
190y “b> wepy 20, 1994y "'mr 199y (stable)
(v, y) 2 [

Indeed, half-lives, nature of the radiation, chemical properties, ete.
make it sometimes preferable to measure the daughter (3) activity
for the determination of element (1), instead of the activity of nuclide
(2). The determination of platinum from %%Au is a typical example.

Calculations of this case will be given in two ways: 1. by describing
the rates of nuclide transformation by differential equations of the
general form (5.17), and substituting the solution of the first differential
equation into the second, eto.; 2. by applying directly the Bateman-
Rubinson equaticns.

1. Solution of a Set of Leibnitz Equalions

The growth of the number of nuclides (3) as a funciion of irradiation
time ¢, is formulated by the following differential equation:

dN‘ = Fy Ny — 3N, (5.41)

where N,(fs) is given by equation (5.35). Substituting (6.35) into
(5.41) givea:

dy
_d_;-;’- = F:WI.N? [1 - ﬂxp ("’\:tb)] - “SNS

This is of the general form (5.17), with x = {5, y = N;, Pfz) = Ay =

constant, Q(z) = Fpo N2 [1 — exp (—Audp)].
Integration gives

Ny(ta) = exp (= dsto) [FyporVD [ exp (Ast0) dlts
—Fepa,N} [ exp (= gto) exp (Ato) dts] + N3 exp (~Agh)

Asln)—1
N,(ts} = Fypo N} exp (—Asty) [W’-—

-~ 2P (A; - A;)h — 1] + Nexp (—Asts)
| Y |

5. GROWTH AND DECAY OF mmacrm'rr

Ny =& St ‘{

Agds)

— exp{- Aa‘fb)]} N3 exp (—Atp) (542)

P o N?
Nofta) = 5 (L = exp (=2l = ll — exp (=2}

As(Ay
(543)
it NY = 0.
For the disintegration rate of radionuclides (3) as a functxon of
irradiation time, the following equation holds:

N -
Dyt = T (0410 = exp (=Agi] = ML = exp (=)

(5.44)

2. Solution by the Bateman—Rubinson Equation

The same result can be obtained by application of equations (5.38)
‘and (5.39). '

Ay = A} = goy

Ay = A, (presuming that nuclides (2) are not activated)

A = Py,

Ay = Ay (presuming that nuclides (3) are not activated).
Hence:

c | 1
t (Ag = @oy) (Ay — ‘P":) Agdy
1 1
Cqy= -
! (poy = Ag) (Ay — As)  AxfAy = Ay)
0, = 1 1

= 3
(poy — A9) (g — A3)  A{A3 = Ay) -
Simplification was n.pphed assuming that burn-up is negligible

(A2 po).
Thus, if N3 = N§ = 0 one can substitute these values into equation

(5.38).
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_ exp {~@o,fp)  exp (=Aqts) exp( Asfs)
Nyfte) F:‘P"xNo":[ P VR (,\‘_,\,) As(Ag -—:\.)]

F oo, N?
Nylty) = ”’;"‘ ‘{exp(—w,t»H - [sexp (=zt)
3 2 3
~ Ayexp (-A.rm}
F o0, N?
Nyty) = -ﬁl{a [exp (—payts) — exp (—Ayts)]

+ AJfoxp (—24s) — exp (—goyts)]}

As normally exp (—go,is) = 1 (burn.-up negligible), this result is
identical to equation (5.43).

For the caloulation of the number of atoms N, at any given time ¢
after the end of the irradiation, one must use the general equation
for the decay of a radionuclide which produces a radioactive daughter,
i.e. equation {5.18); for this particular application £y = ¢, thus N3 =
Nyts), N3 = Ny(ty).

Hence, for the acheme ({5.40), equation (5.19) must be written in the
following way:

A
Ny(ty = 3:-_’—}“ N yfts) [exp (—24f) — exp (= A4h)]

+ Ny(ts) exp (=)

where N,{ts) and N{¢) are given by equations (5.35)} and (5.43).
Consequently, N4(ts, §) can be calculated by substitution of (5.35) and
(5.43) in the above equation, The assumption F, == 1 will be made here.

N?
Naltn, ) = (1 — exp (— Al exp (=) = oxp (~2,1)]

‘P’:Ng - -
+ “'('\. - A’) {Al[l exp( Altb)]
= A3 (1= exp (~2A3)]} exp (—Ay)

Nilta,t) = ﬁ {Asf1 = exp (—Agts)][exp (—Agt) — exp(—2A4t)]

4 Al — exp (—Astp)] exp (- Ayf)
— Ayl — exp (—Aytp)] oxp (~Agt)}

i
5. GROWTH AND DECAY OF RADIOACTIVITY 1};,( Gl

Nt t) = ——“‘5— L = exp (Al oxp (-0

Aj(dg =

--A, [1 = exp{—Agfs)] exp (~2,t)}  (5.45)
The determination of an element by measuring the activity of the
daughter (3} is especially useful, if (2) is shorter-lived than (3}, i.e.
Ay > A, Besides, (2) is generally irradiated to saturation in that case,
i.e. exp {—A4fp) = 0 and [1 — exp (—A,fe)] > 1. If the waiting time is
long, 20 aa to allow the nuclei (2) to decay completely into nuclei (3),

one ean simplify the above equation:

aa,:)zf’;" g (haemm (=04 = Al = exp (=2l exp (=)

Nyft, t)z"”‘ 11 — exp (=Agn)] exp (- -34) (5.46)
Or

Dy(ty, t) % @, N][1 — exp (—Aqty) exp (—2st) | (5.47)

This corresponds to equation (5.37).

(C)' BRANCEING ACTIVATION

Another frequently ocourring ecase is represented by the followmg
activation scheme:
2

o
D

SV , (5.48)

-

[~
0“‘9

(3) ——» (4) (stable)
i.e. the radionuclide (3) is either formed directly or from an isomer (2).

Example: 1myy

7
1 LT,100%
%

145m
]

1Ty '..:;;:..:‘._3.; 103P¢ (stable)
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Again, calculations will be given in two different ways.

1, Solution of a Set of Leibnitz Equations

The growth of the number N, of nuclides (3) as a function of irradia~
tion time is described by the following differential equation:

dy¥
T, = Fala + poil] - 200, (5.49)

where N, is given by equation (3.35). Substitution of (5.35) in {5.49)
again yields a differential equation of the general type (5.17):

N .

o+ ANs = Figpa N1 ~ exp (—Ads)] + goi N}

with z = {3, y = Ny, P(z) = A, = const,, and Q(z) = second term of
the above equation.
Assuming N} = N} = 0, one gets after integration between 0 and #5:

Ny(ts) = oxp (—Ato)pl [, [} oxp (Asto) dts

- o, F, J’;' exp (A3 = Ao dty + of [ exp (Ats) d:,,]

F A -1
Nyts) = pN?exp (—a,m{ g Oy = 1
- Fyofexp (Ay = Ag)ty — 1] + ofexp (Ay) — 1]
Ay — Ay x
Thua: ‘

Dy(ts) = N} {(Fl"l + o]} [1 = exp (—Ayts)]

Faoidy
Ay =

2, Solution by the Baleman~Rubinson Equalion

The method of Rubinson ean be applicd as well. In this case, the
same remark holds as the one given in section IT, C, for the Bateman
equation (branching decay): if a decay chain (transformation chain)

+— [erp( Afy) — exp (~ A.tn)]} " (6.50) -

o
i}
5. GROWTH AND DECAY OF RADIOAOTIVITY -I (’;

" branchea and subsequently the two branches join they are treated as

separate chains, The production of & common member beyond the
branching point is the sum of nuclides from the two paths.
These two chains are respectively:

)@ 2%, 32, and (1), @),

So, N,(lp) must be caloulated for each of the two chains, and after that,
the results are sumamed. The solution for the first chain is given by
equation (5.43) or (5.42), for the second chain by equation (6.35) where
A4 has to be replaced by A,, and ¢, by of.

F,tp oy N?
A

Nyt) = {u — exp (—a10)]

A0
= yemo(=hn = exp(-hol} -+ - amp (-
2

This is, of course, equivalent to equation (5.50).

In practice the isomeric form (2) is generally shorter-lived than (3),
ie. A3 2> Ay (e.g. 19%"Ir, 1921r). Moreover, (2) is usually irradiated to
saturation in that case (ty 3> (2'y,),) or exp (—Agdsy) — 0. Assuming
that (2) has completely decayed into (3) after a suffivient waiting time,
one can simplify equation (5.50):

eN?
Nilte) —‘“{(F:"l + 03} [1 — exp (—Ayts)] - xp( "s‘b)}

Ny & ﬁo [F,a, + )= Fyoyexp (—Ads)

- Gexp =\t ~ Py, oxp (—A.m]
ot %‘:'i[r.a, + 0= (Pt Fan 4 o oxp (—A.u)]
Nt & i’-’;’?w,«l + L = exp (=) (5.51)

because o, -;—3 <& oy,
3
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The disintegration rate of nuclide (3) as a function of irradiation
time is then given by -

Dylts) = @] (Fyoy + o) [1 — exp (= Ayty)] - (5.82)

which has the same form as (5.36).
In other cases is A, < A, and usually £, > (7,,,), > {Tye)s .8

14mR L
103RL &;l

""Rh T IO‘Pd (stable)

So, other simplifications in equation (5.50) ere possible: exp (—i,tb)
and exp (—Ady) = 0:

Dy(ts) x (Fyoy + c})pN} . (5.53)

Radioactive decay gives rise to a parent-daughter relation, 2o that
D,(ts, #) can be caloulated by substitution cf (5.50) and (5.36) in (5.19).
The latter equation must, in this case, be written in the following way:

Nt )= 52t N [oxp (=) = oxp (=)
+ Nylto) exp (=A4)

Nyt t) = A‘f{""}. (1 — exp (= Agta)] [exp (—Ayf) — exp (=Ast)]
B8 {(a, + ) [1 = exp (=Ash)]

As

_ o:[erp(-a.;a) —:rp(—hsia)}} exp (=2g)
3= s

sssuming that Fy = 1. Or

e

i
5. GROWTH AND DECAY OF RADIOACTIVITY ' ‘i’l‘l)'

ay

) |
Dyfts, ) = o2 {A' 511~ oxp (= Aol fexp (2, = exp (= A

+ (@ + o}) [} — exp (=Ats)] exp (— A1)

o,

= R = . [6%P (=A4hs) ~ exp (—Asty)] exp ('-f\a‘a)}
2™ A
(6.54)
Again, two important cases will be considered: first A 12> Ay, and exp

- (=Agds) 0 (isomeric form short-lived and irradiated to saturation).

This leads to: _
Dyfts, ) = oNY {% oxp (—2Aqf)
+ (01 + o) [1 — exp (—A4s)] exp (—Ayf)
A
- f;_’l exp (—Ayts) exp (-f\a‘)} A
Mo
Dits, t) ~ N} . exp (~Ayt) {01 w1y, %P (=2Asts)
' | |
+ oy + o) [1 — exp ( —f\a‘a)]}
Dy(ts, ) @MY . exp (= A4t) {‘7: ';"[1 — exp (—Agh)]
]
+{oy + o]} [1 ~ exp (-Asta)]}
Dyltn, 1) % oNY . exp (= Agt) [1 — exp (~A,t)] (’1 + ’1:—' + "f)
N : |

Ifa.} A',th.enal + Ul? ~ cland:
]

Dyftn 8) = (01 + o]}pNT[1 — exp (—Ayty)] exp (=2f)] (5.85)

which has the same form s equation {6.37).
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If, however, Ay <€ Ay and oxp (—Ags) > 0 and exp (—Aqfs) - 0, a8
is the case for 193Rh(n, y), the following simplification ¢an bs made:

Dyity, 8) = pNi[o; exp (—Agd) + (o) + of) exp (~A8)] | (5.50)

From the foregoing it is posaible to conclude that, in the case of
“isomerio activation” (A;3> A, and £, 3> 0.603/A,), the activation
cross sections Fyo, + ¢ must be summed when caleulating the
activity of radionuclides (3) as a function of irradiation and waiting
time, {See equations (5.562) and (6.53)).

Ezample: The total activity of 19*Ir must be caleulated with ¢} + #yo,
'me 7000 4 2600 = 960b as cross section, and 0.693/74.4d in the satu-
ration factor (equations (5.52)).

(D) GrowrHE OF A RADIOACTIVE DAUGHTER AFTER BRANCHING
ACTIVATION

Consider the case represented by the following activation scheme:

(2
&
V4
g W, |
N
(8) =2y (4) —*» (5) (stable) (6.57)
Ezample: '
ﬂmGe

£
y »
7% R :i-"'" 0%
&
1th

(Ge — 7An m': 778e (stable)

Again, caleulation is possible in two different ways.

1. Solution of a Set of Leibnitz Equations

The growth of the number of atoms {(4) as a function of irradiation
time is described by the following differential equation:

5. GROWTH AND DECAY OF RADIOAQTIVITY i

ay
?lt—: = F AN, - AN, (5.58)

wheve X, is given by equation (5.50) or (5.51), if 1, > ),. Substitution
of (5.51) in (5.58) yields a linear differential equation of the first order
(type equation (6.17)). Assuming Ay3> A, A;3> A, and N) = N) =
N? = 0, one obtains after integration between 0 and #,:

N (ts) = exp (= Ato)pNY(Fyay + o)) Fy x
[o1 = exp (=Agtal] exp (A0) dty

. F F i
) = "jf,f‘ S 0l = oxp (~A)]

- Al = exp{=Ag)])

FpNY(Fyo, + 0} .
P2 ) Ol = exp (=2

= X[l = exp (—AH)1}

'

The above equation equals equation (5.44). However the formation
of ""Ge by way of its isomeric form is taken into account by addition
of the two reaction cross sections Fyo, and of.

Dty) =

(6.59)

2. Solution by the Bateman—Rubinson Equation

The method of Rubinson ean also be applied (see section III, C, 2),
considering two separate chains:

L/ Foe " F,
, (3) 2, - (@) 2> a

A F
(L) (4)—— end (1)— (2) > (4) —>
The solution for the first chain is given by equation (5.44); in the

above case, this equation must be written as follows:

Fypai N}

b)) = Tl 23) {Adl = exp (=Asts)] = A1 — exp (=2 5)]}
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By application of equations (5.38) and (5.39) to the second chain,
one finds;

Ay = {0y + o)
A} = oy

Ay= 2y A = Fy,
Aymdyi A7 = P,
Ay= 2,

1
A=A (A = A) (A~ Ay

1
T = o + o1 A — 93 + o)) [As — plo; + o]

01-

1
(A = Ay) (Ay— A (A = Ay

1
“Tplor + 0)) = As) (Ag — Ag) (he = Ag)

-

0.=

1
(A = As) (A — Ag) (A = Ay)

1
" Tolor + o)) — Aal (A3 = Ag) (Ag = A7)

0’=

1
K7y Yy vesy w7 vy

1
T oo + o)) — AT (g = Ag) (Ay = g

Solution of the second chain:

{
Nit) = NIATAZAS l);oo' exp (—Aqd)

' A
5. GROWTE ANXD DECAY OF RADIOACTIVITY %@

Rt
N'(ta) = Nipo, FsdyFyd, x

{ | oxp [~p(0, + a})hs)
[\ — plog + o))} [A; — ploy + o)) (A — ploy + o})]

+ exp (=Aqs)

[ploy + o]) = A,] (Ay — Ay) (A, — Ay)
+ exp (—A.fz)

[ploy + o)) — A] (A — A) {Ay — 4,)

+ exp (—Aty) }
[play + o) = AJ (A = A) (A, = )

In this example A,3 2, A;> A, and if burn-up is negligible,
gloy + a]) € Ay, Ay, A,. Hence, the abovo equation can be simplified:

, 1 -}
N'(ts) m Nipo F o) F\A, [A,A'M _exp (A; stb)

exp (—A,f») exp (—A.t») ]
AdelAg = A T A (A = 2y)

. 1 -2 A ~Ad)]
V) Mg By [E" o Vo a:)b)]

- F,F, .
N (ts) “‘Eﬂ?&[’h =~ A3 = Agexp (=M + A, exp (—Af»)]
'\4("4 - ’\:)

Ni) 5 A (4 ) et (Al = AL = exp (=2}
AdAg = Ay)

The sum of the nuclides (4) by the two paths equals N() 4 NU(¢p), or

F, aN g‘P(F %1 + "i)
) = = =y

< Ayl ~ exp (~2 )]}
This is identica! with equation (6.69) found by the first calculation
method. ,
As already stated, there is no essential difference between equations
(5.44) and (5.59), if 2,> A, and A, > Ay that means: it does not
matter, whether the nuclides (4) (scheme (5.66)) are formed by way

{Adl — exp (—2,5)]
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of the first chain or by way of the second chain, on condition that
¢ = Fuo, + o}, i.e. the effective reaction cross section is used.

This simplification reduces the radioactive decay to the simple
" parent-dsughter relationship (3) _*_, (4)._A,, described by equation
(6.19). This equation must in this case be written as follows:

N ftn ) = =2 Nt [exp (=) = oxp (~A4)]

© 4 N (ty) exp (=2 )

and this enables one to calculate the number of atoms {4) as a function
of irradiation time £, and of waiting time ¢. Substitution of (5.51) and
(5.44), which must be written here ss

eli(oy + o})
Addg = Ay)
" into the above equation gives (assuming that Fy = F, = 1):

0 ’
?————N;(a‘ -: al (1 — exp (—Asta)] [exp (—Ayt) — exp (—A )]
[ Bt |

PN3o1 + o) ) 1 exp (<2
=y L= e (=As]

= Afl — exp (—Age)]} exp (= Ay)
¢Niloy + o})
AdAg = Ag) N
« = Al — exp (—Agdp)] exp (—Af)

“+ Al — exp (—A,tp)] exp (—A )

) < Ayl — exp (—Adp)] exp (—A )}
Thus

N (t) = {AdL = exp (—=24t)] — Ajf]1 — exp (—.5)]}

N‘(‘bl ‘) =

Nt t) = {(AJ1 ~ exp (~2,ta)] exp (—Aqf)

¢Nilay + o)
A‘ - A'

~ 31 = exp (~Aga)] exp (~Ad))

Dyip.t) = (A1 — exp (= Agho)] exp (—Ay0)

{5.60)
This has the same form as equation (6.45), o being replaced by o, + of.

5. GROWTH AND DECAY OF RADIOACTIVITY

{E) “SEcoND ORDER” REACTIONS

When neutron activation analysisis used to determina trace elements
at very low levels {ppm, ppb . . .), high sensitivity techniques are neces.
sary. Sensitivity can be enhanced by using large reactor flures and long

‘irradiation times. But under these conditions neutron induced second

ordernuclear reactions can lead to significant interference in determining .
a trace element as additional amounts of the measured radionuclide
can be produced (7).

This secord order interference is a systematic error, produced by
successive reactions of the type: :

ul A+l d+2
By el > i (5.61)

or, schematically

(1) —22 . () ZiE (3) —2Ly (g) ZOEA (6) (stable)
PR ﬁ’"’o =0
‘:‘ (5.62)
B, 7| o, . 0,y{o .
(3%

where F, is the fraction of disintegrations of nuclides (2} producing
nuclides (3}, In most cases Fy = ) and F} = 0 (or Fy= Oand F} = 1),
furthermore a4 = 0, o, = 0 or are negligible: po, <€ A, 9o, L A, (if
the flux ia not too high and burn.up negligible). However calculations
will be given for the general case.

Ezample: Second order reaction on & silicon matrix:
s #
28i (n, y) *'8i ——> P (n, y) 3*P ~—

can give erroneous results in determining the phosphorus content by
neutron activation analysis, because the same nuclide (3*F) is formed
as in the reaction

HP (n, ) 4P
Other examples:
Iridium in oamium: 1%0g (n, 4) 1%10s —r—-» 191]p (n, y) 190y L»

WL (n, y) 1940r ——5 (190 measured) (8)
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Thallium in mereury: 3**Hg (n, y) 3%*Hg —t-p 203T] (n, y) 3MT] ——
109T] (n, 9) 39¢4T1 ——» (2%T1 measured),

The rates of nuclide ¢ransformation in scheme (5.62) are deaeribed by

the following system of differential equations:

== = —~Nypo,
— = Nygo, = AN, — Nygo, (6.63)

T =Fa/‘|Na—Na‘P°'a

—5=Na¢0:"f\¢N4":N¢‘F“¢

These equations can be solved in the classical way, but the solution
for N, is lahorious, since it is a much more complicated funetion
than N,. The next solution, for N, is even more tedious, So it is more
simple to use directly the Batoman-Rubinson solution.

Ay =AY = oy

Ay =2y + poy
A = Fja,

Aa = A} = go,

Aym= A+ goy

Substituting these values in equation (£.38), gives
im4
N, = Nip'o0,F .A.‘}ZIC-': exp (—Agty) {5.64)

whero

1
Ay =AY (A~ A) (A — Ay
_ : )
- W‘*‘ g0y — 1) (pos — 901} (As + oy — om)

c =

it
5. GROWTH AND DEOUAY OF RADIOACTIVITY 2* ’Ez _
1
(AI - A:) (Aa - A:) (A( - An)
1
(poy — Ay — 9oy} (pos — Ay — 9oy) (Aq + pog — Ay — @oy)
1
(AI - Aa) (A: - As) (Al - A:)
_ 1
oy — o) (Ag + 9oy — poa} (A + Qo — 9’“:)
1
(Ax - Aa) (A: - A:) (As - Al)
1
(poy = Ay — 90) (A3 + oy — Ay = 90,) (pog = A, — po,)

The Bateman-Rubinson equation is tedious to solve by hand and
often leads to loss in significancs in performing the summations of the
exponential terms Oy exp {—Af). For this reason the aid of a com-
puter with double precision is highly desirable. A more detailed
disoussion about second order interference as a source of error in
activation analyeis is given in Chapter 10, section IT, C, 3.
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