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CHAPTER 11
STATISTICAL INTERPRETATION OF RESULTS

When dealing with errors, distinction should be made between:
(a} systematic errors, which determine the accuracy of a result; (b)
random errors, which determine the reproducibility or precision.

By systematic errors the experimental results deviate from the
true value, because of & bias. Statistics, on the other hand,
only deal with random errors, which are a measure for the reliability
of & procedure.

Systematic errors are described in Chapter 10. ‘The present chapler
illustrates how statistical methods may be applied to data obtained by
activation analysis. Although the statistical method is a most important
part in the evaluation assessment, no attempt is made to present s
rigorous or complete treatment. Some typical examples will be given,
which are frequently encountered when dealing with radioactivity
measurements and with analytical results from activation analysis,
Obviously, the statistical approach cannot obviate the need for common
sense and sound analytical techniques, but unnecessary loss of operator
time in the laboratory can often be eliminated and the reliability of the
deductions increased by the use of statistical methods and of carcfully
designed experiments.

I. Application of Statistical Methods to Analytical Resulis

(A) BEST VALUE FOR A SET OF OBSERVATIONS

It generally makes no sense to define an error as the deviation of a
measurement from the true value, a3 the Jatter is vsually unknown.
Thus, a definition of “error’’ can only be given after evaluation of the
most probable value of the quantity measured. Experimental data are

~always associated with the inevitable errors of observation, i.e. they
all can differ among themselves within some limits, _

For & number = of observations x;, x,, . . . 2,, made under the same
conditions and all equally reliable, the “arithmetic mean” is the best
representative value: .

E =) n (11.1)

602

v

i d
If all observations are not equally reliable (e.g. several “populati.
with the same form end mean), a statistical weight Wy can be intro-
duced (data pooling). The most probable value is then the “‘weighted
mean’, sometimes called the “general or probable mean’:

E= i th‘]i Wy (11.2)

where Wy = A/of (equation 11.71). In section V of this chapter some
examples are described showing how the statistical weights IW; are
determined in practice.

(B) PrECISION — STANDARD DEVIATION

In some observation sets, the total spread can be so narrow that
only a few measurements are needed to obtain & close approximation .
of the arithmetic mean, which-should be found with a large population.
In other cases, the measurements are widely scattered, necessitating
a large amount of dafa. In the firat case the results are said to be
reproducible or precise, in the second case they are not. The degree
of confidence can be expressed in terms of “probable error”, “standard
deviation”, “nine-tenths errcr”, eto, (Table 11.1). .

The reproducibility of an analytical method in a given concentration
range is usually expressed by the standard deviation o(z) on a single
determination. This can be ohtained from the statistical concept of
variance, which for a single measurement is given by:

”zi(i—z;)'

p— (11.3)

where n —~ 1 indicates the degrees of freedom of the observation set.
The applicability of (11.3) requires that all observations z; are made
under the same conditions and are all equally reliable. The standard
deviation on a single observation is given by the square root of the
variance, oun condition that » is sufficiently large:

If a number of n analyses is made, a better estimate of the result
is possible, The standard deviation which affects the whole serios of

(11.3 bis)
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* results, o{Z), . be calculated as follows:

" - a‘ o
o) = ,\/{ETE_Z%)"} =% (11.4)

o(Z) is an esiimate for the standard deviation of the mean value .

If a precision o(%) is required for the result &, the necessary
number # of analyses can be computed from equation {11.4), if o(z) is
known. Merely increasing the number of experiments, without varying
the experimental conditions, decreases the influence of random errors,
i.e. the precision improves. It is, however, useless to increase the
number of observations beyond some limit, because of constant,
systematio or individual errors (see I, G).

On the other hand, the greater the number and variety of the
experiments (e.g. results obtained by different methcds and/or different
laboratories), the more the probability of occurrence of systematic
errors will decrease, a8 they become of random nature,

The error on & single measurement can also be expressed as percent.-
age standard deviation oy, which is defined by the following relation-
ship: )

oy, = 100a(z)/% (11.5)

where & is given by equation (11.1) and o(z) by equation (11.3).

The exact standard deviation ¢ can be found from an infinite number
of observations. For a limited number of observations, the symbol &
is often used: s(z) and s(%).

(C} ConFrDENCE Linrrrs

As the arithmetic mean for an infinite nnmber of observations is
usually not accessible, it is only possible to calculate the probability
thit this value is contained within the limits £ + Az. The number Az
can be chosen arbitrarily small. It is common practice to express Az
in terms of the standard deviation, e.g. + Az= + o, where ¢ depends
on the probability level and on the number of degrees of freedom. If

‘the latter is large, t~u (see Table 11.1). For a normal distribution a

result z; will be obtained within the interval # + o(Z) with a probability
P =0.683 or 68.3%. This means that, in the average, two out of three
results may be expected to deviate from ths mean by less then one
standard deviation. Hence, the interval =; + a(z;} will contain the
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arithmetic mean of an infinite number of observations with ca. 657
probability.

Obviously, the degree of confidence increases, as the “confidence
interval” increasea (Table 11.1).

For trace analysis, the 0.8 probability level is generally accepted.
In other cases, e.g. minor constituent analysis, a more severe confidence
limit may be required, for instance +2¢ (P =~ 95%). The interval
+ 3o practically represents the maximum random error associated with
a measurement (P == 09.79%).

TABLE 11.1 Probability levels
P = probability that the error of an analysis < us
P’ = probability that the error of an analysia > uv (P’ = 1 ~ P)

Constant u  Probability P P Error
0.8745 0.500 0.500 “Probable error”
1.000 0.683 " 0.317 “Standard deviation" (a)
(rms arror)
1.177 0.761 0.239
1.645 0.900 0.100 “nine-tenths error’ or

“peliable error' .

1.060 0.850 0.050 *ninety-five hundredths error'*
2.576 0.990 0.010 “ninety-nine hundredths error*
2.807 0.995 0.006

3.000 0.9973 0.0027 30

3.291 0.969 0.001 .

4.000 0.90904 0.00006 4o

(D) OvurLize REJECTION (CHAUVENET'S CRITERION)

There can be no question about the rejection of faulty observations,
provided there is evidence for a mistake. Examples: (i) one notices
that an irradiated sample was not etched before chemical separation
of the element to be determined, so that contamination occurred;
(ii) faulty determination of the chemical yicld, e.g. incomplete develop-
ment of & colour for spectrophotometric determination, due to wrong
pH; (iii) during counting experiments outliers can occur by disturb-
ances external to the nuclear process, such as amplifier noise, electrical
line noise, shift of amplifier gain due to variation in temperature, eto.
Other typical errora are: misreading the instrument, counting the
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wrong sample, counting the sample in the wrong counting position,
failing to remove or insert an absorber, failure to remove a previous
sample, failing to set proper discriminator levels, failing to record the
data in legible form resulting in misreading of the written data, ete.

Sometimer an exhaustive search will fail to reveal any reason why
some results diverge in an unusual and unexpected manner from the
others. Several criteria have been suggested to guide the investigator
in deciding whether doubtful observations shall be included in the mean.
Chauvenet's criterion is perhaps the most convenient to use. It starts
from the assumption that reliable observations will not deviate from
the arithmetical mean beyond some limits (see end of foregoing
paragraph).

In Table 11.2 the limiting value of the deviation from the mean of a
single observation (in units of o} is given as a function of the number of
experiments performed. When this limiting value is exceeded, the
measurement concerned may be rejected.

TABLE 11.2
Chsuvenet's criterion for outlier rejection

Number of experimenta 2 4 ] 8 10 200 30 40

Limiting value of error {in units _
of a) 1.15 1.66 1.73 1.8 1.08 2,25 2.40 2.50

Ezample: Determination of oxygen in steel by four different labora-
tories. Results (ppm}.

(% — %) (o —2)?

lab.1  0l1 -18 324 (x; — &)?
908 —21 a1 @)= \/ w1 } =%
lab. 2 047 418 324
938 4+ 9 81
lab.3 992  +63 £ 3969
944 +15 295
i . 0l9 =10 100
lab.4 903 26 676
809  —30 900

average 929

v
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Limiting value of error for nine exporiments: +1.03 o(z) = 1568
ppm (Table 11.2). This value is exceeded by the first determination
of Isboratory 3 (902 — 020 = 63), hence this measurement may be
rejected. Then, the new average value becumes: 922 ppm; o(z) = 119
ppm; the limiting factor of error for the eight remaining experimanta:
+1.88 o(z) = + 36 ppm. All the remaining results fall within 822 + 36
ppm.

Conservation of moderate outliers is strongly suggested for the
following reasons (1):

{a) Apparent patterns in sequences of random data are often start-
ling. In the long run, averaging bunched results gives averages that
deviate more from the “true values” than does the mean of all values.

(b) As the number of experiments increases, the number of outliers
inereases. Indeed, the rare occurrence of abnormal results is in aocord-
ance with the theory of errors.

{c) In a large group of measurements, omission of the outlier has
littla effect on the avérage.

The use of the above criterion is, therefore, permitted only if the
number of observations is small. It is true that some good observations
may be lost (it discards good observations in ~409%, of the-situations
to which it is applied), but that is the price paid to get rid of serious
deviations. It is perhaps needless to point out that a suspected observa-
tion may ultimately prove to be a real exception requiring further
research.

(E) ProragaTION OF ERRORS

Sometimes several results or measurements z,, &,, . . . affected with
their corresponding errors, e.g. standard deviations ofz,), ofz,), ...
must be combined to give some new quantity X = f(z,, z4,...).

In Table 11.3, the error propagation in some common functions is
summarized assuming normality. After computation of the standard
deviation of X, the confidence limit of this quantity can be determined
a3 1 to{X).

The expresasions in Table 11.3 are valid if each o(%)/z is sufficiently
small (<209%,) and if all z;’s are statistically independeat.

Several practical applications can be found in the course of this
chapter. '
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- TABLE 11.3
Error propagation in some common functions

Function Standard deviation

(1) X w z, + z, (addition, subtraction) ¢}(X) = o*(z,) + o*(z,)

2} X = z::' (multiplication, division) a}f’ ;;‘a-'-}?-) G'S') + c'(::')
N 1 1 )
(B) X mazx, +d o¥(X) = alat(x,)
o (X} ofx,)
() X =2 > ;r*—}:—‘
(5) X = e u;(;f) = ea¥(zy)
§) X =laer, o1(X) ;%
- - olz,) + o¥z,)
(1) X =In(z, + =) oi{X) e T
R at{z,) olz,)
) X =Iln— X)) e
@) Ty o) z * 3

(F) SysTEMATIC AND RaNDOM ERRORS — ACCURACY AND ‘REPRODUCE-
BILITY OR PrRECISION

The random errors hitherto discussed have this distinctive feature,
that they are just as likely positive or negative. Some errors however
do not have this character.

For a number of activation analyses using the comparator method,
quite reproducible or precise determinations can be obtained, if, e.g.
the standards are always prepared from the same stock solution. In
the case of faulty preparation of this solution, the determinations will
obviously be inaccurate. Inaccurate results will also be obtained if
neutron shielding occurs in the sample or in the comparator or if
interfering nuclear reactions occur. Such faulty analyses are said to
be affected by constant or systematic errors. A number of important
systematic errors are discussed in Chapter 10.

A major difficulty for an investigator is to detect and possibly
eliminate constant errors. This is usually done by modifying the
conditions under which the experiments are performed. :
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" Ezamples: (a) Is the result of an iridium determination in & 1. ﬁ
rhodium sample (o, = 150 barn for thermal neutrons) affected by
neutron shielding in the sample (2)1 Using the classical method (10 mg
samples irradiated together with standards) one finds 17.0 £ 0.3 ppm
Ir. If neutron shielding ocours in the rhodium samples and not in the
iridium standards (1 ug of Ir spotted on filter paper), the result will be
too low, as the specific activity of iridium in rhodiam is lower than that
in the standards. Indeed, a higher conteat (18.1 i; 0.5 ppm Ir) is
found when using an addition method (see section V, C); the iridium
standard sclution is added to rhodium and the sample then dissolved
in a closed quartz tube, prior to irradiation. One can conclude that
neutron shielding occurs and an addition method is recommended.

(b)-In the case of an iridium determination in csmivm (o, = 16
barn for thermal neutrons) the following results were found (3): classical
method (10 mg ramples; standards 1 pg Ir ou filter paper) 21 + 2 ppm -
Ir; addition method {¢f. exainple (a)) 19.5 + 1.2 ppm Ir. As the mean
value of each set of resulta differs by an amount to be expected from
the standard deviations of the different sets measured under the same
conditions, no error due to neutron shielding is detectable.

(¢) Traces of iridium can directly be determined in palladium, after
decay of the palladium activity and separation of 11!Ag (daughter of
11Pd), using 72d 19%Ir, Counting of *%3Ir can be performed using the
photopeaks at 317, 468 or 810 keV. For & given sample the following
results were found: 0.20 4 0.02 ppm (317 keV), 0.20 £ 0.02 ppm
(468 keV), 0.26 + 0.02 ppm (610 keV). By changing the counting
conditions, some interfering impurity appears, which emits gamma.-rays
in the 610 keV region. Measuring the 610 keV photopeak could thus
give riss to systematio errors.

(d) If some interfering threshold reaction can introduce a systematio
error, e.g. 5Fe(n, p)**Mn when determining manganese in iron via
the nuclear reaction %Mn(n, y)**Mn, one should choose irradistion
positions in the reactor with different X-values (see Chapler 3, section
VI, B, 3). If no interference occurs, the ratio #*Mn/**Fe should be
constant. Hoste et al. (4) found, however, ratios varying from 13 in the
reactor core, to practically zero in the reflector. Consequently, man-
gancse determinations in iron must be performed in a well thermalized
neutron spectrum.

Other examples of avoiding systematic errors are discussed in
detail in Chapter 10.

§
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1. oo, (sample)

The percentage standard deviation of the sample is determined by
the weight of the sample and even more by the homogeneous distribu.
‘tion of the element to be determined, Sample weights are usually maxi-
mized for the sake of sensitivity and counting statistics, taking however
into acoount the induced 1atrix activity and possible shielding effects.

For sample weights over 1 mg the precision is better than 0.6%.
From 0.1-1 mg the estimated error is ca. 1% (7). Weighing of a 100 mg
aluminfum sample can be done with high precision, but heterogeneity
at this scale is not unlikely to oceur, i.e. when repeating the analyses,
the scatter of the results around a mean value can be much more
important than expected.

If a non-destructive technique is applied, ov, (chem) is zero. Assum-
ing & sufficiently high activity and = reproducible counting geometry,
oy (count) is small. Irradiation in reproducible conditicons {small
flux gradients and flux perturbations) makes o+, (irrad) small too. If
in these conditions large scatter is observed, this is most prabably due
to inhomogeneity of the samples, as oo(T) is practically determined
by oy (sample). During a nondestructive determination of copper ir
bismuth by y—p-coincidencs spectrometry, an unusually large scatter
wes observed for a given bismuth rod: from 0.04 to 0.4 ppm (8). Re-
arranging, however, the results according to their respective location
along the axis of the rod indicated the existence of & concentration
gradient of copper. (Figure 11.1.)

2. oy, (irrad)

The percentage standard deviation of the irradiation is mainly
produced by variations of the neutron flux and for short lived isotopes
by inaccurate timing. The probiem of flux gradients in different types
of reactors is discussed in Chapter 10, section II, B, 2. In the case of
a neutron generator, flux gradients are extremely important. Small
variations in the positioning of a sample cause large variations in
received flux. A displacement of 1 mm towards or away from the
target gives rise to a flux variation of +12.5%, or —11%, for a sample of
9 mm thickness at a distance of 9 mm from the target (Figure 10.2).

At & distance of 18 mm, the change in flux is +7.4% and —8.5%
respectively. For that reason the tolerance on the pneumatic tube
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should be as small as possible (max. 0.5 ram), to reduce random de..a~
tions. Transversal displacement can also introduce considerable varia-
tions, but can reasonably be reduced by using a suitable bumper. In
practice o reproducibility of 129, can be obtained (9).

For very short irradiation times, when samples and standards are
not irradiated simultaneously, o (irrad) also depends on the repro-
ducibility of the duration of the irradiation ¢;, thus on the Tepro-
ducibility of the timers, the pneuraatio systern, eto. Pneumatio systema
always working under overpreasure ars often more reproducible than
those where transportation is alternatively performed by over- and
underpressure, The transport times obviously depend on the fotal

Cu {ppm)
oy

0.1 -
AN
-\_
\.
AN
AN
N
1 2 3 i
an
rod axis —»

Fig. 11.1, Distribution of copper along bismuth rod (8).
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length and v.uer diameter of the tubes and on the pressure, and, for a
given system, on the sample weight (or weight of sample plus rabbit).
Forty = 10, the reproducibility is typically of the order of the percent.

3. oo, (chem)

Obviously ¢s, (chem) must only be considered when chemical
separations are involved. Then it may further be resolved and contains;
the dissolution of the sample and the different steps of the separation.
Although the reproducibility depends on the method used, in the case
of a standard procedure o, (chem) can be estimated to be +29% or
batter.

When an element such as tin or zine is too thoroughly etched after
irradiation, so that its weight is reduced to 60-709%, for instance,
some ol the dissolved trace elements, which are more electropositive
than the matrix (Cu, Ag, Au,...) may again be deposited on the
sample. Their concentration in the matrix will then be caleulated with
& wrong sample weight, thus giving positive errors.

During the dissolution, losses of the element of interest are possible
by volatilization, by incomplete cleaning of the crucible after a fusion,
etc. In general, some of the practically carrier-fres material can be
lost during the chemical treatment, e.g. by adsorption,, if no carriers
or hold-back carriers are added. But even then the problem of isotapic
exchange remains and can cause random or even systematic errors.
A typical example: osmium carrier, prepared by a sodium peroxide
fusion of the metal sponge, was added to osmium tracer, prepared by
dissolving the irradiated metal sponge in aqua regia.

After boiling in sulfuric acid and hydrogen peroxide, the carrier
appeared to distill practically quantitatively, whereas the yield for
the tracer was 85%, only, even after repeated addition of carrier and
repeated distillations. For that reason the chemical separation method
must carefully be checked by suitable tracer experiments, particularly
when dealing with elements forming a variety of complexes and (or)
existing in a number of valency states. The radiochemical purity of
the isolated fraction must obviously be checked by half-life measure-
ment or gamma-ray spectrometry.

Other variables, such as manipulation errors, calibration errors in
volumetric glassware, balances, weights, ete. can be neglected when
adequate precautions are applied.
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4. oy (count) ’
The percentage standard deviation of the counting is composed of
the following factors:

{(a)} a geometrical factor;

(b) electronic drift;

(¢) drift in gain and change in resolution as a function of counting

rate;

(d) dead time corrections: these are more likely to introduce

syatematic errors and are discussed in Chapter 10, section IT, E;

(e} counting statistics.

(8) Variations in geometry are usually smaller than +19% when
using a flat or well-type scintillator or semiconductor detector and
standard counting vials. Unexpected errors can ooour by evaporation
of a liquid through plastic gontainer walls or covers, or when counting
solid samples of irregular shape. When counting volumes of 25-50 ml
in o volumetric flask, placed directly on a flat detector, it is important
to select flasks of the same form and fill them to the same height.

(b) Eleotronie drift and drift due to the temperature coefficient of
the detector will usually not excoed 40.3% if the temperature in
the counting room is kept constant within +0.5°C and the relative
humidity within +109,. If the temperature changes, the gain shift of
the photomultiplier, the preamplifier, the amplifier and the pulse height
analyzer can amount up to 1-29, per °C. Around room temperature
sodium iodide and anthracens crystals exhibit a negative temperature
coefficient of respectively 0.1%, per °C and 0.59, per °C of the pulse
height. When using a Compton-compensated spectrometer, this
difference can result in & mismatch of the encrgy scale compensation,
noticeable if the temperature in the neighbourhood of the detectors
changes by ca. 5°C.

The gain shift characteristics of some multiplier phototubes (Dumont,
RCA, EMI, CBS) have been examined by Covell and Euler (10). The
stability of the photomultiplier gain also largely depends on the
quality of the high voltage power supply. H.T. power supplies, stabil-
ized with a Weston reference element, are recommended. Similar pre-
cautions must be taken with semiconductor detectors, although H.T.
stabilization is less critical.

A drift control aystem, which corrects both for the overall drift
due to gain changes and for the zero point drift, which is apparent
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in some multiuannel analyzers, has been described by Tite cf al. (11).
In the decomposition of complex gamma spectra by weighted least
squares analysis, the influence of electronio instabilities can be calcu-
lated with the x? test (12).

(c) Drift in gain and change in resolution as a function of counting
rate depend mainly on the quality of the photomultiplier tube (10)
and the pulse shaping circuits. These factors also depend on the decay
constant of the light pulses in the scintillator. Some typical data:
NaI(T1) 0.25 ps, CsI(TI) 1.1 ps, KI(TI) 1.0 pus, enthracene 0,032 18,
trans-stilbene 0.006 ps, plastio and liquid phosphors 0.002-0.008 B8,

The use of & selected photomultiplier tube is highly important to
minimize changes in gain, whereas the blesder chain and load resistor
determine the pulse duration, thus affecting the resolution. The require-
ments of pulse height analyzers with respect to pulse duration vary
from instrument to instrument, but pulse durations of one to several
microseconds are most common. The linear amplifier transforms the
detector signals into signals suitable for pulse height analysis (pulse
shaping and amplification). ‘

In the case of single- RC differentiation and single-delay-line differen-
tiation the base line depends on the counting rate. At high counting
rates the small but long undershoot depaits appreciably from the
normal level. '

If the signal is measured with respect to an average reference base
line, it is recorded ea being smaller than at low counting rates. On tho
other hand, the probability for pile-up increases, since the signals can
oceur in statistical bursts: such signals will be recorded as bheing larger
than at low counting rates. These effects result in a detericration of the
resolution; Figure 11.2 shows the effects for single- RO.clipping.

Base-line displacements are less important for double-RC-clipping
(bipolar signals} but longer RC time constants are often necessary to
keep the system linear. A longer time constant results however in a
greater probability for pile-up. Hence, the upper limit of the counting
rate at which spectral distortion is not excessive, may be similar for the
three pulse shaping systems mentioned. The pulse lengthening can be
avoided if the resistor in the second clip is parallelled by a D.C. restoring
diode, which removes the undershoot (13) {Figure 11.3). The second
clip i8 usually at the amplifier output and direct coupling between the
second clip wrd the pulse height analyzer is vsed to keep the base-line
location “independent™ of the counting rate,
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Fig. 11.2. Single-R(-differentiatod aignal, (s} st low counting rates, (b} at high
counting rates (13).

Double-delay-line differentiation is less dependent on the counting
rate and pile-up overloading can be minimized.

The preamplifier must be capable of driving the low impedance of
the interconnecting cirouit between preamplifier and amplifier over
the full range of input signals without pils-up distortion due to sta-
tistical bursts. It must be noted that the largest signal from a radiation
detector may frequently be more than a hindred times the smallest
signal of interest. If the amplitude distribution of the latter is to be
studied, distortion of the resolution can obtain, due to overload of the
linear amplifier. Indeed, the larger signals give rise to extensive
amplifier paralysis followed by a slow recovery. Smaller pulses ocourring
during the recovery interval will not be measured correctly and tho
ocourring during the paralysis interval will be loat, '

The change in resolution as & function of counting rate can easily
be observed with semiconductor detectors. Even for relatively weak
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Fig. 11.3. RO cirouit with restoring diode (13).
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such as ion-exchange, electrophoresis, electrodeposition, « e
isolated fraction is then counted and if necessary, the chemical yield
is determined. For each result, o}, (sample) and o}, (irrad) are, of
couras, identical. Hence, for the analysis of these sample aliquots,
o},(T) = o3 (chem) + o}, (count), where o}, (count) can be found as
described under (3). This allows the estimation of o3, (chem). o}, (chem)
+ o}, (count) can also be estimated from tracer experiments in exaotly
the same experimentel conditions and o} (chem) is deduced as described
above.

(6) From (1), (2)-or {3) and (4)-and (5), of, (sample) can be
estimated using equation (11.7). :

(7) For short-lived radioisotopes, where no chemical treatment
occurs, of; (chem) = 0; o}, (7) is found as under (1): o}, (irrad) + of;
{count) follows from repeated analyses of the same sample. Since
o3, (count) can be estimated, o3 (irrad) can be calculated. From equa-
tion (11.7) follows then of; (sample).

Obviously, the largest o%, is the determining factor of the precision
of the results and this stage should possibly be improved, if a better
precision is required, It must be borne in mind that a similar o3,(7T)
exists for the standard or comparator.

II. Counting Siatistics

(A) Bnomal DISTRIBUTION

The radioactive decay has a statistical character. If a radionuclide
is counted several times in identical experimental conditions, different
counting rates (number of counts per unit time, R) will be observed,
even for a very long lived species. These fluctuations follow statistical
laws. It can be shown (15) that the probability P(d) of obtaining d
disintegrations in & time At from N, original radicactive atoms is given
by the binomial distribution:

N '
P(d) = Wo—d) 131 [1 = exp (—AAH}M [exp ("WJ}"‘-" (11.8)

where [1 — exp (—AA?)] is the probability of an atom disintegrating
in a time At and exp (—AAt) the probability to survive the time AZ
The expected average number N of atoms disintegrating in the time Al is

§ = N1 = oxp (=A%) (11.9)
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The expected av__age number of observed counts with a detector is
¢ = Nz, where z is the detection efficiency.
For small values of AAY, e, At € T'yy,, equation (11.9) is reduced to

R = NpAt (11.9a)

As the disintegration rate D = —dN/[dt = AN, (sce equation (5.2)),
equation (11.8a) can be written as

D = NjAt ~ djae (11.10)

if & reasonably large number of counts has been obtained during the
time Af,

Note: When the decay of a radioactive sample is followed as a function
of time, the counting rate B = cfAf is usually taken to represent the
activity at the midpoint of the interval Az, i.e. at  time i =ty + 0.5AL
This approximation is only valid if At <« Tyyy If however At > Ty,
the mean counting rate R = ¢/At will represent the activity at a time
t =1y + fA where 0 < f < 0.5. Indeed, from equation (11.9) and
{11.10) follows that the average observed disintegration rate for the
counting interval At is given by N[l — exp (—AA#)]fAl. On the other
hand, the true disintegration rate at a given moment bp=t, + fAt is
—dN/d} = AN( = AN, exp (— AfAt). From this it appears tha‘t:

exp (—AfA4) = [1 — exp (~ AA)/AM

which allows us to calculate f, i.e. the moment at which the mean rato
is equal to the true ons:

—0.603 fAY Ty = In [l

- exp {—0.693 A‘lTllz):I

0.693AT,,,
or
3.322 0.693 A/T,
= 1 1111
f ATy, 8 [1 — exp (—0.693 AT y,,) (L1

Some calculated values for f are given in Table 11.4. More numerical
data are given by Hoffman (16).

TABLE 11.4
Correction factor f (squation 11.11)
ATy, 0 1 2 3 4 5
J 0.500 0.472 0443 0.416 0390 0.368

=

b
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Another approach is the introduction of a factor F, whiocw ows
the calculation of the true counting rate at the start of the counting.
The true disintegration rate at ¢, is given by —dN/dt = AN, The
average observed disintegration rate is NJ1 — exp (—AAf)]j/At, henoe

or
0.693 As 1

Tys 1 — exp (—0.603 AT,

The larger At/T');,, the larger F. This correcticn factor is represented in
Figure 11.6 (17). . .

It will be noted that if the observation time Al is less than about
1.5% of T'y;,, the correction is less than 0.5%,.

Fo (11.12)

(B) ExFECTED STANDARL DEVIATION
In the case of radicactive disintegration it can be shown (15) that
o = f{Ny[1 — exp (=MAf]z[2 - 2 + zexp (~AAf)]}  (1L13)
where [1 — exp (—AA#)] is the probability of an atom disintegrating

AT, (Curve )
0 005 00 o

N I 74 7 1
‘Em / / : 1065, |
:gl.ao / / l0’0§
1ol /// 1005
Nz

° Qsmnw.(mtg

Fig. 11.6. Correction factor F' as » function of ATy, (17).

..15
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in the time A%; [1 - exp (—AAt)] z is the probability of a disintegration
resulting in an observed count in the time Af; [l w 2z + z exp (—AAL)]
or 1 — 2[1 ~ exp (—AAt)] is the probability of an atom not resulting
in an observed count in the time Af Substituting equation {11.9) into
equation (11,13) one obtains:

o = (Rl — 2 + zexp (~AA1)]) (1L14)

Usually At € T'yy,, thus M2 <€ 1 and exp (—AA#) ~ 1 — AA¢ hence |

@ = J(Fz) = /(number of counts) (11.15)

Ezample: If 10¢ counts are recorded, o = 10? or ey = 1%. The
standard deviation for a given counting rate R {cpm or cps) is given by:
JBz JRA n

If At3> Ty, AALD 1, exp (—AAl) < 1, hence equation (11,14) is
reduced to

Rz
RzKE' thus og =

o= Nl —2) (13.17)

Thus, if At is long enough to allow all atoms to decay, and if the
detection efficiency z = 1, tie number of disintegrations is exactly
known, and ¢ = 0,

If however z < 1, the above equation (11.17) becomes ¢ = (/Nz =
\/(number of counts).

When A2 ~ 1 and z is ncither uzity nor very smali equation (11.13)
must be used.

(C) PoissoN DISTRIBUTION AND NOBMAL OR (JAUSSYAN DISTRIBUTION

The binomial distribution may be replaced by the simpler Poisson
distribution (15). The probability P(d) of finding d disintegrations is
then given by equation (11.18), where & is the average to be expected
{equation (11.9))

Ne
P(d) = =7 °%P (-3 {11.18)

on condition that Mt <€ 1 (<0.01) and N> 1 (>100).

The above distribution law is also valid for very small disintegration
rates, such a8 D = N/At = 10 dpm. Note that, for small disintegration
rates, the distribution is not completely symmetrical around d = X,

Ly A T T LTI LIE T
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For & (or d) > 100 and & ~ d, the Poisson distribution cas uve
replaced by the normal or Gaussian distribution:

1 (F = dy

The normal distribution is symmetrical around d = X, as is the
Poisson distribution for large XN.

Tor both the Poisson and Gaussian distribution it can be shown that
for d large and AAf £ 1: ‘

a¢=JNsz;u,=\/2sz,/c;cp=-\£!-=J%; .

o B
N or=o= |5 (11.19a) .
where ¢ and 4 respectively represent a number of counts and dis-
integrations, and R and D indicate respectively & count rate and a
disintegration rate.

The sbove discussion applies a3 well to the background activity as
to the sample activity to be measured. If the nymber of coynts of the
background ¢ is sufficiently large (\/cz > 1), the Poisson distribution
of the background practically coincides with the normal distribution.
Therefore the net count differeace ¢g = ¢ — cp also obeys the latter
(C refers to sample plus background, B to background alone, § to
sample).

Note:

—TFor small values of ¢g (5 4) this difference does not chey the Poisson
distribution, but obeys a more complex distribution (18).

~If n observations are carried out, yielding ¢,, ¢,...¢; counts, the
standard deviation for one observation can obviously also be calou-
lated by equation (11.3 bis):

o= —-(:‘—_"—f-)—']m (11.20)

where & represents the arithmetic mean of the n observations.

The statistical error given by this equation and that given by
equation (11.15) should agree if the exparimental! data are truly
statistical, If the equipment has produced counts (spurious counts,
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electrical noiss, ete.) it would be noted that the positive and negative
values of the residuals ¢ — § would not occur with about equal
frequency, and the standard deviations calculated in the two ways
would not agree. If a small difference is found between the results
of equations (11.20) and (11.15), a y2-test can be performed to find out
whether the difference is significant or merely due to the finite number
of observations.

(D} StaAnDARD DEVIATION FOR RATEMETERS AND IONIZATION
CHAMBERS

According to Kip ¢ al. (19) the standard deviation of the counting
rate may be estimated from the relation:

a = JRI2k(E) = 0.11 JRIk() (11.21)

where R is the average pulse rate {in cps), and k{f) = RC, the time
constant of the circuit (R in ohms, € in farads). The fractional standard
deviation of a single reading is

ol R = (2Rk(t))-V* (11.22)

Hence, knowing k() and determining R by calibration, the standard
deviation may be assessed. If k(t) is not known it may be estimated
by observing the recorded activity as it falls to zero after an active
source has been removed from the counter. k() is equal to the time
necessary for the observed reading to fall to 1/e {ca. 37%,) of its original
value. If k{t) is determined in this way with & recording ratemeter, the
pen drag should be reduced to a minimum,

II. Counters and Background

In practice, the activity of a source must be estimated by the differ-
ence between the observed activity, obtained with the source present,
and the natural background activity in the absence of the source,
Hence the rules for error propagation (see Table 11.3 (1)) must be
applied. If the total number of counts obtained in a given period in
the presence of the source ia 400 and the natural background gives 64
counts during the same period, then the expected standard deviation
a of the net result, obtained by the difference 400 — 64 = 336, is

L1, STATISTIOAL INTERPRETATION OF RESULTS G g

given by [(4001/3)8 4+ (64/2)%)1/% = (464)%/3 = 21.5. Hence the activi.y
of the source is 336 + 21.5 couats.

The final precision is thus determined not only by the n.ount.y of the
source and by the background activity, bui also by the counting times
Abc and Atp.

If only a limited measuring time is available, e.g. because large
series of samples must be counted, the choice of Afe and Atz becomes
important (C refera to sample plus background; B to background alone).
The choice of a detector with a suitable signal to background ratio is
also of interest, particularly when the counting rates are low and when
the counting rate of the sample Rg = Rp — Rp, is smaller than the
background rate Rp. In the following discussion, the assumption
Ate < T4y i made.

(A) CrolcE oF Alg/Aty -

According to Table 11.3 (1) and to equation (11.16) one can write:
u(8) = o%(8) = o}(C) + o¥(B) = RcfAlc + RpfAtp (11.23)

The fractional standard deviation o7 = g+f100 of the mea.surement Rg
is given by
of = ’{S) .Rc[Nc 4 RBIA‘B - !‘ING + IINB
TR (Bg — Rp)? Ry(r — 1)*
where r = Rg/Rp.

To use a counter efficiently one must choose either Alp/T for a
fixed total time 7' = Afe + Alp 50 a8 to reduce ¢y to & minimum,
or Alg/T for a fixed oy to reduce T to & minimum,. Both criteria are
equivalent and lead to the same result. Using the first criterion for a
given set of sample and background rates {(i.e. R, R, r and T given),
Afe must be chosen o as to reduce the nominator of equation (11.24),

riAle + 1/(T — Atg)

to a minimum, Thus the derivative of the nominator with respect to
Alc must be zero:

(11.24)

—r/A + I(T — Atg) = 0
or
Alc/Atg = 1% = (Rg|Rg)\* (11.25)
and
Atgf(Ale + Atg) = Alg/T = 13(1 + £11%) (11.26)
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The optimum Afz/Alz ratio as a function of Rs = R¢ — Rp and of
Rp can be read from the nomogram in Figure 11.7 (20).

Substituting for Alg and for Atp in equstion {11.24), the minimal
fractional standard deviation oy for a total counting time 7' becomes:

2o PR YT 4 [ YT (4 1

11.27
i Rpfr — 1)2 TRp(r —1)3 { )
ReReRa Ry
(e.p.m, or cp.5.) {c.pm. or ep.5.)
10,000 N3 . o
509 F Ate
F Alg
2,000 L 02
1,000
500 - 05
200 5 10
10 -
50 20
20
- 50
10
5 0
2
- 20
1 T 3
05 | i
- E 50
e2 f F
ol - ‘E L

Fig. 11.7. Optimum Af,{Af; &s & function of background rate B, and counting
rate By = R,—~ R, (20).
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or
of = QIT (11.28)

where

(rVs £ 1)*  (r13 + 1)*Rj

~ Balr — 1)1 B}
Equation (11.27) can also bo written as follows:
1
ar = (_r”' - 1)\/5‘38

since (r —~ 1) = (*f* + 1) (r1/2 - 1).

Hence,
RY* = (1 + op/TR3)jop/T
80 that for the net count rate of the source (Rg = Bg — Rp): _
Rg= (¥ + 2a;J TRa)Ic}T {11.30)

Equation (11.30) expresses the minimum observable counting rate of
the source which will have a fractional standard deviation oy, when
recorded with a counter having a background Rp for a total time T,
optimally divided between Afe and Afp.

{11.29)

Ezamples:

(8) Be = 178 epm, Rp = 39 cpm, Rg = 137 opw, ¢ = Rg/Rp =
4.51, Alo[Atg = r¥% = 2,12, Afg|T = 2.12/3.12 = 0.68,Q = 2 x 10-%
If 7 is fixed at 100 m, of (min) = 2.03 x 104, o7 = 0.0142 or oy, =
1.429%, i.e, with optimal time division (Af¢ = 68 m, Atg = 32 m) the
minimal possible percentage standard deviation is 1.429,.

{b) Requiring for the same sample a percentage standard deviation
of only 3%, o7 = 0.03,0f = 9 x 10-¢, Ty, = Qfo} = 22 m (Alg =
15 m, Alg = 7 m).

(c) When counting for a total time T' = 100 m in optimum conditions
the minimum counting rate Rs, which can be recorded by this counter
with & standard deviation of 3% is (1 + 0.06,/3900)/8 x 10~¢ x 100
= 473.8/9 ~ 53 cpm.

The optimum time division in this case is Al 22 60 m and Alp ~
40 m.

If the sample rate is much higher than the background rate (Rs 3>
R3), equation (11.20) can be simplified, as r¥/2 4- 1 ~ #1/3

Q =~ rRp[/Ry = Rc/RY =~ Rs/R% = R (11.31}



530 \L; NEUTRON ACTIVATION ANALYSIS

If however Rg <€ Rp, 112 + 1~ 1+ 1 = 2; hence
Q = 4Rp/R% or 1/Q = Rif4sip = M2 (11.32)

M is called the figure (or factor) of merit of 4 counter in the region
where the background is important (see furtler)

M = Rs/2/Rp (11.32a)

From equation (11.28) follows that the condition for minimal oy (fixed
T or minimal T (fixed oy) is that £ be a minimum (1)).

(B) CHoicE oF CoUNTER WITH DINTMAL-Q CRITERION

The minimal-@ criterion allows one to choose the best among several
counters or among several operating conditions.

If the ratio of the counting efficiencies for sample and background
is a constant while the sensitivity is changed (r; = r,), it appears
from equation (11.29) that

Q./Qy = RmR?sJRBxR?sz = Rgy/Rgy = Dsz)[Dszq = 2z,

since Ry,[Rg, = Rpy/Rgs. Only the efficiency determines the quality
of the counter. If z, > z,, then §@; < ,, so that on the basis of the
minimal Q criterion one can conclude that counter 2 is the better
one, In this case it is always advisable to increase the efficiency z as
much as possible,

If the ratio of the efficiencies for sample and background is not
constant with changing sensitivity (r, # r,), both RY/ Rz and r depend
on the counter.

If Rs> Ry (r>> 1) for both counters, equation (11.31) can directly
be used:

9 Ba_ D _ 2

@ _'Rss - Dszy 2,

Under this condition the background is unimportant and, again, only
the ratio z,/z; determines which counter is supecrior. For high dis-
integration rates one should choose the instrument with the highest
efficiency.

If Rg <€ g (r ~ 1) for both counters, equation (11.32) can directly
be used. Counter 2 will be superior to counter 1, if @, < @, i.e. if
M, > M,. In that case M is a suitable figure of merit, consequently
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both Rs (=Dsz) and Rp must be considered to judge what counter

should be chaosen.

Use of the above expressions for comparing detector sensitivities
generally involves the replacement of Rg by the product of the sample
disintegration rate Dy and the detection sfficiency z. Various detectors
are then compared by examining their ¢-values. Such a procedure
suffers from & number of limitations (21):

(1) no allowance is made for short lived radioactivity;

(2) interference —especially “decaying” interference-is not con.
sidered; )

(3) the formula may not be applicable i the comparison of eritical
levels or detection limits (see further), because type 1 and type 2
errora have not been included.

(4) the factor Af can only be used on condition that Bs<{ Rp. This,
factor could lead to & wrong conelusion for wp and wq (see further).
This means that the exact equations of the form wp = yLp can
lead to the conclusion that with one detection system the lower
limit of detection is reached, but that with the other one the lower
limit of determination is obtained.

IV, Limits for Qualitative Detection and Quantitative Determinaiion
Applied to Radiochemistry and Activation Analysis

{A) INTRODUCTION

Examination of the analytical and radiochemical literature for an
appropriate deficition of the “detection limit” reveals s plethora of
mathematical expressions and widely varying terminology, as was
pointed out by Currie (21). One encounters for example terms such as
lower limit of detection (22-25), detection sensitivity (26), sensitivity
(27), minimum detectable activity (or mass) (28) and limit of guarantee
for purity (20) - all used with approximately equivalent meanings. The
nomenclature problem is compounded, because other authors make use
of the same or very similar terms to refer not to the minimum amount
that may be detected, but rather to the minimum amount which
may be determined with a given relative standard deviation. Still other
expressions, such as the “detection limit at the 85%, confidence lovel”
are used without explicit mathematical definition, which leaves the
meaning rather ambiguous. Moreover, various “nonstatistical” defini-
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tions appear in . aich the detection limit is equated to the background,
10% of the background, 100 dps (y-radioactivity), or 1000 dpm
(a-, B-, y-rudioactivity). In order to compare some of the mcre common-
ly used definitions, Currie (21) Lias calculated “detection limits” for a
hypothetical experiment in which a long lived y-emitter was counted
for 10 minutes with an efficiency of 10%, using a detector with a
background of 20 cpm. The results, plotted in increasing order in
Figure 11.8, are unsatisfactory, for they encompass nearly three orders
of magnitude! '

In the subsequent discussion, a distinction: will be made between

o
-
I
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Definition
Fig. 11.8, Comparison of some commonly.used definitions of deteotion limit,
when counting & long-lived y-emitter for 10 m with an efficiency of 1094, using a
detector having a background of 20 cpm. Definitions: 1. Background standard
deviation o,; 2. 10% of the background; 3. 20,; 4. 34,; 5. 30,+ 30, (o, = sample
standard deviation); 8. Twice the background; 7. 1000 dpm.; 8. 100 dpa. (21).
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three speoific levels, as proposed at the National Bureau of Stancu. J)
(21). (i) & decision limit {critical level): Lo (L¢{c) counts or Le(R) cpm);
(ii} a detection limit; Lp (Lp(c) counts or Lp(R) cpm); (iii) & limit for
quantitative determination: Lg {Lg(¢c) counts or Lg(R) cpm}.

In the following paragraphs the nature of these quantities will be
discussed in detail, taking into account the half-life of the radioisotope
of interest, the detector background (in the energy region of interest),
the optimum counting time in the case of short lived radioisotopes
and the required confidence level. The results wili also be applied to
coincidence counting.

It is obvious that the statistics of decision, detection and deter.
mination apply directly to the observations (activity) rather than to
the underlying quantity and therefore the following discussion will
deal specifically with the observed signal and its associated random
distribution. Statistical conclusions drawn in terms of the net signal °
may be extended to the related physical quantity by means of a calibra-
tion factor. In analytical practice it is convenient to express the
“lower limit of detection”, . .. in terms of the mass wp of the element
to be detected under given irradiation and measuring conditions:

wp = yLp(R) or wp = yLplc) . {11.33)

If Lp is & counting rate, the calibration constant y is expressed in
gram (milligram, microgram} per epm or per ops, and depends on the
neutron flux, the isotopic abundance of the target nuclide, the atomic
weight of the target element, the reaction cross section, the irradiation
and waiting time, the disintegration scheme of the radionuclide formed,
the counting geometry, the efficiency of the detector and the fraction
of the pulses which are counted. The factor y can thus be caloulated
from equation (10.1), if the parameters of interest are known.

If Lp is a number of counts, the calibration constant y is expreased
in gram per count.

Tablea with caleulated 1/y-values can be found in references {30,31).
The count rate per minute per microgram of target element, obtained
by 4 beta and alpha counting, single-gamma counting, gamma-gamma
coincidence counting, beta-gamma coincidence counting and triple-
coincidence counting were computed by Wing and Wahlgren (30) for
irradiation times of 0.5; 5; 50; 500 and 5000 m at & thermal neutron
flux of 10* n em=? 5-L

Induced activities (cpm/ug) aa a function of irradiation time and of
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waiting time are also given by Girardi (31), taking into account the
detection efficiency of 2 7.5 x 7.5 cm NaI(Tl) detector for the geometry
and the photopeak used. The data are given for thermal neutren
fluxes of & x 10'%; 10** and 2 x 10" n em=? s~!. Experimontel
results in cpm under the photopeak per gram element for single-gamma
counting are given by Anders (32) for an irradiation time of 5 m at a
flux of ca. 10* moderated n om=3 5~1 and by Yule (33) for an irradiation
time of 1 i1 at & thermal neutron flux of ca. 4 x 1012 n cm=-2 5=,

(B) DEFINTTIONS — SIGNAL, DETECTION

If the observed number of counts from a sample + background
and from the background alone, for an equal time of measurement A,
are respectively cs, 5 and cp, then the count difference ¢g = CS,B — CB
is a measure of the net activity of the sample. However, owing to the
statistical fluctuations, this count difference at the averages of the
background Zp and the sample £s may obtain various values. At a
relatively small value of ¢s, the presence of the activity in the sample
becomes doubtful, Therefore a so-called “critical value” Lg is intro-
duced, that is often called in the literature the “minimum significant
count difference” (22,25) or “decision limit" (21). For ¢g > Lg one
assumes that the signal is present, for ¢s < Ly the decision “not
detected” should be reported. The statistical character of the count
rate means that such an assumption must always be connected with
& probability of making a wrong decision. Two kinds of errors may
oceur:

(i) The measured value ¢g > L¢; one concludes that the activity
>0, when in fact the activity = 0 (type 1 error). The probability P,
of making this error depends on the accepted value of Lg = u,0(0)
(Figure 11.9 curve a).

{ii) The mersured value ¢s < L¢; ono concludes that the activity =
0, when in fact the activity >0 (type 2 error). Such a case is illustrated
in Figure 11.9, curve b. Despite the fact that the signal >0, a
relatively large probability P, exists, that the measured count differ.
ence < Lg. The probability P, of making this error depends on L¢
and on the sample activity, i.e. on the position of the (Gauss curve on
the cs-axis.

For cs = Lp (Figure 11.9 curve c), the probability of making the
type 2 error is already so amall, that the signal will practically always

b g

A, STATMLUMWAL JVARGERLGLALIVN WD BAIVLLO e ;’m
b

be detected. The smalleat activity, corresponding to the value - _, is
called the “minimum detectabls true activity” and will be identified
with the “lower limit of detection” (22).

The foregoing discussion can be suminarized as follows:

(i) if the result of a counting yields a count difference c¢sg > Lg,
one can conclude (a posteriors) that the activity is present.

(ii) if an activity cy = ILp is present in the sample, one knows .(a.
priors) that the analytical procedure may be relied upon to lead to ita
detection.

1. The Critical Level or Decision Limit

As appears from Figure 11.9, the critical level is mathematically
given by .
L¢ = u0(0) (11.34)

The parameter u, is a multiple of the standard deviation, determining
the probability of making the type 1 error. Usual accepted values for
u, are 1.645; 1.960 or 3.000. Contrary to Table 11.1, this does not
correspond to a confidence level of 90, 95 and 99.73%, respectively,
but to a confidence level of 95, 97.5 and 99.865% respectively. Indeed,
the probability of making the type 1 error is respectively 10/2 = 5,
5/2 = 2.5 and 0.27/2 = 0.135%, only {one side of the Gauss curve).
For that reason, the symbol  has been replaced by u,. The problem
of the confidence intervals is discussed in dstail by Currie (21).

a Trpel
error
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Fig. 11.9. Bignal detsction. Definition of critical lavel Lyfs) w p,0{0) detection

limit Z (e} = Lole)+pi;0(D) and determination limit Lle) = kqog (31).
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The variance ..r a count difference -¢5 = ¢s,p — cp is given by
o*(8) = o8 + B) + 0*B) = (¢5 + 2¢z). If no activity is present,
¢s = 0 % o(0) where o{0) = /2cp. Hence, the critical level is given by

Lcle) = uy\/2¢p = u\ J2RpAt  (counts) (11.35)

where ¢ is the number of background counis and R the {average)
background rate. When dealing with low activities, aquation (11.25)
is reduced to Alg ¥ Afp = Al = 0.5 T. Equation {11.35} is valid for
80 called paired observations.

If the background is constant, and very well known by a long
history of observations, one can state that o%(S) ~ oS + B) = ¢5 +
¢p. If no activity is present, cs = 0 + o(0) whers o{0) = Jea. Thus,
by measuring the background during a long time (>>Atl), one can
decrease the critical level by a factor /2. Then

Li(e) = uyfep = u, /RpAt  (counts) (11.35a)

where the prime serves as a reminder that the background is well
known,

The corresponding *“minimum significant counting rate differences”
Le(R) and Li(R) are thus given by

Lo(R) = Le(c)/At = u;./(2R35/Al) {cpm, cps) (paired observations)

(11.36)

and
Le(R) = Lyfc)/At = uy f(Rp/Al) (cpm, cps) (well known background)
(11.36a)

For short lived isotopes L¢(R) represents the average minimum signifi-
cant counting rate difference (see further).

2. The Lower Limit of Detection

Mathematically, the “lower limit of detection”, which is used to
assess the a priori detectability, is given by
Lp = Lg + u,0(D) (11.37)

as appears from Figure 11.9. To simplify the discussion the same
parameter u, will be used to determine both the probability of making a
type I and a type 2 error. In the above equation, o(D) represents the
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standard deviation of a number of counts ¢g =« Lp:
o¥(D) = o*0) + Lp
Hence, equation (11.37) becomes:
Lp = L = uy(0*(0) + Lp)¥/*
(Lp = Lc)* = 4}o*(0) + uilp
Remembering that Ly = u, o (0) one obtains;
Lp(Lp — 2Lc - uf) vz
or
Lp = uf + 2Lc
Thus:
Lplc) = uf + 2u, f2cp  (counts)
(paired observations) (11.38)

Lple) = uj + 2uyfeg  (counts)
{well known background} (11.38a)

The corresponding eounting rates are given by:
Lp(R) = u}[At + 2u, /(3Rp/bt)  (cpm, ops)  (11.39)
o(R) = w/At + 2u, /(Rs/A)  (cpm, cps)  (11.39a)

For short lived radionuclides (andfor) background activities, Lp(R)
andfor Rp represent average counting rates (see further).

From these equations, the following conclusions can be drawn:

(i) The longer the counting time, the lower the limit of detection.
Such long measuring times are obviously limited to long-lived isotopes
and may be of interest in the case of long activation times (several
hours or days), i.e. in the case of reactor activation analysis. Extremely
high sensitivities can be obtained in this way.

(ii) The limit of detection depends on the accepted confidence
level ().

(iii) In many practical cases, 1} < 2u, /ca, 8o that Lp(e) ~ 2Lc(e)
and Lp(R) =~ 2Lc(R) (see example further).

(iv) In the case of zero background, it should be noted that Lp(c)
or Ly(¢) is not zero, but v} (counts), and Lp(R) or Ly(R) = u}/At (cpm)

Using equation (11.30) and assuming At = 0.5 T, it is possible to
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calculate the fractlohnl standard deviation of Lg(R) or Lp(R). For
L¢(R) one finds

1 + 204 /(2R3AY)
22}/.3 B = wy J@Rs[AY) (11.40)

Solving for oy leads to

141 + 2uy/\/(2R5AY)YV2
o= 2u,

(11.41)

If the background is not too small, i.e. 2u,/\/(2RpAl) £ 1, o7 = 1fu,.
At the 959, probability level u, = 1.845 {see abave), so that oy, = €0%.
For Lp(R) one finds as;, =2 309, at the same confidence level.

3. The Limit of Quantitative Determination

The above data for o¢(Lc) and ae{Lp) are not entirely satisfactory
for a precise quantitative determination. It is obvious that one can
calculate a “determination limit"” for a desired percentage standard

deviation (21). Such a definition is similar to that used by Adams et al. .

(34), who defined a “minimum working concentration” aa that at
which the percrntage standard doviation is 10%, as far as counting
statistics are involved. The term on the left of equation (11.40) expresses
the minimum observable counting rate due to a radioactive source,
which will have a given oy, when recorded by means of a counter with
& background rate Rp, assuming paired observations. For oy = 10%,
as = 0.1 one finds: i

1+ 0.2,/(2R5A1)

LofR) = 0.02 At

(cpm)

and
Lofc) = Lg(R)A = 50[1 + 0.2,/(2cs)] (counts)  (11.42)

A different approach is given by Currie (21) for A# # 0.5T. The results
are however practically equal, if the background is not too small.
Even for Rg = 1 cpm and A! = 16 m, the results for Lg differ by ca.
209, only. _

The determination limit is defined as {see Figure 11.0a)

Lqfe) = kqol(@Q) (11.43)
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where Lg(c) is the value of the net signal ¢g with a standard deviaw. ,}

o{Q); o(@)Lgle) = lfkq = a4{(Q) is the fractional standard deviation;
(@) = (Lofc) + (O, hence

I3(c) ~ KiLgle) — k3o%(0) = 0

Lgfc) = %[l + (1 + 4—“—’%9-))”'] (11.44)
For paired observations, o*(0) = 2cp = 2RpAl. Setting of(Q) = 0.1:
Lg(e) = 50[1 + (1 + 0.08¢cp)*/*] (counts) {11.45)

For a well-known background:
4(c) = BO[L + (1 + 0.04cp)V?] (counts)  (11.45a)

The corresponding values forLg{R) (long lived isotopes) are found by
dividing by At. For short lived isotopes, Lg(R) represents the average
counting rate. ) :

or

Ezample:

For a counter with a background of 10 cpm, the values Lg(c),
Lp(e} and Lg(c) will be calculated, assuming & counting time of 10
minutes and a confldence level of 95%, (u; = 1.645)

Lo(c) = 2.33,/BpAt = 23.3 counts (paired observations)
or
Ly(c) = 1.64,/RpA¢ = 16.4 counta (well known background)

This means, if the observed number of counts in 10 minutes for signal +
background » 123.3 (or 116.4), the decision “‘detected” should be
reported.

Note that this count difference is known with a precision of §66%:

Lo(c) = 123.3 — 100 = 23.3 + ,/223.3 = 23.3 + 15.3 counts (+66%)
Ljfc) = 116.4 — 100 = 16.4 + /1164 = 18.4 +10.8 counts (+66%)

If one wants to be sure a priori, with a confidence level of 859, that
in the above conditions (R, Af) an activity will be detected, the latter
must be at least

Lp{c) = 2.71 + 4.65,/RpAt = 49.2 counts {paired observations) or
Ljy(e) = 271 + 3.20,/RpAt = 35.6 counts (well known background),
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i.e. cs,p = 14v.« {or 135.6) counts. Assuming long lived radioisotopes,
Lp(R) = 4.92 cpm and Lj(R) = 3.56 cpm.

If the detection efficiency of the counter is 20°, the limit of detee-
tion is a disintegration rate of 24.6 dpm, respectively 17.8 dpm,

Note that a number of counts = Lp can be measured with a standard
deviation of +329%,:

Lp(c) = 149.2 — 100 = 40.2 + /249.2 = 49.2 + 15.8 counts (+32%)

Liy(c) = 135.6 — 100 = 35.6 + ,/135.6 = 35.6 + 11.7 counts ( +329%)

The determination limit, assuming os, = 10%, in the above conditions
Lgle) = 50 [L+(1 + 8)Y/3] = 200 counts (paired observations)

Indeed cs = 65,5 — ¢5 = 300 — 100 = 200 + /400 = 200 £ 20 counts
(£10%)

Ly{c) = 501 + (1 + 4)¥/%] = 162 counts (well known background)

Indeed: ¢s = csy5'— €p = 262 —~ 100 = 102 + /262 = 162 + 16.2
counts ( £ 10%), since the error in cp is assumed to be negligible.

It is obvious that lower values for L¢g, Ly and Lg will be obtained
when counting for & longer time Af. This procedure is obviously
" limited to long lived isotopes.

It should be borne in mind that there exists a considerable difference
between the lower limit of detection, the lower limit of determination
(which both imply that the identity of the measured activity is known,
ie. that the combined procedure of chemical isolation and/or counting
should be specific for the radioisotope of interest) and the lower limit
of identification (21,22).

The lower limit of determination can be defined as a “minimum
working concentration”, at which the relative standard deviation is
for instance 10%,. When identification is required, the radiochemical
purity must be checked by measuring the energy of the radiation
andfor the half-life. For that purposs, the counting rate must often
be higher than Lp(R), e.g. one order of magnitude.

4. Application to Short Lived Radioisolopes and Long Lived
(Constant) Background (simple counting method)

The same equations for L¢, Lp and Lg are valid for short lived
radionuclides, i.e. the same number of counts must be recorded for a
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given background, to obtain the oritical level, the limit of dete.. .
or the limit of determination. It can be shown however that an
optimum counting time exists.

If at the beginning of the measuring time A¢ the sample counting
rate is R,, the net number of counts recorded after the time Af is
given by

W . R,
¢s = R.I exp (— ) dt = =2[1 — exp (~MA)]  (1146)
0

whereas the (constant} background yields ¢p = RpAt counts. During
the decay of the redionuclide of interest, an increasing number of
background pulses are counted. Consequently, there will exist an
optimum measuring time, which allows the detection of the amallest
starting rate R, in the presence of & constant background rate Rp.
According to equation (11.36) one can write for the “minimum
significant counting rate difference’ (critical lavel) at ¢ = 0:

LO(AR)" [1 — exp (—AA2)] = u; /2RpAM
or
ul.\J2R5M . . 4
Lc(R)u = m (pwod observat.mna) (11. 7)

Lg(R), is a minimum if the derivative of this equation with respect
to Al is zero, i.e. 0.5 [1 — exp (—AAH] u, )\ /(2Rp)AL-33 —u,A%/(2Rp)
AtY3 exp (~AAf) = 0, or exp (+AAf) = 1 + 22AL The result is:

At = 1.81 Ty, (11.48)

The same solution will obviously be found for the “minimum detect-
able counting rate” (=lower limit of detection) Lp(R), at ¢ = 0.

It can be shown that the limit of detection reaches a minimum
for Af == 1.81 Ty, if the condition u, <\/(RaTys,) is fulfilled (22). For
small values of RgT'y, (i.e. the background observed for At = 7'y}
the optimum measuring time is somewhat larger than 1.81 and depends
on RyTy, (22) (Figure 11.10). A practical example using 5.7 h 13¢°Cs
has been described by Dybezyniski (35).

Substitution of equation (11.48) in equations (11.35), (11.38) and
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(11.45) yields:
Lofe) = 19w, f(RsTys)  Life) = 134w, J(RaTyy) (11.49)
Lo(o) = u} + 38 us/(RaTys) Lyp(e) = u + 2.7 uy J/(RpTyy,)

11.50

Lglc) = 501 + (1 + 0.144 RzT,;,)V1)] (1150
Lyle) = 60[1 + (1 + 0.072 BTy, )]

(11.51)

The ratio ¢5/R, for At = 1.81 Ty, follows from equation (11.46) and is
1.03 Ty,. Hence:

Le(R)y = Lo(c)/1.03 Tyyy = 1.84 1) /(Re/Tys3) (11.52)
Lp(Rjo = Lp(c)/1.03 Ty = uf{1.81 Ty, + 3.69 u/(RpTys)
(11.53)

37.5
Lo(R)g = Lo(c){1.03 Ty, = o (1 + (1 + 0.144 RpTyo)¥2)
1/2 .
(11.54)

'aI‘ll;ue values for Li(R)y, L(R), and LY(R), can Le found as described
ove,

3 1
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Fig. 11.10. Relationship of the optimum counting time AYTy, and the
observed number of counts of background in the time Iy (22).

¢

The ‘‘lower limit of detection” in terms of the mass wp of the ele
under given irradiation and measuring conditions is given by equation
(11.33). Thus: wp = yLp(c), where 1y is expressed in counts per gram
for a given counting time Af.

One can also state wp = yLp(R), where 1]y is expressed in cpm per
gram at ¢ = 0. Equation (11.47) has been derived, assuming Aty = Al
By measuring the background during a longer time than the sample,
one can obtain at most & decrease in the lower limit of detection and
related quantities by a factor (/2.
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Ezample:

Assume that the 7.7 m positron-emitter **K is detected by
means of the 0.511 MV positron annihilation quanta using & sodium
iodide crystal with a background of 20 cpm and a detection efficiency
for 3%K of 32%,. According to equation (11.48) a counting time of 14 .
m was chosen (21). e

Using the general gquations (11.35), (11.38) and (11.45) or (11.40),
(11.50) and (11.51) one finds for u, = 1.645 (5% confidence lovel,

paired observations):

Lc(c) = 2.33 \/(RpAt) = 2.33 /280 = 30 counts

Lplc) = 2.71 + 18 = 80.7 counts

Lgle) = 50 [1 + (1 + 0.08 x 280)¥/%] = 202.5 counts (o9 = +10%)

Suppose that an observation of sample + background gives a total
of 310 counts. The net signal would then be ¢ = 310 — 280 = 30
counts, with an estimated standard deviation of /(310 + 280) = 24.3
counts (paired observations). However 30 < Lc(c) and therefore such
an observation would lead to the conclusion, “not detected”.

The same result can be found using equations (11.52), (11.53) and

(11.54):
Le¢(R), = 1.84 x 1.646 x J(20/1.7) = 49 cpmat ¢ = 0(or16.3 dpm)
Lp(R), = (2.71/1.81 x 1.7) + 3.69 x 1.645 \/(20/7.7)
= 0.104 + 0.8 ~ 9.8 cpm &t ¢ == 0 (or 30.6 dpm)
Lo(R), = Lo(c){1.03 x 1.7 = 292.51.95
= 37 cpm at ¢ = 0 (or 114 dpm).
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Considering the same sample as above, the initial counting rate is
given by 30{1.03 x 7.7 = 30/7.95 = 3.8 cpm. This value is <4.9 cpm
and, again, such an observation leads to the conclusion “not detected”.

A quantitative determination {os, < +109) is possible if the
disintegration rate of 3K at t = 0 is > 114 dpm.

Until now, the assumption has been made that the background rate
is constant. If however an element is determined without chemical
separation, it must be counted in the presence of the matrix which
can also be radioactive. This is mostly done using simple gamma ray
spectrometry or coincidence methods. If both the activities from the
impurity and the “background” are long lived, the problem is reduced
to case 1. :

If they are not long lived, but A =~ Ay, the same conclusion is
valid. It has however no sense to choose a Af> approximately 2.5 7'yy,,
as more than 80%, of the radioactive isatopes decay during that time,

If the half-life of the background activity is shorter than that of
the radionuclide of interest, it is obviously recommended to start the
counting after the decay of the matrix activity.

5. Application to Short Lived Radioisotopes and Short Lived
Background (simple counting method)

If neither the counting rate of the activated impurity Rg nor the
background rate Ry is constant, the number of counts recorded from
the nuclide of interest is given by equation (11.46). The number of
background counts is given by a similar equation:

¢ = Rpy[l — exp (- ApAt))/2z
Substitution of this equation in equation (11.47) yields

\/(1 —~ exp (-/\BAt))
_ 238,0 ApAt 11.55
LetR)o = \/( At ) 1 —exp{—~AM) (11:59)

AAL

Again, the assumption Alc = Atg = At has been made {paired ob.
servations).

If A > Ap there exists also an optimum measuring time, which
depends on A and on Ag. This time can be estimated from Figure 11.11
{23} which can be compared with Figure 11.10.

11, BTATISTICAL INTEBPRELATION OF LESULIN \?

Again the general equations (11.35), (11.38) and (11.45) for Le, Lp
and Lg are valid, where cp is the number of backgrou.nd counts
recorded in the optimum counting time = k % I'y;. Equation (ll.ﬂ?)
can be used to calculate the critical initial counting rate Lg(R), if
Rp,, is given. ‘

1‘::1- agl nondestructive anslysis, Bg depends on the matrix, Sc.hulze
(23) calculates the matrix (background) counting ra.t.e. Ry fo.r 'umple
gamma ray spectrometry, taking into acoount the specific activity per
milligram of matrix element, the decay scheme, the geometry factor,
the total efficicncy of a 7.5 em x 7.5 om NaI(T]) crystal and the
relative distribution of pulses in gamma ray spectra up to 2.7 MeV. '

A nomographic estimation of the detection limits of an element in
complex media is described by Haerdi (38).

T ak At=%
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Fig. 1111, Optimum counting time in the case of different half lives for
gignal and background {A>2,). Example: if Ty, = 2.6 m (s, .. J) and Tyy4(B) =
10 m {a, . . .), the optimum counting time is 6 m {s, . . .) {23).
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This proble... 15 also theoretically discussed by Currie {21).

The determination of optimum schedule end sensitivity for non.
destructive activation analysis in the presence of interfering activities
is given by Quittner ef al, {37,38).

(C) Tre Lowzr Lisir 0OF DETEOTION AND OF QUANTITATIVE DETER-
AINATION FOR ComNcIDENCE COUNTING

1. Definitions and General Fquations

Consider a radionuclide in the decay of which time correlated cas-
cades occur, which can be detected with a suitable coincidence system
(see chapter 10, Section IIT, E, 1), Assume ihat this activity is to be
counted in the presence of a relatively high “interfering” activity,
such as the matrix activity in the case of a neutron activated sample.
The assumption will be made here that in the decay of the latter radio.
nuclides no time correlations occur which can be detected with the
coincidence set-up; random coincidences are, however, possible and
these are assumed to be more important than the random coincidences
caused by the natural background.

If the two detectors of the coincidence system record ¢, and ¢, counts
respectively during a time A?, then the number of coincidence counts
recorded during that time is given by:

cg=¢5+ cp

where C refers to the composite count rate S + B', § to the true co-
incidences and B’ to the random or chance coincidences (< natural
background). Due to the statistical character of ¢, and ¢, the number
of random coincidences cgr can be written as follows (13):

where 7 is the resolving time of the coincidence circuit. Oy can be de-
termined experimentally by counting the source after “mismatching”
the two channels, e.g. by introducing in one channel some fixed delay
time which is 3> r. At a relatively small count difference cg == ¢g — cps
the presence of the activity in the sample becomes doubtful. Mathemat-
ically, the critical lavel has been defined as Ly = u,0(0) (see equation
11.34).The variance of a true coincidence count difference ¢g = e — ¢pr
= ¢35’ — cp i3 given by ¢?(cs) = o¥ec) + a¥{cy).

i’f;y
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If no activity is present ¢¢ = ¢p and ¢g = 0 + o(0), where

o{0) = ofca)\/2 (paired observations) or o{0) = ofcp’)
(well known background)

In the case of coincidence measurements, it must be bom? in mmd
that ¢z is not directly subjected to the statistical lawa of radioactivity,
a8 is the case for ¢,, ¢, and ¢3!

afe,) = -\/011 oty) = \/":; ofcs) = \/"8
Hence, it is not allowed to substitute o{cs) by fepr. Using the Ia'.wa
of error propagation (Table 11.3), o{czr) can be caleulated from equation

(11.56)
[olear)fen ]t = [olen)fe,)* + [o(cqlfeq]?

or
1 1 :
ohew) = o (-+-—) (11.57)
C1 Oy
Hence, the critical level or decision limit is given by:
1 1\v .
Lefe) = 1,0(0) = u,05/2 (c_ + vc—-) (paired observations)
1 3

+ (11.58)

1 1 . 1\¥* (well known random coincidence .
ole) = wiem oy + T:_, rate -+ natural background) (11.58a)
and the lower limit of detection: L 1w
Lp(e) =148 + 2Lele) = u} + 2uycar /2 (Z + P

(paired observations) (11.58)
1 + l)" * (well known random

coincidence rate +
natural background) {11.50a)

After introduction of the counting rates R, = ¢,/A¢ (first channel)
R, = c,4/Al {second channel), Rp = cp/[As = 21'616.]A3-' -a.nd Lo(R) =
Lc(c)/At, Lp(R) = Lp(c)/At (assuming long lived radioisotopes), the
above equations can be written as follows:

Le(R) = 2uyr f2[RBy(R, + Ry)At]* (11.60)

Ly(R) = 2uyr [R\Ro(B, + Ry)JMP (11.80a)

[} = yt it}
L) = v} +2u,c3:(ﬂ1 o
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and
Lp(R) = u3{At + 4u1'r\/2 [B R (R, + Rg/A]3 (11.61)

Li(R) = u¥jAl + dugr [RyRy(R, + R,)jAtJV (11.61a)

Equations (11.59a) and (11.61a) correspond to N¢ and € in ref. (24)
assuming ¥, = 3.

The limit of quantitative determination Lg{c) is found, starting
from equation (11.44) and substituting ¢2(0) by 2¢%.[1/{¢;) + (¢}
ko = 1/0.1 = 10.

Lole) = _’f;o_{l + [1 + ?.é‘i(c_ + _E_)]il:}
1 2

Ly(c) = 50 {1 [l + % 22:’ 6cq(cy + cz)]m} (11.62)

Similar equations can be caleulated for Liy(c), Lo{R) and Ly(R).

Some interesting conclusions can be drawn from the above equatlons
(24):

{a) Assuming a counting time of 900 s, & resolving time v = 10-% g,
a confidence level of 95%, (¥, = 1.845), channel retes B, = Ry = R
= 104 cps and paired observations, the limit of detection Lp(R) = 0.44
cps although Rpr = 27R R, = 200 cps! This means that an activity
of 0.44 cps can be detected even if the random rate is higher by several
orders of magnitude (200 cps). High channel rates R are often en.
countered in nondestructive activation analysis. The effect can be
~ explained by the entirely different relationships, defining the sta-
tistical variations of the quantities ¢z and cg, and is easily demon-
strated by introducing numerical values.

For the above example, one finda:

¢s = Lple) = 306 counts
epr = 180,000 counts; o(cz’) = (180,000) (2/0 x 10%)4? = 85 counts
cc =~ 180,396 + 85 counts.

Note that the standard deviation of cp and ec is ca. 0.05% only.
The difference 130,396 — 180,000 = 396 + ./(85% + 85% + 396) =
396 £ 122 counts is thus quite significant. The percentage standard
deviation is ca. 319, as expected (equation 11.41).

In this example it is assumed that the electronic circuit is working
perfectly. In the case of pulse height dependent jitter, for instance,

or

ey
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broadening of the resolving time ocours which might lead to a less .eal
situation.

(b) From the above equations it appears that at an established lsvel
of confidence (given u,), the lower limit of detection will improve if the

. “background” yate Ry = 27R, R, ia low and if the counting time A

is long (assuming long lived radioisotopes).

{(¢) In Figure 11.12 (24) the value of Lp(R) is plotted versus B(= R,
= R,), assuming a counting time At = 900 s, a resolving time r = 1 us
and a confidence lovel of 95% (u; =1 645) For low channel rates
(in the case of Figure 11.12, <10* ops), L(R) is constant, nl. u}/At,
i.e. the first term of equation (11.61a). Thus, if the sample size or the
neutron flux is increased Ly a factor of 10, the concentration limit is
improved by a factor of 10. For higher channel rates (> 10* cps), the
value of L(R} increases more rapidly than R since the slope of the

-
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Fig. 11.12. L{R) as a function of channel rates R, = Ry = E, allows to
choose optimal sampls activity, i.e. optitnal sample size sndfor optimal nsutron
dose (24).
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straight line >1, i.e. further increasing the sampie weight andfor the
neutron flux worsens the lower concentration limit. Moreover, the
detectors and the coincidence cireuit may be overloaded. Thus for
coincidence measurements there exists an optimal neutron flux (for
a given sample weight) or an optimal sample size (for a given neutron
flux). Optimalization is obtained (24) if dLy(R)/L;(R) = dR/R or

VIBLB(Ry + R} = uyf2r /5t (11.63)

Then, the lowest value of L{,(R) (well known random coincidence rate
+ optimum sample activity) is given by

Lp(R) = 3 ub/Af cps (At in seconds) (11.64)

From this equation it appears agsin that long counting times will
appreciably improve the lower limit of detection.

2. Application to Short Lived Radioisolopes and Long Lived
(Constant) Background (coincidence counting)

The same equations (11.58), (11.59) and (11.62) for Lg(c), Lplc)
and Lg(c) are valid, as for coincidence counting of long lived radio-
isotopes. It can be shown that there exists an optimum counting time,
given by At = 1.81 7'y, on condition that R’ = 2u,r/{R,By(R, +
R,)} is sufficiently high, e.g. >10. For smaller values of R’, the opti-
mum counting time Af>1.81 Ty;,, nl. ca. 2.2 for B’ = 1 and ca. 4 for
R’ = 0.1 (Figure 11.13 (24)). :

Assuming Al = 1.81 T'y,, Lcle), Lp(c) and Lg(c) can be caleulated
from equations (11.58), (11.59) and (11.62) by substituting ¢, = R,At
=181 R, Ty, and ¢, = R,At = 1.81 R, T,. The corresponding
counting rates Lo{R)g, Lp(R), and Lg(R), at time ¢ = O are then

Lo(R)g = Lele)1.03 Tyy4;  Lp(R)g = Lp(e}f1.03 T'yyy;
Lg(R)y = Lqlc)/1.03 T'yyy

a3 in section IV, B, 4 of this chapter.

Again, there exists an optimumn neutron flux andjor sample weight
which allows one to reach the Jowest concentration limit. Then, the
lowest L3(R), value is given by (24)

Ly(R)y = 3u2\[1 — exp (~AAY)] (11.65)

ooy

dde BLALIDLIVAL A% LJules dbal b datlat WAl il b ik ‘!“‘_vv-
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If both the sample activity and the counting vime Af are op. Ally
chosen, then {24):

D(R)o = 2.5 w3 Ty ops (T'y, in seconds) (11.68)

Optimal counting time A¢ and optimsl R'-value can be read from
Figure 11.13 for a given 7'/, (dashed line).

Ezample: (see Figure 11.13)

l
R 200VR (R, R;)

//

5 /&
5 V=
Y/ ot
e

\

Fig. 11.13. Optimal counting time for short lived coincidences and constant
background. The dashed line represents the points with optimal 4¢ and y
values (24). Ordinate: Tyy4(m); abscisaa: R'(s-2/%).
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If T4y = 5 m, the optimum counting time is ca. 14 m and the
optimum sample activity is reached for R’ =~ 0.3.

Assuming r = 10-% s, 4, = 1.645 and R, = R, = R, this means:
0.3 = 2 x 1.645 x 10-%/(2R%) or R = 1420 cps.

3. Application to Short Lived Radioisotopes and Short Lived
Background {coincidence counting)

Similar expressions can be derived if both the true coincidence rate
and the background (random coincidence rate) are short lived. They
ere, however, more complex and will not be derived here. Reference is
made to Schulze (24). The confidence level is assumed to be 99.865%,
(%, = 3).

It can be shown that distinction should be made between two cases:

(8) If Tyy(B)|T'y;4 > 5.6 there exists an optimum counting time,
which depends on the ratio T'/,(B')/Ty,. At/Ty, is approximately
3 to 5 (see Table 11.5). There also exists an optimum sample weight
(or neutron flux; which allows one to detect the lowest concentration
limit. Indeed, Ry = 6r./{R; (R, (Byq + Ry4)} (512 is also fune-
tion of T'yy(B')[T 4 (Table 11.5). R, , and R, , are the channel rates
at the beginning of the counting time.

TABLE 11.5
Optimum counting time and sample activity if both
true and random coincidence rates are short lived
for Tyyy (B Ty, > 5.6

T:ll (B'HT s A‘ITm B;‘\/Tua
»25 3 5.45
10 3.6 5.63
[ 4.9 5.85

Ezample:

Tys=1m, Tyy(B') =18 m, Tyy(B)Tys = 16 > 5.6. Accord.
ing to Table 11.5, At/T'y, = 3.2 or At ¢ 3.2 m, whereas Rj /Ty, =
5.55, thus Rj = 5.55/,/60 5-1/% = 0.72 s~3. Assuming B, o = Ry, =
Ry and 7 =1 ps: 6 x 10-%/(2R3) = 0.72 or R, ~ 1930 cps. This
allows one to choose the optimum sample activity at the beginning of
the counting.

- i - R a e o amaa— = - =

(b) X Ty;,(B"){Ty4 < 5.6 it is also possible to caloulate the opuimum
sample weight (andfor neutron flux) for a given Ai, as appears from
Table 11.6. The counting time A¢ must however be chosen arbitrarily,
as there is no optimum value. A counting time A = 2.5 7'/, allows
one to detect more than 809 of the total number of true coincidences.

Ezample: .

Tys = 1m, Tyy(B') = 3 m, then Tyy(B'){Tyy = 3 < 5.6. Choos-
ing At = 2.5 Tyy = 2.6 m = 150 3, then AljTy;y(B’) = 2.5/3 = 0.83
and R} fAt = R}y f150 = 13.5; Ry = L1e~V/% = 6 x 10~ \/{R, o Ry,
(Ryo + Ryg)} (f 7 = 1 ps). Assuming R, o = R,q == R,, one finds
3 R} = 33 x10° or By = 2500 opa.

TABLE 11.6
Optimum sample activity as & function of counting
time, if both time and random coincidence rates are short
lived for Ty (B)|Tip < 5.8

AT (B) o0 1 2 3 4 &
R/ 8§ 14 19 245 %. 33

V. Linear Equations
{A) GENERAL CONBIDERATIONS

In analytical methods, one often needs to determine the parameters
@ and b of a linear equation

Y=0+bz (1L.67)

with associated statistical errors i uo{a) and % ue(b). The least squares
method for fitting & straight line to a series of experimental points is
well known, on condition that the experimental errors in z are small
compared with those in y and that the z-values cover an adequate
range. The former requirement is met in the examples given below,
nl (i) study of a decay curve, z == {, the times at which the activities
are observed; (ii) addition method of analysis, x = weights added to
the sample, which are only affected by small weighing and/or diluting
errors. The y quantities however have all the procedure steps as a
source of variation (case (ii)) or are at least affected by the statistical
character of the activity counting (mostly >19%, case (i)).
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For a set of #n measuremonts, the best estimates of b and a are

Z IV( 2 IVt:B(yf -_ z Wm E IV:_T/;

slope: b = 5

_ z Wixiye — &4 Z IV,

= S Wa? =5 S, (11.68)
intercept with ordinate:
Wiz Y 1 -y W
LWy Wy DZI @y Wage - (11.60)
where
- Z W:J; Z Wiz . R
Y= Z W {cf. equation 11.2)
and
D= E W, z Waf - (E Wix)? {11.70)

Wy is the “atatistical weight", which is inversely proportional to the
variance of the corresponding measurement < (definition):

= Afo? {1L.71)

where 4 is & constant, arbitrarily chosen to make the values of the
weight convenient for computation, e.g. 4 = 1, It can be shown that
4 cancels out and does not influence the results. For data that are
only subjected to counting statistics, IV is determined by the number of
counts. For other data, weights are determined from the scatter of the
data (see section V, C).

The above formulas make the sim of the squares of the residuals
E Z} =Y Wi (¥;— y)? a minimum. Y;is the value calculated for a
given z; using the best estimates of b and a (equations 11.68) and
(11.69)); y is the corresponding experimental value of y at z = zy,

Standard deviations can be calculated from the following formulas:

a¥b) = A Y, Wi/D (11.72)
oa) = A WztD (11.73)

Confidence limits are + uo{b) and + uc{a) in agreement with previous
definitions (see Table 11.1).
Two practical examples will be given below.

———
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(B} Decay Cunve (single component)
1. Buckground Negligible

The equation R; = R, exp {—A!) must be made linear by the
logarithmical form: In R; = ln R, ~ M. In terms of equation (11.67)
this becomes y =In Ry, 2=, a=In R,and b = —A .

If at & time #, ¢; counts are recorded during & counting time Af;,
the counting rate is By = ¢fAl at the time R 0.5 A% (sssuming
Aty & T'yy4, see sociion II, A) and the tranaform.is y; = In Z;. Accord-
ing to equation (11.16) one can write:

HR)) = oif0 = ReAljAl} = RyfAl;

An estimate of o®(y) is possible usiug the laws of_error propa.ga.txon
{see Table 11.3, item 8).

oy = 0’(31)13? e 1RAL = 1fes (11-74)
From equation (11.71) it follows
Wi = Ajo¥(Ry) = Ag (11.75)

The simplest method of determining a- half-life with caloulable .
statistical precision {=saccuracy if the sample is radiochemically pure
so that the exponential decay of a single radicactive species is the only
factor causing the change of the counting rate) is to measure the time
necessary to obtain a preset number of counts during each of the n
observations (“‘preset count” mode of counting). Then all ¢; = ¢ =
constant and all observations have the same weight. If this weight is
arbitrarily set = 1, then 4 = 1/c (from equations (11.71) and (11.75))
and ¥ Wi = n. Equations (11.68), (11.60) and (11.70) are then reduced
to:

b= —-A=@nY 4R —Y4Y InR)D (11.76)
sa=lR=38YnR-Y4Y slnRY)D (11.77)
D=a)if -G up (11.78)

The variances are respectively:
) o¥(b) = o¥{A) = nfeD (11.79)
o¥a) = o¥{ln By) = Y }feD’ - (11.80)
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The standard deviation of the half-life can be calculated using items
3 and 4 in Table 11.3 (r = —1 and @ = 0.603):

Ty = 0.603fA
Thus :

°(Tll:) ~ i")
Tlh A

It must be borne in mind - particularly if the “preset count”
method is used — that Ry represents the count rate at the time 4 + 0.5
A (if A4 < Ty,) and not ab the starting time. Sinco increasing
periods of counting may be necessary as the counting rate falls, this
method is not recommended for the determination of short half:lives,
e.g. <15 m,

In the general case when ¢,, ¢;, ¢;.. . are the numbers of counts
observed at times ¢,, ¢,, ¢, ... taken over counting periods Af,, At,,
Af,. .. the general formulas ({11.68), (11.69), (11.70)) must be used,
with ¢ = ¢; (thus 4 = 1, as appears from squation (11.71)):

b= == (Z € chh In Ry — eq‘zc; In R)/D (11.82)
a=hhR=FafyelnR -y cay Yealla R)D  (11.83)
D=Yay aff — (3 cty)? . (11.84)

With Wy =¢ and 4 = 1, the general formulas for the variances
become:

o*B) = o*N) = YeifD = Y efiT o T cuf = (T ]
= [} atf — (% a3, et {11.85)
o¥(a) = oYl R)) = T cf/D (11.86)

A representative example for the general case is described by Cook
and Duncan (39). The method described above is obviously much
more tedious than the graphical determination of A and R, (sec
Chapter 5), although it is more difficult to assess the statistical errors
in the latter case. In Chapters 5 and 9, reference is made to computer
programs for half.life determinations.

A theoretical analysis of the evaluation of short half-lives {e.g. on
multiscaler) by means of the graphical method (measurement of count-
ing rate in & sufficiently great number of short time intervals and plott-
ing on a semilog scale) has been described by Sterlinski (40), The best

or a(Tyy) = 0.693 o(A)/A2 (11.81)

4l DIAVIDAINGAL AINVL RS K Db A LAV VE LD ULAS

s @

i . . }
accuracy and the smallest systematic crror is obtained if the meas.. .-

ments are programmed as follows:

{a) Choice of total measurement time:

If the total measurement time is too ahort, all possible information
is not utilized. On the other hand, if it is too long, the counting rate
becomes negligible compared to the background rate. Obviously there
exists an optimum measuring time (expressed in terms of 7'y;,) which
depends mainly on the ratio background to signal Rp/Rg at the be-
ginning of the measurement as appears from Figure 11.14 (40).

[
|

B

B

[,
=
<

3 ~

[ ——
2 .
0 05 1 5 2 25

RBI Rs

Fig. 11.14. The optimum measurement time (axpressed in terms of T',)
a8 & function of the counting rate ratio of the background to that of the effect
R IR, at the beginning of the measurement (40).

(b) Choice of number of intervals: :

At a given total measurement time, o{T),)/T,;4 depends on the
number of intervals n. If # is too small, cptimum acouracy will not
be obtained. If » is too large, the number of counts recorded per
interval will be too Jow and often the count difference (¢ = ¢¢ — ¢5)
will become negative at relatively low values of ¢, see Figure 11.15 (40).

According to Sterlifiski (40) the number of intervals should be 10 to
15. To avoid loss of information about the value of 7'y, ~ particularly
in the case of low activities — there should be no break between the
successive short time intervals. The background is measured during a
sufficiently long time.
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Fig.11.15. Influence of the number of time intervals for & given total measure.-
ment time, on the univocality of the graphical estimate of 7'y, using V. All
the plots were made using the same experimental data, Casa A: n = 220; case B:
n = 11; case C; n = 5. The arrow indicates that the count difference for that
interval is negative.
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2. Background not Negligible, but Constant

So far the assumption has been made that the background at each
point is negligible. If it is not, the analyais is the same, but weights are
changed. If the background rate is constant, the background measure-
ments taken at various timea can be pooled to determine its average
value. In this way the error in background is negligible, since it can
be counted for a sufficiently long total time.

The net counting rate is given by R; = ¢;fAl; — Rz whereas
o} Ry) = c(fAt} (see equation (11.16)), as the error of Rp is negligible.
Hence: L7

gy 9N R o/ AL} %
o (yl) = 7 = 3 =
RE (ee — RpAL)YAE  (of — RpAy)?

(cf. equation (11.74)). Thus, setting 4 = 1, equation (11.71) becomes: -
Wi = (& — Bahl)ey (11.87)

instead of W = ¢, and equations (11.82) to (11.86) should be modified
accordingly.

3. Changing Background . .

Jaffey (1) discusses the case in which the background changes and
needs evaluation at each counting interval. This may occur when a

-Nal{Tl} detector is activated in the nsighborhood of a reactor or

accelerator. If sample plus background are counted for a period Al
giving ¢; counts, and the background alone for a period Alg giving cpy
counts, then the net counting rate is:

Ry = cifAly — cpifAip;
and
a¥(Rq) = c(f(Ak)® + cpif(Alai)?

since in this case the error in background is not negligible, Hence:

()
MR _ cillM)? + ef(tm)® T "\ Aty
R (oAl — cpifAtp)* [c (Ni )]’
{ — Cpt E—

Bi

o¥y) =

Setting Ay = AlfMpy and 4 = 1, the statistical weight for a measure.
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ment can be calculated from the above equation and equation (11.71)

(eq = epidg)?
¢ + emdy

Thus equations (11.82) to (11.86) can also be used when the background
is not negligible, on condition that ¢ is replaced by (c; — RpAt)¥fes
(constant background, accurately known) or by (¢ — e )3 (e +
¢zi8) respectively (changing background),

W= (11.88)

(C) TeE ApDITION METHOD OF ANALYSIS

The procedure of the addition method in activation analysis is
described in Chapter 7, section II, E.

If increasing quantities w; of the element to be determined, are
added to the sample, increasing activities will be induced during
activation resulting in increasing measured count rates R;. The function
is linear and has the form ¥ = a + bz,

Assuming that the experimental error in w is much smaller than
that in R, equations (11.68) to (11.70) can be used to calculate the
most probable values of a and b, The statistical weights are defined by
Wi = Ao} (equation (11.71)). According to equation (11. 7)

o} = of (sample) + o} (anal)
= of (sample) + of (irrad) + of (chem) + of (count)

In many cases, the analytical work is much better than the sampling,
thus o} ~ of (sample), i.e. the overall reproducibiiity o ia determined
by variations in the sample composition. But even when the repro-
ducibility of the samples is a good deal better thanthatof the analytical
work, i.e.

of % of (irrad) + of (chem) 4 of {count)

one observes that the overall precision o; is not determined by a
(count) alone {as was the case for the decuy curve, section V, B), but
depends on other parameters too, such as variations in irradiation
conditions, variations ip chemical work, variations in counting geometry
etc. These parameters being subject to approximately the same
variations for all of the samples, it is allowed to give the same statistical
weight to all measurements (all Wy = 1),This is certainly true,if all the
samples are counted so as to obtain approximately the same total

1'\: Ahe DhALAIA LA Ait bbb VA SRV AN WE AR AaD W da s D vP-. 1?
number of counts. This principle can thus be maintained even if tho
measured counting rates are low as compared to the background
rate. Moreover, the added weights w; are so chosen that they do not
exceed ca. 2-3 times the weight w, originally present. Hence equations
(11.68) to (11.70) will be simplified:

b= (n) whRy— Y wy Rj)/D = specifioc rate (per

unit of weight) (11.89)
a=(FufY B — Y w Y wR)/D = intercept with ordinate
(rate of the elament in
“the sample without
addition) (11.90)
D =nY uf — (3w (11.91)

where % is the number of experimental points.
The best estimate of the weight of the element in the original
sample is given by

w, = a/b (in units of weight) (11.92)

The standard deviations of g and b can be calculated by means of
equations (11.72) and (11.73) setting Wy = 1.
According to eqguation (11.71) one can write:

o¥(b) = otn/D’ (11.93)

o¥a) = otw}/D’ (11.94)

The quantity o* is not known g priors, as was the case for the decay
curve, but a good estimate is possible from the residuals Z; between

the experimental Ry.values, (RBi),, and the R;-values, which are
calculated from the best estimates of @ and b, (Ry)ey,:

Zi = [(Bidozp = (Bi)easo] (11.95)
It can be shown that

ot =) Zin - 2) (11.98)

where o i8 a reliable estimate of the variance of an observation with &
statistical weight W = 1 and where n is the number of experiments.
The term (r — 2) instead of the more familiar (n — 1) (see equation
(11.3)) arises from the fact that at least two points are required to
characterize a straight line.
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Equation (+1.96) is tedious to handle and is therefore replaced by an
equivalent one;

Y Zi=(n— 20t = LRI = (L Rn - b2D'n (12.97)
This equation allows the calculation of o2, hence that of e*(a) and
o*(b) without calculating the individual differences Z;. When using
equation (11.97), a sufficient number of decimals must be calculated,
since in many cases (see Table 11.7) SR 2 (Y RYn + b2D’fn.
Even if very small errors of computation are made, they can strongly
influence the resulting value of o.

Starting {rom equations (11.92), (11.93) and (11.04) it is possible to
estimate the standard deviation o(w,) on the original content wy of
the element in the sample, using item 2 in Table 11.3.

otwy) o%a)  a¥(b)

u? ~ TR bt
It can be shown that the variance o%(b) decreases if a large concentra-
tion interval is investigated, i.e. [w; ~ B| > 0, where @ represents the
arithmetic mean of the w-values. On the other hand, the more wy % 3,
the larger the error of R;. For that reason extrapolation to w =0
(£ = a) should be carried out only if a small concentration range is
used.

It can be shown that the error of ¢ and w, is a minimum if the
weights w; added do not exveed ca. 2-3 times the weight w, originally
present (41). It should be remembered that equation (11.98) only
applies if each of the terms o(a)/a, o(b)/b and o{ivg){w, is amall (50.20)
and if a and b are statistically independent of one another. The former
condition is normally fuifilled, the latter however is not, as cov (g, b)
# 0 (44). For that reason equation (11.98) is only an approximation,
and a term 2p{o{a)/a){o(b)/b] should be added, where pis the correlation
coeflicient.

If, together with the addition series, s “foreign” samples (i.e.
different from the sample, containing w, of the clement) are irradiated,
giving an average induced activity R’, the content 1’ of the element in
these samples can be read from the calibration curve or caleulated from

W = (R - a)b + w, (11.99)

A good estimate of the expected standard deviation o(w') is found by
classical statistical methods (42):

(11.98)

o{w’) = of{w)t

(11.100)
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where the quantity ¢ (from i-test) has (n — 2) degrees of freedom
(D.F.). The value of ¢ can be found in statistical tables. At the prob.
ability level P=0.68, or P’'=0.32, t~~1 assuming D.F, 10.
o{w} can be caleulated from:
o¥w) = o¥{n + r)fnr + (R’ — R)m/b2D)/b2
where r = number of determinations of w’

R = (¥ R)n

The error on R’ is a minimum if R’ = B and increases for B’ 2 K.
As an illustration, & practical exampls will be described.

© (11.101)

Example: Delermination of traces of osmium in ruthenium. (Spectro-
graphically pure and commercial quality) ‘

Procedure, irradiation conditions, chemical separations, counting
equipment: sea ref. (43). ~

Twelve 10 mg samples of spectrographically pure ruthenium {added
amounts of osmium: 0; 0.10; 0.25; 0.50; 0.80 and 1.00 ug, see Table
11.7) were irradiated together with three 10 mg samples of commercial

TABLE 1L.7 .
Calculations for the determination of camium in spectrographically pure
ruthenium, using an addition method of analysis

Sample R = net %108 w=pug Os
number activity (of6m) added Rw wh Rs
1 4,530 0 0 o 20,520,900
2 4,872 0 0 o 23,736,384
3 — 0.1 — — —{»)
4 8,411 0.1 641 o0.01 41,100,921
5 8,887 . 0.25 2,167  0.0828 75,116,889
6 9,710 0.25 2428  0.0628 94,284,100
1 12,384 0.50 6102 o025 153,383,456
8 13,361 0.50 4,605 028 179,318,881
8 13,507 0.50 6,754 025 182,439,049
10 17,630 0.80 14,104  0.64 310,816,900
11 17,350 0.80 13,844  0.64 290,483,028
12 18,757 1.00 18,7157  1.00 351,825,040
comm, Ru 2,438 —_ —_— —_ —_—
" 2,520 - il _— —_
" 2,707 —_ —_ —_

{a} Bample 3 discarded, separated osmium partly lost.
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ruthenium. The '%10s activity was counted after chemical separation,
using & Nal(Tl} detector. The calculations are summarized in Table
117,

SUMMATIONS
n=11 Z Rw = 71,5681 2 R? = 1,731,985,5654
YR = 127,164 Yw =470 Y w? = 3.165

COEFFICIENTS @ and b
D=nyw— (3 w? = 121725
b=(n) Rw—3Y wy RYD = 14,909 c/5 mfugOs
a=FwTR-FwY Ru)D =510 csm

CALCULATED OSMIUM CONTENT

wy = afb = 0.348 pg Os (in 10 mg Ru), i.e. 34.8 ppm.

STANDARD DEVIATIONS

(Equation 11.97) = 1,731,985,55¢ — 1,470,0062,081 —~ 257,135,557
= 4,787,916. Hence o? = ) Z*/(n — 2) = 531,901

o*b) = o?nfD’ = 459,874 thus o(b} = 678 or 4.54%,
o¥a) = o Y w? D’ = 132,318 thus ofa} = 364 or 7.01%,
o¥(w,) = o*(afb) = 0.000841 thus o(w,) = 0.029 ug or 8.4%

Taking the covariance term into account, one finds o{1,) 22119,

COMMERCIAL RUTHEXIUM

(Equation 11.101) R’ = 2,435; 2,520; 2,707, average value 2554
¢f5 m.

Hence w' = 16.8 ppm.

Estimated standard deviation r = 3, n = 11, 9 degrees of freedom,
i 1:o(w') ~ 0.018 ug or 1.8 ppm.

(Note: the commercial sample contained less osmium than the
spectrographically pure sample.)

15.

16.
17.
18.
19.
20,
2],
22.
23.
24,

28.

27.

28,

29,
30,

31.

32,
33.
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TABLE 12.2 (condinued)

Element
determined Matrix

References

Rare earths Rare earths
Metala 4 alloys
Minerals 4
meteorites
Organio
Air
Molten salta
Solutions
Matrix not
defined

B 102-3 100-K 142-R 42-W 80

A 183

A 156-C 68-C 105-D 79-F 90-H 42-H 43-H 44~
L 124-L 143-8 49-8 52-8 53

B 186-K 128 20-S 94-8 96-8 08

G 62

B 178

T 24

B 133-B 188-C 104-L 106-N 27-R 106-Y 21

B N 3 o ‘?

APPENDIX 1
THERMAL NEUTRON CROSS SECTIONS

The experimental data for the tables of this appendix are based on
the compilation “Neutron Cross Sections” by D. J. Hughes and R. B.
Schwartz (BNL-325, 2nd ed. 1958) and by D. J. Hughes, B. A.
Magurno and M. K. Brussel (BNL-325, Supplement 1, 1960; US.
Government Printing Office, Washington D.C.); and on the “Chart of
the Nuclides” by N. E. Holden and F. W. Walker {General Electrio,
Schenectady, N. Y., (1988). '

In Table 1, the total cross section (ar), the capture or absorption
cross section (os, o) and the average scattering cross section {5,)’
for thermal neutrons are given for the elementa. It should be noted that
the absorption cross section listed is the 2.2 x 10° om s-1 (0.025 eV)
value, v,y (v;), Although the value consistently used in more acourate
caloulations is (\/m)/2 or 1/L.128 times this value, if the neutron
temperature is 203.6°C. For & neutron temperature T, the value

i £203.6\1/3
Oana(F) = Tna(t) 1/2—(—1'7")

must be used. More details are given in Chapter 10, section II, B, 4b.
In Table 2, the isotopic neutron activation cross sections for thermal
neutrons are given (in barn). As already mentioned in Chapter 3,
section V, ©, 1, the reaction rate can be calculated from the knowledge
of the cross section o, at a particular velocity v, on condition that
o oc 1/v. The velocity v, is taken as 2.2 x 10% em s*, the most prob-
able velocity of s Maxwellian distribution at 20°C (corresponding
energy 0.025 6V). The cross sections in the table are given for this
velocity, except in some cases where they refer to a reactor neutron
spectrum (values with asterisk). The activation cross seotions are for
(n, y) reactions, except when explicitly stated for (n, p) or (n, a). For

heavy nudlei (Z > 88) the cross section for fission is also included.
For practical use in activation analysis (induced activity calculations,
see equation (10.1)), the per cent abundance of the target isotope in the
natural element and the half-life of the activity produced are also given.
_ (Symbols: a = year, d = day; h = hour, min = minute, s = second.)
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