PITTING: Extreme localized attack, may perforate metal sheet/plate . . . etc.

original surface

solution d

"Pitting factor" = ---

//// metal ///

(d = average penetration from weight loss;

p = deepest penetration)

"Undercutting

solution

pit opening usually < 1 mm.

metal!

solution

Metal ////

Pits may overlap to give the appearance of rough, general "wastage".

Pitting is an insidious and destructive form of corrosion:

- difficult to detect (pits may be small on surface, but extensive below surface from undercutting; may be covered with deposit);
- can cause equipment to fail (by perforation) with very little weight loss;
- difficult to measure as pit depth and distribution vary widely under (nominally) identical conditions;
- "incubation" period may be months or year.

Pitting of 18-8 stainless stel by acid-chloride solution.

Pitting of stainless steel condenser tube.

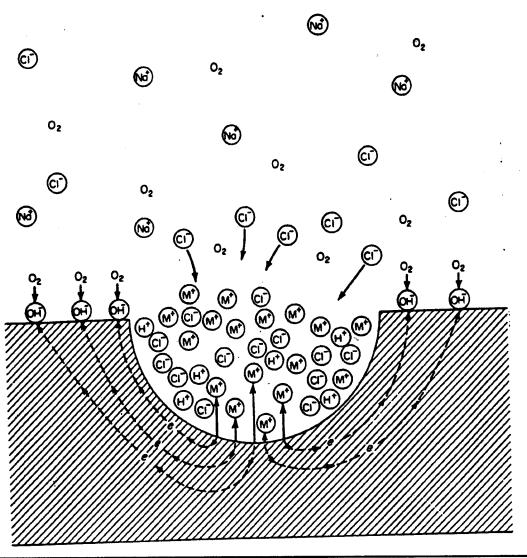
Pits usually occur an upward-facing horizontal surfaces, and grow downwards:

11/1

pit growth

less frequently on vertical surfaces;

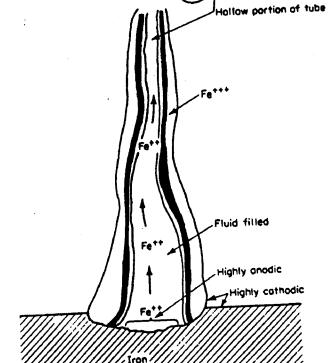
pit growth


rarely on downward-facing surfaces;

pit growth

Gravity is involved.

<u>Mechanism</u>: Has some features in common with CREVICE CORROSION.... consider metal M being pitted by aerated NaCl solution...


Autocatalytic processes occurring in a corrosion pit.

Chapter 6: Pitting page 6 - 5

Remember:

- inside pit anodic, rapid dissolution;
- outside pit cathodic, O₂ reduction;
- most M⁺ will hydrolyse, form H⁺;
- positive charges attract Cl⁻ions;
- H⁺ and Cl⁻ accelerate metal dissolution;
- high ionic concentrations in pit make O₂ solubility very low;
- high density of solution within pits means pits are more stable when growing downwards.

At high pH (i.e., high OH⁻ concentration), precipitation of ion hydroxides and oxidation to Fe³⁺ oxides can lead to corrosion product "caps" or "tubes" around pits on steels.

Cross section of tube

Rings of various,

states of the iron

Corrosion tube growth mechanism.

Metals Susceptible to Pitting

Most often, passivating metals, especially stainless steels, often in passivating environments (e.g., containing oxygen) but with agents such as Cl⁻that attack the passive oxide film.

SENSITIZED SS particularly vulnerable: (its heat treatment has depleted the grain boundaries of Cr by precipitating chromium carbide).

COLD WORKING increases pitting attack, perhaps dislocation pattern is important.

DISCUSS

ETCHED or GROUND surfaces more likely to pit than polished surfaces.

Stainless Steel more susceptible than Carbon Steel (though CS will have more rapid GENERAL CORROSION).

Chapter 6: Pitting page 6 - 8

Some alloys developed especially to resist pitting.

Effects of alloying on pitting resistance of stainless steel alloys

Element	Effect on pitting resistance
Chromium	Increases
Nickel	Increases
Molybdenum	Increases
Silicon	Decreases; increases when present with molybdenum
Titanium and columbium	Decreases resistance in FeCl₃ other mediums no effect
Sulfur and selenium	Decreases
Carbon	Decreases, especially in sensitized condition
Nitrogen	Increases

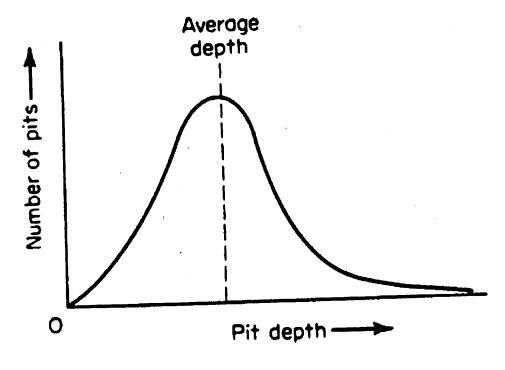
Source: N. D. Greene and M. G. Fontana, Corrosion 15:25t (1959).

Chapter 6: Pitting page 6 - 9

Pitting Environments

Usually, solutions containing chloride or chlorine-containing ions (e.g., hypochlorites [bleaches]) have strong pitting tendencies.

Bromides are also aggressive, but fluorides and iodides are not.

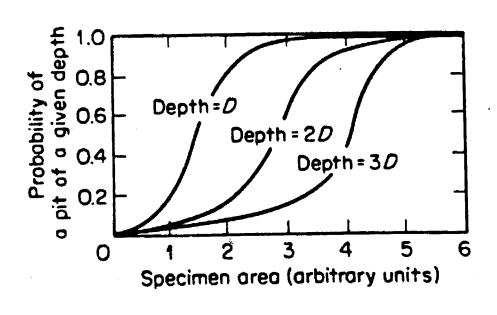

Cupric, ferric and mercuric ions promote pitting . . . easily reduced cathodically and do not require dissolved O₂; CuCl₂ and FeCl₃ are <u>extremely</u> aggressive (latter used as a test solution).

Thiosulphate ion (S₂O₃²-) may also promote pitting.

Evaluating Pitting Attack

Weight loss of test specimens no good (. . . why ?).

Measurement of pit depth complicated because of statistical variations.



Relationship between pit depth and the number of pits appearing on a corroded surface.

Average pit depth of little use, since it is the deepest pit that causes failure.

MAXIMUM PIT DEPTH can be a useful way of expressing pitting corrosion, and for comparing pitting resistance of standard test samples.

HOWEVER, statistical nature of pitting means that sample size is important.

Pit depth as a function of exposed area.

Should never predict lifetime of plant component tests on small samples.

Prevention of Pitting

- Reduce aggressiveness of environment (e.g., [CI], T, acidity, oxidizing agents).
- Use resistant materials:

Increasing
Type 304 ss
Type 316 ss
Resistance
Hastelloy F, Nionel, Durimet 20
Hastelloy C, Chlorinet 3
Titanium

- Line with resistant materials.
- Modify design to eliminate stagnant areas, avoid sludge and deposit buildup, have proper drainage.
- Add inhibitor AFTER CAREFUL REVIEW: if attack not stopped completely might make situation worse.