Weld Quality

Lecture Scope

- Quality: definition
- Selection of weld quality level and acceptance standards
- Role of inspection and the inspector
- Inspection plan
- Non-destructive examination and other test methods

Quality: Definition

- In engineering terms, an item has the right quality if it performs satisfactorily through-its intended life
- Quality is "fitness for purpose"

 			
	 	<u>.</u>	

Specifying Weld Quality Standards

- Selection of a quality level involves balancing design, manufacturing and inspection practices to achieve fitness-for-service at the lowest total cost.
- Specifying needlessly high quality levels adds cost to a structure with no benefit
- Conversely, inadequate quality leads to structural failure, increased maintenance costs, foregone revenues, and loss of life or property.

Specifying Weld Quality Standards

- Selection of a quality level involves balancing design, manufacturing and inspection practices to achieve fitness-for-service at the lowest total cost.
- Specifying needlessly high quality levels adds cost to a structure with no benefit
- Conversely, inadequate quality leads to structural failure, increased maintenance costs, foregone revenues, and loss of life or property.

					
					
					-
			-		
					
					
					
					
		741			

Specifying Weld Quality Standards

- Selection of a quality level involves balancing design, manufacturing and inspection practices to achieve filness-for-service at the lowest total cost.
- Specifying needlessly high quality levels adds cost to a structure with no benefit
- Conversely, inadequate quality leads to structural failure, increased maintenance costs, foregone revenues, and loss of life or property.

	1 1 	
 	 ····	
	4-11-	

An appropriate weld quality standard takes account of the following factors:

- 1. Service conditions
- 2. Material and weld properties
- 3. Risk of defects
- 4. Inspection adequacy
- 5. Consequences of failure

	 		·
72	 		

1. Service conditions

- Loads:
 - ► magnitude, constant or cyclic, static or dynamic. Resultant stress levels, margins against yielding, fatigue and fracture
- Working temperatures
 - Low temperatures may pose a risk of brittle fracture. High temperature can lead to creep and other metallurgical effects
- Ambient environment:
 - corrosion and oxidation, stress corrosion cracking, wear, erosion

- 1. Service conditions
- 2. Material and weld properties
 - Effects of welding on strength, toughness, fatigue and corrosion resistance

- 1. Service conditions
- 2: Material and weld properties
- 3. Risk of defects
 - Welds may contain various defects that reduce their strength and resistance to failure

- 1. Service conditions
- 2. Material and weld properties
- 3. Risk of defects
- 4. Inspection adequacy
 - Inspection may be less than 100% efficient, due to:
 - process inefficiency
 - sampling error
 - human failure
 - Consequently, welds after inspection are not necessarily free from all defects

				·									
											_		
 .	·				•						<u>:</u>	····	
- 	····			٠									
										-			
						· .			·				
				-		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
			··-				······································						
										- 			
	· · · · · · · · · · · · · · · · · · ·				·····			-		<u>-</u>			
									 -		· ·		
		-								<u>_</u>			

- 1. Service conditions
- 2. Material and weld properties
- 3. Risk of defects
- 4. Inspection adequacy
- 5. Consequences of failure
 - The consequences of structural failure tend to increase with:
 - size
 - stored energy (pressure vessels, towers)
 - ► toxic contents (vessels, tanks, piping)
 - proximity to people
 - redundancy (duplication of critical components may reduce the consequences of failure)

Inspection

- The only thing that puts quality into manufactured products is making them right.
- Inspection is a tool for confirming that the desired quality has been met.
- Inspection during manufacture according to a logical inspection plan enables quality to be monitored before defects are produced.

·		
·		
		_

Inspection Plans

- While inspection of simple items can be left to the discretion of individual inspectors, complex structures are usually inspected according to a defined inspection plan
- Inspection plans should be designed to give assurance that the specified quality levels are met
- Plans should specify:
 - Items to be inspected
 - At what stage in manufacture (inspection hold points)
 - Inspection methods and procedures
 - Acceptance criteria

Inspection Plans

- In some cases 100% inspection of all production is required
- In others, sampling procedures are applied
 - Sampling may be partial
 - a specified proportion is inspected
 - progressive examination may be employed in which the frequency of sampling is increased if rejections exceed a certain percentage
 - Sampling may be statistically-based
 - statistical sampling plans use probability theory to make inferences about production quality

The second secon		
	 	· · · · · · · · · · · · · · · · · · ·

Responsibility for Quality

- The contracting company is responsible for the quality of its work
- The contractor normally employs its own quality control staff
- The purchaser or his agent "the Engineer" may hire an inspector to verify the contractor's work
- Known as "third-party" inspection
 e.g. ASME Code requirements for third party inspection

∍ 13

Duties of the Welding Inspector

The welding inspector's duties include:

- Verification of welding procedure and operator qualifications
- Surveillance of manufacturing examination and test activities
- Inspection prior to, during, and after welding
- Handling and disposition of deviations from requirements

····				
, , , , , , , , , , , , , , , , , , ,				
				-1
				
	777			
			· · · · · · · · · · · · · · · · · · ·	
				

Inspector Qualifications

- Welding inspectors must be familiar with the product, engineering drawing and specification, codes and standards, and manufacturing and inspection procedures.
- Inspectors rnay be qualified to standards such as:
 - Canadian Standard W178 "Qualification Code for Welding Inspection Organisations"
 - American Welding Society Welding Inspector Qualification and Certification Program

Non Destructive Examination

- Non destructive examination techniques allow examination of the quality of material without altering its usefulness
- NDE methods generally consist of the following elements
 - 1. Probing energy or medium
 - 2. A component to be examined
 - 3. A detection device for measuring effects on the energy
 - 4. A means for display or recording the results

 		· .			
		· · · · · · · · · · · · · · · · · · ·			
			· · · · · ·		
	- 18.0				
		,			
				· · · · · · · · · · · · · · · · · · ·	-
 · —————	······································				
 	 -	<u></u>	**		

Common NDE Methods

- Codes and standards for welded structures commonly specify one or more of the following NDE methods:
 - Visual examınation (VT)
 - Liquid Penetrant (PT)
 - Magnetic Particle (MT)
 - Radiography (RT)
 - Ultrasonic examination (UT)

Visual

- Visual examination is the most commonly applied method of inspection
- It is simple and inexpensive, does not normally require special equipment and gives important information about conformity with specifications, eg.
 - joint preparation and alignment
 - weld size and appearance
 - dimensional accuracy
 - absence of visible defects
- Visual inspection is limited to conditions on the surface conditions

						· · · · · · · · · · · · · · · · · · ·						
	 					·						
	 											
•												
	 				·	·						
								-				
	 					·	·					
	 	 										
	 										 .	
										•		
	 		······································	·							·	
	 		<u></u>									
							-					

- Visual
- Penetrant inspection
 - Penetrant inspection uses a dye or fluorescent penetrant to make surface flaws readily visible
 - equipment and materials can be simple and portable
 - limited to surface-breaking flaws

- Visual
- Penetrant inspection
- Magnetic Particle Inspection
 - Uses clisturbances in the magnetic field in a magnetized steel component to indicate the presence or surface or near-surface flaws
 - Equipment and materials are simple and portable
 - Limited to surface or near-surface flaws on ferromagnetic materials (steel)

	 	

- Visual
- Penetrant inspection
- Magnetic Particle Inspection
- Radiography
 - absorption of radiation from gamma or x-ray sources indicates weld defects with significant height parallel to the beam direction
 - X-ray equipment is costly and non-portable; gamma ray sources can be used in-situ
 - Principal limitations are safety hazards from radiation and lack of sensitivity to planar defects oriented normal to radiation beam

- Visual
- Penetrant inspection
- Magnetic Particle Inspection
- Radiography
- Ultrasonic examination
 - Echo and diffraction of high frequency sound pulses indicates the flaws or non-uniformities within the material
 - Equipment and probes are complex but portable
 - Limitations: requires skilled operator, no record of results, may be prone to false echoes and indications

Other Test methods

■ Proof Testing

- Of pressure vessels, often takes the form of a hydrostatic or pneumatic pressure test above the design pressure
- Of other structures may include test loading—e.g. by placing sandbags or scrap iron—to verify the capacity of the structure

Leak Testing

- Of closed vessels or pipes
 - sensitivity may be improved by addition of tracer gas e.g. helium

Destructive tests

- removal of specimens of material for testing or examination
- testing of sample products

 _		
	 <u> </u>	
	 _	
		<u></u>