
Welding Qualification & Certification

.

Lecture Scope

- Need for welding qualification
- Codes & standards requirements
 - Welding procedure specifications
 - Welding procedure qualification
 - Welding operator qualification
- Company certification

Codes & Standards

- Application codes & standards that specify qualification requirements for welding include:
 - ASME Boiler and Pressure Vessel Code
 - AWS D1.1 Structural Welding Code
 - ANSI B31 Power Piping Code

- API 1104 Standard for Welding Pipelines and Related Facilities
- CSA W59 Standard for Welded Steel Construction
- Standards for weld qualification
 - AWS B2.1 Welding Procedure and Performance Qualification

- A common approach to qualify welding procedures is by preparation and testing of standard test pieces. The qualification tests need not be repeated unless the welding procedure specification is changed.
- Some pressure vessel standards require test plates to be welded at the same time as the vessel seams and subsequently tested.
- Other standards accept certain welding procedures as "prequalified"

Welding Procedure Specification

- Standards normally require the contractor to prepare and qualify Welding Procedure Specifications (WPS)
- A WPS should define the welding variables in sufficient detail to ensure that the required quality is met
- Standards differ with respect to the generality or specificity of WPS
 - Some standards are very specific in defining the content of a WPS e.g. ASME Section IX. Other standards are more general

Welding Procedure Specifications

Typical WPS Contents

- Scope
- Base metal
 - to simplify qualifications, standards often group base metals by similar composition or strength levels
- Welding process
- Filler metal
- Type of current and range
- Arc voltage
- Travel speed
- Heat input

- Joint preparation _
- Welding details
- Welding positions
- Preheat & interpass temperatures
- Post weld heat treatment and finishing

ASME Sample WI

> ----____

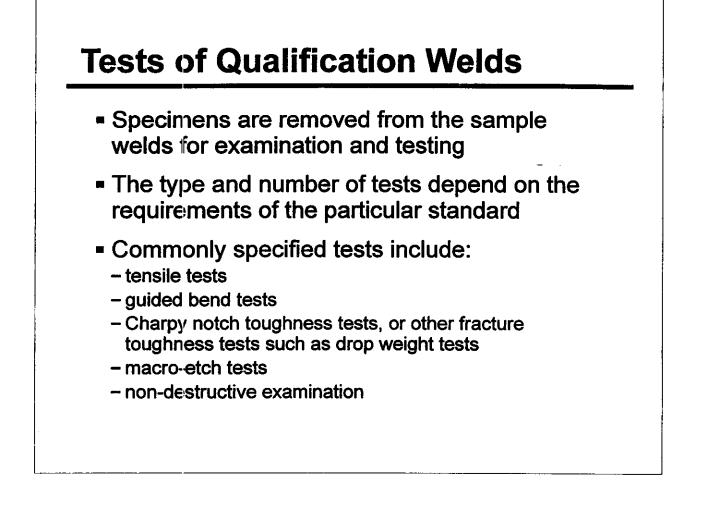
(ŧ

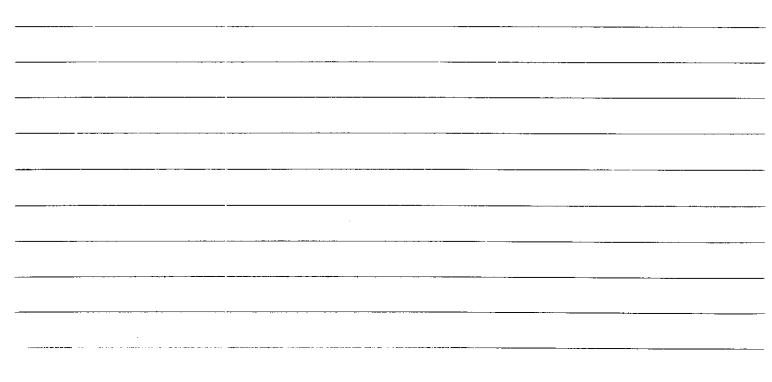
Constany Name AIZC INC.	I.M. CIRANT
Helding Precedure Specification No. WPS C	2123 Dets 97-10.31 Supporting POR No. (1) PER 0/23
- · · · · · · · · · · · · · · · · · · ·	
Revision No Den Neiding Processies) CrTIAW, SMA	W Trends MANUAL
	(Automatic, Mervel, Mechine, or Semi-Auto.)
IOWITS (OW 402) V- GROOVE	Details
Joint Design	V 1-3 1. 371/2
Becking (Yes) (No)	
Backing Material (Type) M	et and retainers.)
Metai Norviusing Mintal	
Nonmetallic 🔲 Other	
Sketches, Production Drawings, Weld Symbols or	
should show the general arranjament of the parts	
applicable, the root specing and the details of a	
specified.	1.5 MAX
At the option of the Migr., skatches may be attach	ned to illustrate joint 👘 🦛 📉 🔨
usign, wold layers and bead sequence, e.g. for not	
ures, for multiple process proce Jures, etc.)	
BASE METALS (CW-403)	
P-NoGroup No to P-N	oGroup NoT
08	
Specification type and gradeSA IOL	
to Specification type and grade SA 106	Gr B
OR	
Chem. Analysis and Mech. Prop.	
to Chem. Analysis and Mech. Prop	
Thickness Renge: 4.7 M	In a 19 Aura Film
Pipe Dia. Range: Groove	Fillet
FILLER METALS (OW-404) SFA 5.88	
	SFA S.I
AWS No. (Cless) ER 205-2_	E7018
F-No4	<u> </u>
A-No	
Size of Filler Metals 2.4_ MMAV	3-4 mm
Weld Metal	
Thickness Range: PALSIES 122	REMAINDER.
FilletNA	<u> </u>
Electrode-Flux (Class)N/H	
Consumable Insert	
Consumable InsertAL/A	
Consumable Insert	corded individually.

	- <u>-</u>			QW-48	2 (Back)	WPS N	0123	S Rev 97.10). <u>3</u>
POSITION	IS (QW-405)	51			POSTWELD				
Position(s) of Groove	59			Temperatu	HEAT TREAT	NONE		
Welding	Progression: I	<u>, X </u>	Down		Time Rang	-	NIA		
Position	s) of Fillet <u> </u>								
•	<u> </u>				GAS IQW-40				
PREHEAT	(QW-406)	0.014			7		Percer	nt Composition	
Proheat T	emp. Min	<u> </u>	<u> </u>			Geste			_
Interpes	Temp. Mex	260.						(Mixture) Flow	late
Preheet N	laintenance	PROPH	NE TOP	LCH	Shielding	A	2600	- 71	Im
(Continue	ous or special h	nting where an	plicable should	be recorded)	Trailing	N			1.00
						AR	CAN -	50	44.0
·······		·			Backing			<u></u>	Min
ELECTRIC	AL CHARACT	ERISTICS (OA	(-409)			A			·
Current A	.c or DC	<u>E Beidi</u>	Polarity			<u> </u>	A .		
Amps (Ra		L	s (Range)		-	100		7	
	ind volts range		orded for each		-				
position	and thickness	etc. This info	metion may be	electrode size	•				
ular form	n similar to the	t shown below.			•				
				n /n	· · · · · · · · · · · · · · · · · · ·	A STATE	3		
Tungsten	Electrode Size a	nd Type	EWTH-	LLAN	5 512	22	7 .		
-			() ¢	······	(Fure Tunes	. 2% Thoristed	. etc.)		
Mode of N	letal Transfer f	W GMAW	NIA		4				
			AL.		(Spray arc, she	truiting an	etc.)		
Electrode	Wire feed speed	rance	NIA		1100				
				_					
ECHNIQU	E (QW-410)		•						
	leave Bead	<u>(</u>	STRING						
-	Gas Cup Size	#	2			2		· · · · · · · · · · · · · · · · · · ·	
				REMOV	C D'ENC	C	<u> </u>		
WEL	D PA	Ing (Brushing (EP BT	WIRE	BR MAN	- K ORD	ETC	TO 29	5 MM FRO	<u>M</u>
	Back Gouging,								
Oscillation.		NON	¢						_
	be to Work Dis								
	Single Pass (pe		LTIDIES	P					
	Single Electroc		GLE #						
Travel Spee		1-5					. <u></u>		
Peening	a (r tanger	NONE							
Other 1	/ISUALL	Y INSP	_	ACH I	ASSF	0 04	A - A- A		
	DEFE		ATT A	CLEANI		R AC	CEPTA	BLE PROFI	LE
a				LUCHNI					
			· · · · · · · ·			· · · · ·			
						<u> </u>	· · · · ·	<u> </u>	
		Filler	Metal	Cu	rent	ł	1	1	
		Filler	Metal	Cui	rrent		1	Other	
		Filler	Metal	Cui	rrent		2	Other le.g., Remarks, Co	m -
Weld		Filler	Metal				Travel		
Weld	Process			Туре	Amp.	Volt	Travet Speed	le.g., Remarks, Co	•
	Process	Filler Class	Metal Dis.			Volt - Range	ł	le.g., Remarks, Co ments, Hot Wire	e ue,
Weld		Class	Dia.	Type Polar.	Amp. Range	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e ue,
Weld		Class	Dia.	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e ue,
Weld		Class	Dia.	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e ue,
Weid Layer(s)	CITAN	cisss ER.705-2.	Dia. 2-4 MM	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e ue,
Weid Layer(s)	CITAN	cisss ER.705-2.	Dia.	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e ue,
Weid Layer(s)	CITAN	cisss ER.705-2.	Dia. 2-4 MM	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e Ue,
Weid Layer(s)	CITAN	cisss ER.705-2.	Dia. 2-4 MM	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e Ue,
Weid aver(s) -2	CITAN	cisss ER.705-2.	Dia. 2-4 MM	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e Ue,
Weld sver(s) -2	CITAN	cisss ER.705-2.	Dia. 2-4 MM	Type Polar. DCEN	Amp. Range 150-200	Range	Speed Range	le.g., Remarks, Co ments, Hot Wird Addition, Techniq	e ue,

· ·----

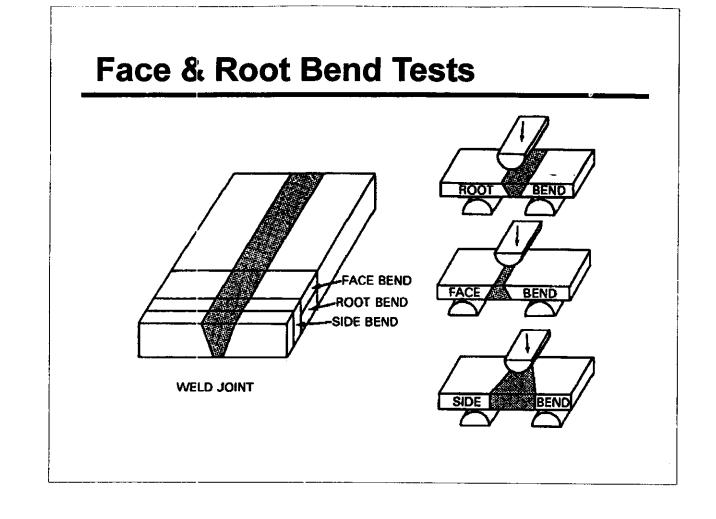
- The purpose of qualification is to show that welding in accordance with the WPS willproduce sound welds with adequate properties.
- The WPS qualification requirements are specified by the applicable standard.
- Qualification may be achieved by:
 - 1. Use of prequalified welding procedures
 - 2. Qualification tests
 - 3. Mock-up tests

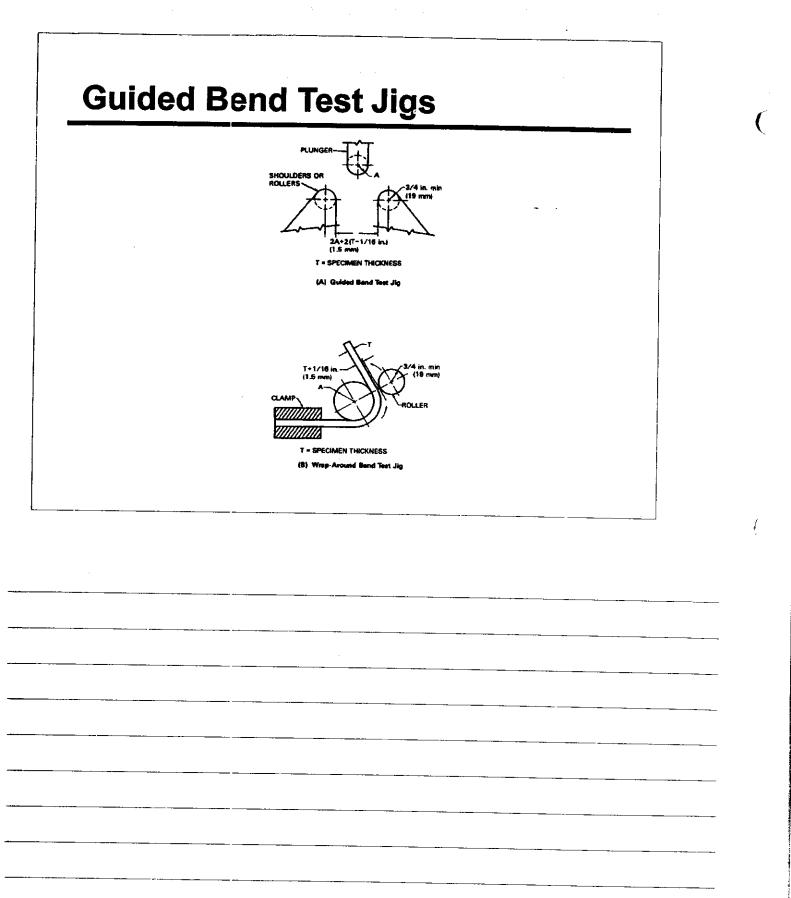

- Prequalified welding procedures
- The concept of prequalification is based on the reliability of certain proven procedures as defined by the code or standard (e.g. CSA W59, AWS D1.1)
- The contractor is nevertheless required to prepare WPS documents and to accept responsibility for their use.
- Any deviation from the standard negates the prequalified status

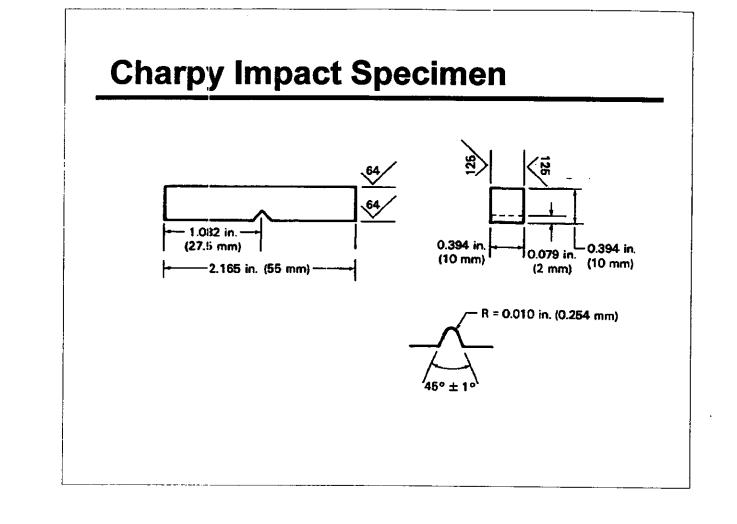

- Prequalified welding procedures
- Qualification tests
 - Qualification tests are intended to demonstrate that the welding procedure results in sound welds with acceptable mechanical properties
 - Tests need not simulate the actual conditions for a given job. They usually consist of conventional butt joints on plates or pipes
 - Base and filler materials, welding variables and heat treatments must follow production plans within specified ranges.
 - However, other variables such as joint geometry or welding position might not be considered as qualification variables

- Prequalified welding procedures
- Qualification tests
- Mock-up tests
 - Mock-up tests are intended to simulate actual production or field conditions.
 - Codes and standards do not require preparation of welded mock-ups

 However, mcck-ups can help to anticipate or avoid problems in production. They are also useful when difficult access or other practical considerations may influence results in-situ, such as repair welding of nuclear plants.






. –

(

	 	· · · · · · · · · · · · · · · · · · ·		
	 	·····		
······································	 			
			······	

	 	•• • • • • • • • • • • • • • • • • • • •	
			······································
·····	 		
······································			
·	 		

Recording Test Results

- The welding conditions and the test results are entered on a Procedure Qualification Record (PQR)
- If the test results meet the requirements of the standard, the PQR is certified by the contractor and the third-party inspector
- The WPS may then be issued for production

ASME	Sample	PQR	 	······································
			- .	
			 •	
 		i	 	

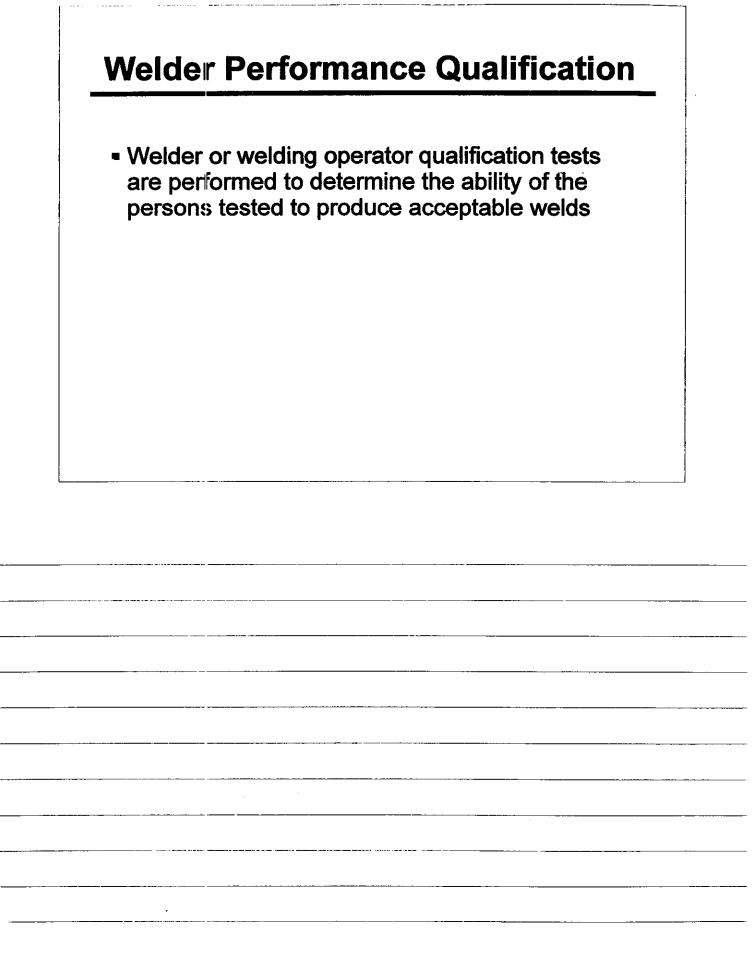
1992 SECTION IX

(

ĺ

(See Q.W-200.2, Section IX, ASM	OCEDURE QUALIFICATION RECORD (PQR) IE Boiler and Pressure Vessel Code) Used to Weld Test Coupon.
ABC INC	
Company Name	Date 97-10.31
WPS No. WPS D/23	
Welding Process(er)CTRWSCIAW	
Types (Manual, Automatic, Semi-Auto.) MANDAL	
JOINTS (QW-402)	
(For combination qualifications, the deposited weld meta	
Material Spec. SA 106	POST ELONAL TREATMENT (QW-407)
Type or Grade GR. B	
P-No to P-No Distance of You Courses O: 44 3 (P-	
Thickness of Test Coupon	
Dither	
	GAS (QW-408)
	Percent Composition Gastest (Mixture) Flow Rate
	Shielding <u>HREADN</u> <u>- ILIFUN</u> Trailing <u></u>
FILLER METALS (QW-404)	Backing ARPAON SLIMN
SFA Specification ER TOS2 ET018	
AWS Classification $ER7052$ E7018 Filler Metal F-No. 4	ELECTRICAL CHARACTERISTICS ION 4091 Current DCEN LATAN DCEP (SMAW)
Neld Metal Analysis A-No.	Polyana Contract Longitudi Lico Landiful
Size of Filler Metal 2.4 MM 3-4 MM	Polarity Volts
Dther	Tungsten Electrode Size EWTH-2 3 MM
	Other
Net Metal Thickness PASSES 102 REMAINDER	•
DSITION (QW-405)	
parties of Groove54	TECHNIQUE (QW-410) 1-3 MM (S
eld Progression (Uphill, Downhill)UP	String or Weave Bead STRINK
ther	OscillationNONE_
	Multipass or Single Pass (per side) MULTIPLE
	Single or Multiple Electrodes SINGLE
REHEAT (0W-406) 7000	Other
nterpass Temp ZGO*CMAX	
nterpass TempCOOC_PUTA	
	· · · · · · · · · · · · · · · · · · ·

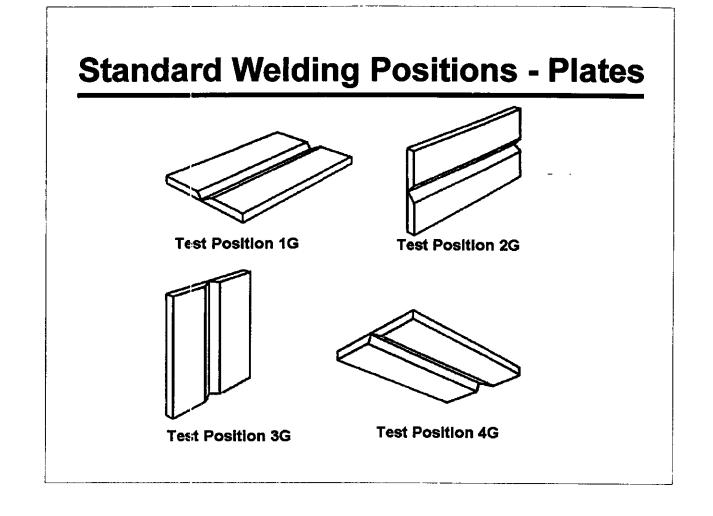
.....

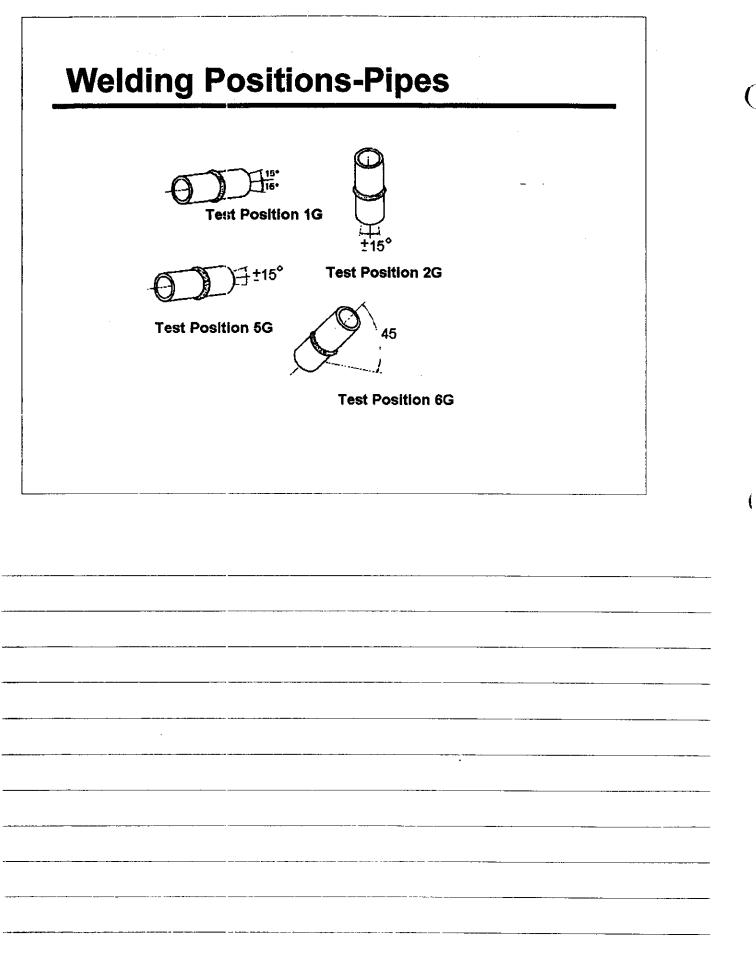


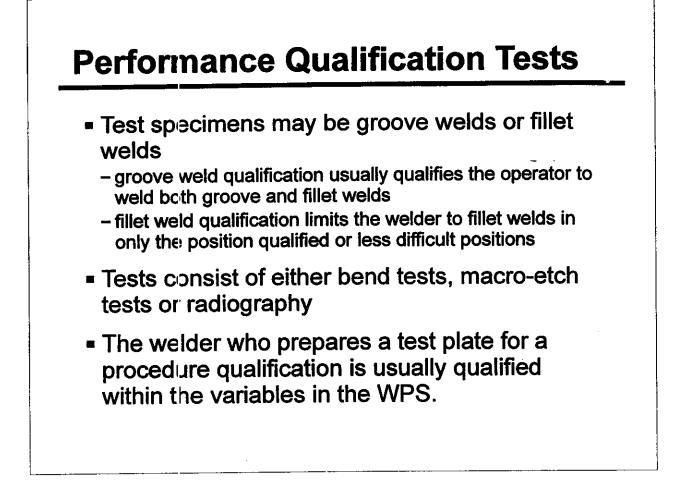
NONMANDATORY APPENDIX A

			_	-		BA		
			Te	Tensile Test (QW-150) PQR No				
	Τ				Ultimate	Ultima		Type of
Specimen				• • •	Total Load &	Unit Str		Failure &
<u>No.</u>	14.3	Thick 7		Area 163.4	845	517	MB	Location 3M DUCSU
	1,84	7.7	·2	165.2	85.8	519		SM DUCT
3	120-	8.4		158.7	81.8	514		SM AUG
<u> </u>	19.7	8.3		154.3	81.4	504		in such
	┈┷╾╸┊╺┸╌╸┶╤╾╼		·					
			Guideo	-Bend Test	(CW-160)		>	
· · · · · · · · · · · · · · · · ·	Type and (Figure No.						
FACE					SATISFAC	TON Y		
ROOT					SATISME	DALK -		
FACE					2471564	TOPM		
ROOT					SALAFA	and the		
						- • -		
					.			
			Tourh	ness Tests	10W-170			
Specimen	Notch	Notch	Test	Impac		Exp.	D	rop Weight
No.	Location	Туре	Temp.	Value	s % Silvar	Mils	Break	No Break
JONE								
				A				
			<u> </u>					
			Filet-	Weld Teit	QW-180)			
			filet	Weld Teiliji	QW-180)			
iit — Satisfacto	ry: Yes _N]f	£No	Citter		QW-180) In into Parent Metal:	Yes	No	·
ılt — Satisfacto ro—Results	ny: Yes _N f	<u>+ио _</u>	Ciliet			Yes	No	
nt — Setisfacto ro—Results	ny: Yes	<u>Е № </u>	C			Yes	No	
iit — Satisfacto ro—Results	ry: Yes _NJF	ŁNo	C			Yes	No	•
nt — Setisfecto ro—Results <u>—</u>		£No	C		n into Parent Metal:	Yes	No)
ro—Results <u> </u>		£No	C	Petetratio	n into Parent Metal:	Yes	No	
ro—Results	NA		<u> </u>	Other Test	n into Parent Metal:	Yes	No)
ro—Results e of Test psit Analysis	NA	£No	<u> </u>	Other Test	n into Parent Metal:	Yes	No	,
ro—Results : of Test ssit Analysis	NA		<u> </u>	Other Test	n into Parent Metal:	Yes	No)
ro—Results e of Test psit Analysis	NA		<u> </u>	Other Test	n into Parent Metal:	Yes	No)
ro—Results e of Test psit Analysis	N/A			Other Test	n into Parent Metal:	Yes	No)
ro—Results e of Test psit Anelysis	N/A			Other Test	n into Parent Metal:	Yes		<u>—</u> ———————————————————————————————————
ro—Results e of Test psit Anelysis ff Jer's Name	N/A A. W	ELDE		Other Test	bn into Parent Metal:			
ro—Results a of Test psit Analysis of ff der's Name s conducted by:	N/A A. W B., TE	ELDE	2	Other Test	n into Parent Metal:		ন্ঠুৰ	mp No. <u>HL-3</u>
ro—Results t of Test psit Analysis if ler's Name s conducted by: pertify that the		ELDE	2	Other Test	bn into Parent Metal:		ন্ঠুৰ	mp No. <u>HL-3</u>
ro—Results t of Test pait Analysis if ler's Name t conducted by: partify that the	N/A A. W B., TE	ELDE	2	Other Test	n into Parent Metal:	tory Test No	기소역 Tested in	mp No. <u>HL-3</u>
ro—Results t of Test pait Analysis if ler's Name t conducted by: partify that the		ELDE	2	Persitratio Other Test	n into Parent Metal:	tory Test No	기소역 Tested in	mp No. <u>HL-3</u>
ro—Results a of Test psit Analysis sf sf s conducted by: cartify that the irements of Sec	NA A. W B. TE statements in t tion tX of the A	ELDE ECH_ his record are SME Code.	2	Other Test	n into Parent Metal:		기소역 Tested in	mp No. <u>HL-3</u>
ro—Results a of Test psit Analysis sf sf s conducted by: cartify that the irements of Sec		ELDE ECH_ his record are SME Code.	2	Persitratio Other Test	n into Parent Metal:	tory Test No	기소역 Tested in	mp No. <u>HL-3</u>

Changes in a qualified WPS

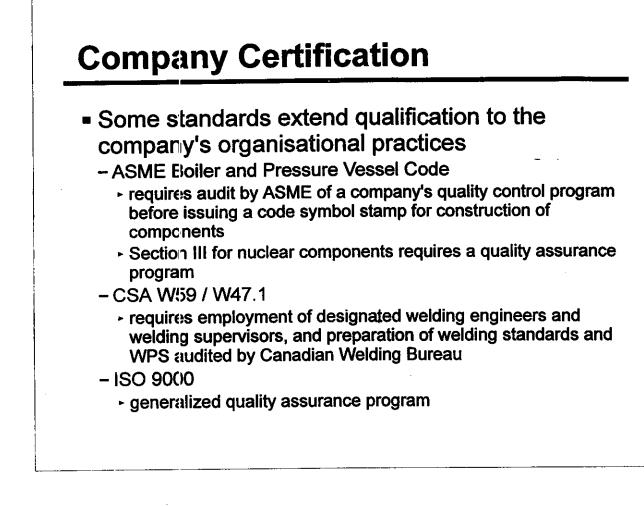

- If a WPS is to be revised or modified beyond the qualified ranges of the "essential variables" it is necessary to do additional qualification tests
- If the changes are within the qualified ranges of essential variables, then a revised WPS can be issued without requalification
- A PQR may support several WPS
- Since the PQR is a certified record of a qualification test, it should not be revised.


Performance Qualification Req'ts


- Most standards require each welder or welding operator to make one or more test welds in plate or pipe
- Variables that affect the ability of welders to make sound welds are considered qualification variables. These include:
 - welding process
 - filler metal
 - welding position
 - joint detail
 - plate thickness
 - welding technique

(

<u></u> .	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		



Performance Qualification Records

- Responsibility for performance qualification records lies with the employer
- After successful qualification of a welder the employer and third party inspector certify the performance qualification record.
- Most codes limit the duration of qualification to three to six months inactivity
- For most codes qualification may be extended indefinitely provided the welder performs satisfactory work within the stated period

l

