WELD SYMBOLS ON DRAWINGS

Section
SET D

1. THE NEED TO SPECIFY WELDS
2. THE ADVANTAGES OF SYMBOLS
3. WELD SYMBOLS 1, BUTT/GROOVE WELDS

4. WELD SYMBOLS 3, ANSI/AWS SPECIALS
5. LOCATION OF SYMBOLS 1, BUTT WELDS
6. LOCATION OF SYMBOLS 2, BUTT WELDS
7. LOCATION OF SYMBOLS 3, FILLET WELDS
8. SUPPLEMENTARY SYMBOLS 1 , WELD SURFACE SYMBOLS
9. SUPPLEMENTARY SYMBOLS 2
10. SUPPLEMENTARY SYMBOLS 3, ANSI/AWS
11. DIMENSIONS 1, BUTT WELD METAL
12. DIMENSIONS 2, BUTT WELD PREPARATION, ANSI/AWS
13. DIMENSIONS 3, FILLET WELD, TRANSVERSE
14. DIMENSIONS 4, FILLET WELD, TRANSVERSE
15. DIMENSIONS 5, FILLET WELD, LONGITUDINAL, ISO/BS
16. DIMENSIONS 6, FILLET WELD, LONGITUDINAL, ANSI/AWS
17. PROCESS IDENTIFICATION
18. STUD WELDS
19. SPOT AND SEAM WELDS
20. NONDESTRUCTIVE TESTING SYMBOLS, ANSI/AWS
21. EXERCISE 1, FLANGE ENDED PIPE
22. EXERCISE 2, VESSEL
23. EXERCISE 3, TANK
24. EXERCISE 4, BEAM

IVI 5
(a) the wrinmg institutt lag?

(A)

C

IIIH 6
© THE WELDING INSTITUTE 1982

B

(C)

D

I/F 7
THE WELDING INSTITUTE 1982

(A)

C

IVFi 10
OTHE WELDING INSTITUTE 1982

W/Fi 12

- THE WELDING INSTITUTE 1982

I/713

- THE WELOING INSTITUTE 1982

B

IIIR 17
O THE WELDING INSTITUTE 1982
m $m \rightarrow n$

I/I 21
© THE WELDING INSTITUTE 1982

All dimensions in millimetres

ITf 22
－THE WELDING INSTITUTE 1982
FLANGE ENDED PIPE $\rightarrow \rightarrow \rightarrow$ m刀 刀 刀 刀 刀 刀 刀 m 刀 刀

SECTION 23: EXERCISE 2, VESSEL

23 (Base transparency +2 overlays)

BASE TRANSPARENCY

Symbols representing welds to be made: letters in circles are for ease of reference below only.
Problem 1. Describe welds to be made, with sketches where necessary.

Comments

The standard used for
A: process abbreviation in fork is alphabetical.
B, C, D: $3 \times$ 'melt-thru' symbols.
B and D: $2 \times$ 'radiographic test' symbol.
A: stud arc welding, confirmed by studs on drawing.
3 B and D: single-V butt weld with melt-thru, ground flush inside and radiographed.
4 C: single-bevel butt weld, stub pipe only bevelled, (set-on branch), with melt-thru, ground flush

Eill
5 E: fillet weld, of 6 mm leg length, both sides of joint. See sketches on overlay (a) for interpretation.
a OVERLAY: possible interpretations of flange to tube joint E. F: this is consistent with the weld symbol, but the view does not show the expected projection of the tube through the flange: also a form unlikely to be used, because of clearance problems. G, H: consistent with weld symbol and drawing. To decide between these two, it would be necessary to have details of the flange.
Problem 2. Modify symbols to conform to BS 499: Part 2: 1980, with joint as at H.
b OVERLAY: symbols to BS, solution to problem 2.
I: symbol replacing A. note that BS can only specify NDT, not specifically radiography. As J: symbol replacing B: note that BS call penetration and a flat rear face can be specified: the there is no 'melt-thru' symbol, only full penetration a produce a substantially flat surface, without symbol requirements would be met by welding to produce a further treatment
K: symbol replacing C \} see cominents on J above
M : Symbol replacing E

SECTION 25: EXERCISE 4, BEAM

25 (Base transparency and overlay)

BASE TRANSPARENCY

Sketch of beam, not to scale, to be assembled by manual metal arc welding in the shop and on site.
Problem. Sketch in welding details and symbols to BS 499: Part 2: 1980 (or other standard as instructed).

Comments
A Cope-holes have been introduced to avoid the need to dress welds where they meet other welds, and to avoid welding up into corners, often a site for defects.

B We cannot use a 'weld all round' symbol for the end flange joints, as it cannot go over top and bottom of the flanges, and it is interrupted by the cope-holes.

C Similarly to B, the web-to-flange joints are in four sections, needing four arrows if they are to be shown individually.
The spacing in BS is not the pitch (here 300 mm) but the distance between the ends of weld elements, here $(300-100)=200 \mathrm{~mm}$.

D A suggestion to be taken seriously! Apart from simplifying the drawing, complete shop fabrication can considerably reduce the costs of welding and of quality assurance.

