

CANDU Safety #10: Design and Analysis Process

F.J. Doria Atomic Energy of Canada Limited

CANDU Safety - #10 - Design and Analysis Process.ppt Rev. 0

Overview

- Establishment of basic safety requirements by the Canadian regulatory body
- **λ** Design and safety process
- **λ** Regulatory documentation
- **λ** Safety design objective and defense in depth principle
- λ Safety analysis process

Safety Criteria

- The Canadian Atomic Energy Control Board (AECB) is the regulatory body for nuclear power plants in Canada
- λ The AECB defines the
 - basic safety criteria for normal operation and accident conditions
 - imposes requirements on major mitigating systems for accident conditions (i.e., shutdown safety systems SDS1 and SDS2, emergency core coolant injection and containment).
- AECB documents the criteria/requirements in a Consultative Document called C-6, and Regulatory documents R-7, R-8, R-9, R-10
- λThe plant designer is responsible for designing the power plant to24-Statisfy the basic Stafety Criteriand Analysis Process.pptRev. 03

A Simplified Design and Safety Process

Regulatory **C-Series (Consultative** λ. **Body (AECB)** documents); draft regulatory **Define Basic** documents Operating Safety License Granted **R-Series (Regulatory Documents)**; λ **Requirements/Goal** sets overall requirements Consultative (C-series), **Overall process is NON**λ **Regulatory (R-series)** PRESCRIPTIVE **Documents** AECB sets the goals to be achieved; however, how these AECB goals are satisfied is left up to Review the designers (i.e., AECL) **Plant Design** No Yes **All Safety** Requirements Satisfied

AECB Consultative Document C-6

- **λ** Provides a minimum list of abnormal events to be analyzed
- C-6 also requires that the plant designer also perform a systematic review of the plant design to identify all <u>additional</u> safety significant failures
- Accidents are categorized into 5 classes which reflect the frequency of the accident
- **λ** For example, some class categories include:
 - Class 1 category: highest frequency; high number of occurrences per reactor year (1 per 100 years < 1/ f < 1 per year)
 - Class 5 category: lowest frequency; low number of occurrences per reactor year (1 per 100,000 years > 1/f)
- λ^{24-May-01} Stricter dose limits apply to those accidents that occur more

Summary of Some AECB Documents

- C-6: Requirements for Safety Analysis
- R-7: Requirements for Containment System
- R-8: Requirements for Shutdown Systems
- R-9: Requirements for Emergency Core Cooling
- R-10: The Use of Two Shutdown Systems

Safety Design Objectives

- λ The basic safety objectives for the design of the nuclear power plant are:
 - NORMAL OPERATION: limit the continuous emissions of radioactive material to a small fraction of the reference dose limit
 - ACCIDENT CONDITIONS: safety analysis must demonstrate that the accident dose limits are not exceeded
- **λ** General Safety Requirements
 - Shut down the reactor and maintain it in a safe shut down condition
 - remove decay heat from the core after shutdown

reduce the potential of radioactive material being released and
 ^{24-May-01} to ensure the safety objective is satisfied (i.e., do not exceed

Safety Philosophy - Defense in Depth Principle

- **λ** The defense in depth principle is applied in the CANDU design
- λ The defense in depth principle provides
 - an increase in the level of safety
 - » <u>prevention</u> by including design features to reduce frequency of accident;
 - » protection and mitigation by design features such as SDS1, SDS2;
 - A <u>accomodation</u> by design features of the containment system, and

- introduces several barriers to the release of fission products

A Defense in Depth Barriers

1) Uranium-Dioxide Fuel Matrix & 2) Sheath

4) Containment

3) Primary Heat Transport System

5) Exclusion Boundary

NDU Safety - #10 - Design and Analysis Process.ppt Rev. 0

Safety Analysis

- Analysis Objective: To demonstrate that safety criteria are satisfied
- **λ** Types of failure:
 - Single failures
 - Failure of any process system. Process systems are those required for normal operation
 - Dual failures
 - Failure of any process system with the coincident failure of any one safety system. Safety systems are only required to reduce the consequences of a process system failure

Process and Safety Systems

- **λ** Process System
 - Primary heat transport system
 - Reactor control
 - Electrical
 - Fuel and fuel handling
- **λ** Safety systems
 - Shutdown safety system No 1 (SDS1)
 - Shutdown safety system No 2 (SDS2)
 - Emergency core coolant (ECC)
 - Containment

A Shutdown System Failures

- Loss of shutdown following a process failure is not a credible event for licensing, since
 - Two independent shutdown systems
 - Each fully capable to shut down the reactor
 - The systems are spatially separate and
 - The systems have separate logic systems

Some Accident Scenarios

- **λ** Loss-of-coolant accident (single-type failure)
- **λ** Single channel events (single-type failure)
 - In-core breaks
 - x spontaneous pressure tube rupture that leads to the consequential rupture of its calandria tube
 - **λ** flow blockage events
 - **λ** feeder stagnation
 - feeder off-stagnation breaks
 - end fitting failure
- Loss-of-coolant accident with coincident loss of emergency core coolant injection (LOCA/LOECC)

A Some Accident Scenarios

CANDU Safety - #10 - Design and Analysis Process.ppt Rev. 0

EVENT CLASS (AECB C-6 Document)	FREQUENCY RANGE (f) (per Reactor Year)	ACCIDENT
1	10 ⁻² ≤f<1	Off-Reactor Fuelling machine accident
2	$10^{-3} \le f \le 10^{-2}$	Single-channel events (FSB, EFF, PTR, FB)
3	$10^{4} \le f < 10^{-3}$	Large LOCA
4	10 ⁻⁵ ≤f<10 ⁻⁴	Off-Reactor Fuelling machine accident <u>plus</u> failure to isolate containment
5	f ^{<} 10 ⁵	LOCA/LOECC

Some Analysis Acceptance Criteria (LOCA)

- Dose limits do not exceed the limits specified in AECB regulatory document R-10; dose limits also given in AECB regulatory document C-6
- Leach of the 2 independent shutdown safety systems will arrest the reactivity and power excursions and will keep the reactor in a shutdown state (AECB regulatory document R-8)
- Fuel channel integrity must be maintained (AECB regulatory document R-8 and R-9)
- Structural integrity of containment must be maintained (AECB regulatory document R-7)

Analysis Philosophy

- In past safety analysis performed for CANDU reactors, a conservative approach is used
- That is, the assumptions and methodology applied in a particular analysis is selected in conjunction with the analysis objective
 - for example, LOCA/LOECC one objective is to maximize fission-product release and hydrogen==> methods and assumptions geared at maximizing these results
- **λ** Change in philosophy
 - recent analysis is moving towards a best-estimate approach

- this is coupled with an uncertainty analysis to give a result ^{24-May-0}(i.e., maximum^ASheath¹temperature during LOCA) with a ¹⁷

Severe Accidents

Design Basis Accidents

Normal Operation

Operating Limit

Trip Limit

Operating Domain

Operating Margin

Safety Margin

Safety Limit

