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♦ The computational scheme for CANDU neutronics
consists of three stages:

♦ Cell calculation: to determine lattice properties for 
basic lattice cells

♦ �Supercell� calculation: to determine the 
�incremental� cross sections to be added to the 
basic-cell properties to account for the effect of 
reactivity devices

♦ Finite-core calculation: to solve the neutron-diffusion 
problem in the reactor core, to calculate the 3-
dimensional flux and power distribution.



4.4. Computational Scheme for CANDUComputational Scheme for CANDU
NeutronicsNeutronics

♦ Computer programs have been developed to 
perform the calculations corresponding to each stage 
in the above process.  

♦ These are now briefly discussed in the following 
sections.



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ The cell calculation treats the �bare� CANDU basic 
lattice cell.

♦ �B are� here means the basic lattice cell without 
reactivity devices superimposed (refer to Fig. 1.2).



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ The cell (or lattice) code which has traditionally been 
used for CANDU design  and analysis is 
POWDERPUFS-V.  

♦ This is an empirical-recipe code, based on the results 
of measurements made on heavy-water-moderated 
lattices in research reactors ZEEP and ZED-2 at 
Chalk River Laboratories.

♦ Although based on empiricism rather than a strong 
theoretical foundation, POWDERPUFS-V has been 
applied very successfully to CANDU design and 
analysis. 



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ POWDERPUFS-V uses the four-factor formula to 
calculate the infinite-lattice multiplication constant

kinf = εpηf, 
♦ and to calculate homogenized-cell nuclear cross 

sections.  
♦ It also utilizes the Westcott formulation for nuclide 

cross sections, a parametrization in terms of the 
neutron temperature and a spectral parameter r.



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ The Westcott parametrization is applicable to highly
thermalized neutron spectra,

♦ such as those in the CANDU lattice cell, 
♦ where over 95% of neutrons in the fuel have a

Maxwellian energy distribution.  



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ The  nuclear cross sections are evaluated using the
Westcott formula and other simple recipes, 

♦ using parameter values obtained empirically from 
experiment.  

♦ POWDERPUFS-V is applicable to CANDU reactors 
fuelled with natural uranium, 

♦ where the amount of plutonium in the fuel is limited 
by the natural-uranium burnup.



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ The Westcott convention for calculating the effective 
cross sections of fuel nuclides is based on assuming 

♦ that the neutron spectrum can be written as the sum 
of a Maxwellian function and an epithermal function 
tending to 1/E: 

n(v) = N(1-f)ρm(v) + Νfρe(v) (4.1)
where ρm(v) and ρe(v) are the Maxwellian and 
epithermal normalized density distribution 
functions, respectively, and
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N = total neutron density
f  = fraction of the total neutron density in the 
epithermal spectrum

ρm(v)  = (4.2)

ρe(v)  = (4.3)

and vT = velocity of a neutron of energy kT
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4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ ∆(v) is an empirical function describing the way the 
epithermal spectrum (with its 1/E �tail�) joins the
Maxwellian spectrum.  

♦ It satisfies ∆(v) → 0 for Ε < µkT
♦ and ∆(v) → 1 for Ε > µkT, 
♦ where µkT represents the lower limit of the 1/E 

spectrum and, by choice of convention, µ = 3.681.
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♦ The Westcott flux      is defined as 
= Nv0 (4.4)

where  v0 = 2200 m/s

(i.e., as if the entire neutron distribution had a speed 
of 2200 m/s)

$φ
$φ



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ and the effective (Westcott) cross section    
♦ of a given nuclide is defined so that its product with 

the Westcott flux gives the total reaction rate:
Total reaction rate in nuclide 

=                 v0 (4.5)
♦ (By total reaction rate is meant the reaction rate in 

the entire spectrum, which includes the Maxwellian
and the 1/E parts.)

$ $ $σφ σ= N
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4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code
♦ It can be shown that     can be written in terms of 0, 

the 2200-m/s cross section, as follows:
=  σ0(g + rs) (4.6)

♦ where g is the ratio of the reaction rate of the nuclide 
in a pure Maxwellian spectrum to the reaction rate 
of a 1/v absorber of the same 2200 m/s cross section 

♦ (i.e., g is a measure of the �non-1/v� character of the 
absorber in a Maxwellian spectrum), and 

♦ r is a measure of the epithermal part (i.e., the 
�hardness� of the spectrum).
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♦ r has a small value in the CANDU lattice: 
♦ typically, r ~ 0.05 for a CANDU lattice fuelled with 

natural UO2.  
♦ This is what makes the Westcott formulation a good 

approximation in CANDU reactors.
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♦ The g and s values for the various nuclides are 
obtained from experiment

♦ They are functions of the neutron temperature Tn, so 
that Eq. (4.6) is evaluated in fact as

(r, Tn) =  σ0(g(Tn) + rs(Tn)) (4.7)$σ
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♦ In POWDERPUFS-V, the factors g(Tn) and s(Tn) 
are expressed as power series in the neutron 
temperature.  

♦ With this database of g and s values for various 
nuclides, POWDERPUFS-V can calculate reaction 
rates in the fuel very quickly, using Eq. (4.7). 

♦ For other materials, constant inputs or simple recipes 
are used. 
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♦ The methodology requires the evaluation of the 
spectral parameter r and the neutron temperature
Tn

♦ in an iterative fashion from the lattice parameters 
via empirical relationships. 



4.14.1 Cell Calculation and the Cell Calculation and the 
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♦ In addition to the empiricisms, there are some 
approximations:

♦ Fast fission is taken into account in 238U only, and is 
�lumped� into the thermal-fission cross section; 

♦ also, up-scattering is ignored.  
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POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ One great advantage of POWDERPUFS-V is that, 
due to its semi-empirical nature and the simplifying 
assumptions used, it is very fast-running:

♦ A complete calculation (including depletion to exit
burnup values) for a given lattice type is performed 
in less than 1 second of CPU time.   
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♦ POWDERPUFS-V provides �homogenized-cell� two-
energy-group lattice properties for input into finite-
core models and calculations.  

♦ In standard �fuel-burn� mode, the lattice properties 
are provided as functions of fuel irradiation (or
burnup)

♦ for specified values of lattice conditions, such as 
geometry, fuel, coolant, and moderator temperatures, 
power level, coolant density, moderator-poison 
concentration, etc. 

♦ These conditions are entered as input to the code.
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♦ For instance, the geometrical input and fuel mass 
may correspond to those for the 37-element-natural 
fuel lattice,

♦ the (average) fuel temperature may be entered as 
687o C,

♦ the (average) coolant temperature 290o C,
♦ the moderator temperature 70o C,
♦ the moderator and coolant purities may be 99.9 and 

99.75 weight % D2O, and
♦ the moderator poison may be set to 0 ppm B



4.14.1 Cell Calculation and the Cell Calculation and the 
POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ In addition to providing nuclear properties at 
various values of instantaneous irradiation,

♦ POWDERPUFS-V can do a �reaction-rate-
averaged� calculation,

♦ where it averages the properties over irradiation ω 
from 0 to a specified exit value: 

♦ This calculation is extremely useful as a fairly good 
point-reactor model.
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POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ A �perturbation� mode is also provided in 
POWDERPUFS-V, 

♦ where lattice properties are evaluated assuming 
�instantaneous� changes in lattice conditions

♦ occurring at various values of fuel irradiation.
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POWDERPUFSPOWDERPUFS--V Lattice CodeV Lattice Code

♦ POWDERPUFS-V has been used as the lattice code 
for CANDU  reactors for about 30 years, 

♦ where it has performed very well.  
♦ One advantage of POWDERPUFS-V is that it is 

incorporated as a module within the finite-core code 
RFSP, described in Section 4.3 below.
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♦ While POWDERPUFS-V has traditionally been the 
lattice code for CANDU design and analysis, 

♦ it will eventually be replaced by a code with a 
stronger theoretical foundation, a multigroup
transport-theory code such as WIMS-AECL.

♦ Calculating lattice cross sections with WIMS-AECL 
is, however, more complex and 

♦ much more computationally intensive than with 
POWDERPUFS-V.



4.24.2 SupercellSupercell CalculationCalculation

♦ The effects of reactivity devices on the nuclear 
properties of the lattice in their vicinity are 
determined by a supercell calculation, 

♦ performed with the computer code MULTICELL. 



4.24.2 SupercellSupercell CalculationCalculation
♦ A typical supercell is shown in Fig. 4.1.  
♦ It is essentially a small model volume of the core 

around a portion of the reactivity device, 
♦ including a portion of the neighbouring fuel channel 

(normally oriented perpendicularly to the device).
♦ The dimensions of the supercell are typically 1 lattice 

pitch x 0.5 lattice pitch x 0.5 bundle length.  
♦ This  represents a unit volume over which the effect 

of the reactivity device is modelled, utilizing the 
assumption of mirror symmetry about the supercell
boundaries.



4.24.2 SupercellSupercell CalculationCalculation
♦ The calculation provides incremental cross sections, 

which are to be added to the basic lattice cross 
sections over �homogenized� supercell volumes 
along the length of the device.

♦ MULTICELL applies pre-calculated boundary 
conditions (current-to-flux ratios) on internal 
surfaces which represent the reactivity device and 
the fuel (modified to Cartesian geometry).  These 
boundary conditions are calculated using integral 
transport theory (Kushneriuk�s method).  



4.24.2 SupercellSupercell CalculationCalculation
♦ Outside the reactivity-device and fuel regions, 

MULTICELL applies diffusion theory to calculate 
the 3-dimensional flux distribution in the moderator.

♦ Except for zone controllers, which have a spectral 
effect, 1-group instead of 2-group diffusion is used, 
and the thermal-neutron source distribution is 
assumed flat in the moderator, 

♦ based on the contribution to the slowing-down 
density of the multiple line sources represented by 
the fuel channels.



4.24.2 SupercellSupercell CalculationCalculation

♦ Once the flux distribution in the supercell has been 
calculated, MULTICELL derives the homogenized-
supercell cross sections.

♦ Then, from two MULTICELL calculations 
performed for the supercell:

♣ a reference calculation with the device absent, and
♣ a calculation with the device present

♦ device incremental cross sections are obtained by 
subtraction 



4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ Once basic-lattice properties and reactivity-device 
incremental cross sections are available, 

♦ the finite-core calculation can proceed.  
♦ The finite-core computer code RFSP (Reactor 

Fuelling Simulation Program) is specifically 
designed for CANDU reactors. 



4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ It can calculate the steady-state 3-dimensional flux 
and power distributions in the reactor using two 
different methods:

♦ by solving the time-independent finite-difference 
diffusion equation in two energy groups, and

♦ by the method of flux mapping (described in Section 
3.3), if the readings of the in-core vanadium 
detectors are available.



4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ The time-independent neutron-diffusion equation 
solved in RFSP for eigenvalue problems in two 
energy groups with lattice properties from 
POWDERPUFS-V is:
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4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ In this equation there are no fast-fission or 
♦ up-scattering terms, consistent with the  

POWDERPUFS-V methodology 
♦ However, for use with WIMS-AECL lattice 

properties, RFSP has the capability to solve a true-
two-energy-group diffusion equation::
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4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ A typical reactor model used with RFSP is shown in 
Fig. 4.2 a and b (face and top views respectively).



4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ Major applications of RFSP are in:
♦ core-design calculations and analyses, including fuel-

management design calculations, and simulations of 
reactor power histories

♦ core-follow calculations at CANDU sites, to track the 
actual reactor operating history,  with burnup steps 
and channel refuellings.



4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ Additional capabilities of the program include, 
among others:

♦ the calculation of flux distributions for various 
reactor configurations

♦ the simulation of 135Xe/135I transients
♦ the capability for simulating (quasi-statically) bulk 

control and spatial control
♦ the calculation of harmonic flux shapes for use in 

flux mapping,
(cont�d)



4.34.3 FiniteFinite--Core Calculation and Core Calculation and 
the RFSP Codethe RFSP Code

♦ the calculation of the reactivity increase expected on
refuelling of individual fuel channels

♦ the capability for solving neutron-kinetics problems 
by the Improved Quasi-Static (IQS) method.  

♦ RFSP can therefore be used to analyze fast 
transients, such as those following hypothetical 
large-loss-of-coolant accidents (LOCA), and can be 
used to simulate and verify the performance of the 
shutdown systems.
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