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1. Introduction to Risk Analysis

Quantitative risk analysis is an engineering discipline combining component or subsystem
failure probabilities with failure consequence analyses to arrive at a risk profile for any particular
technology.  The methodology has been developed in some detail over the past 15-20 years for
use in nuclear power plant engineering and licensing.  Most commonly, a combination of fault
trees (using conventional reliability analysis, to be discussed in the following six lectures) and
event sequence diagrams are constructed that define a succession of possible accident branches
and their probabilities.  The accident is described in successive stages:

1. An initiating event (IE) occurs.
2. A sequence of events follows the IE.  Each event k has a probability of occurrence pk

and a probability (1-pk) of non-occurrence.  Each node in the chain branches to two alternate sub-
chains.  The branch probabilities may be determined either from fault tree analysis (to be
discussed in later lectures) or from accumulated operating experience with the event in question.
If no data are available the branch probabilities may be estimated by subjective judgment, made
by individuals experienced in the field.

3. The whole of the sequence, initiated by IE and continuing through successive branches
to a set of "final states", constitutes the event tree of the chain (or accident sequence).  Every
final state requires evaluation of (a) its probability of occurrence, and (b) the expected
consequence.  The formalism can be simplified by partitioning the whole event tree into
segments, which can be combined later to yield the overall event tree.
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Example
System Considered: A motorist is driving a car down a country road at night.
Initiating Event: A deer steps in front of the car.

1. Given the IE, the first question is: Does the driver notice in time?  If NO, does the car hit the
deer? (this depends on whether or not the deer evades the car).

2. If YES, the second question is: Does the driver brake in time?  If NO, does the car hit the deer?
(this again depends on deer evading or not, but the probabilities are different).

3. If YES, third question: Do the brakes work?  If NO, does the car hit the deer? (this also
depends on whether or not the deer evades the car).

Note the following:
A. We have not yet questioned the driver's state (he may be sleepy) or the speed of the car.  All
probabilities will in fact depend on "entry state" characterizing the driving conditions.
B. We have only tried to answer, up to this point, one ultimate question: Does the car hit the
deer or not?  We have yet to evaluate the consequences.
Notwithstanding A and B, we can construct an event tree for this portion of the overall chain of
events.  The basic event tree is shown as:

Initiating
Event

1 2 3 4 End State Path prob. Exit States

 Notice in
Time

Apply brakes in
time

Brakes work Animal
evades

   

        
 0.9 0.8 0.999  Miss 0.71923 1=miss

  0.001 0.5 Miss 0.00036 2=hit

    0.5 Hit 0.00036  

 0.2  0.5 Miss 0.09
P11=0.84

    0.5 Hit 0.09 (miss)

0.1  0.3 Miss 0.03
P12=0.16

0.7 Hit 0.07 (hit)
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The event probabilities for the reference driving conditions are given as: probability of noticing in
time = 0.9, probability of timely braking = 0.8.  Two alternate entry states can be defined:

Entry state 2 - Sleepy driver, probability of noticing = 0.5
Then P21 = 0.60 (Miss)

P22 = 0.40 (Hit)

Entry state 3 - Speeding, probability of timely braking = 0.4
Then P31 = 0.66
P32 = 0.34

Summarizing in matrix form,

M

P P

P P

P P
1

11 12

21 22

31 32

=















PIJ = probability of exit state J for given entry state I

The consequence tree for this event sequence is analyzed independently.  There are only
two entry states: MISS, or exit state 1 from the previous tree and HIT, or exit state 2 from the
previous tree.  The exit states of the consequence tree are concerned with consequences to the
deer, to the car, and to the driver's insurance policy.  It is assumed that the animal dies if it is hit
and damage to the car is sustained - in reality, degrees of consequence might be considered here as
well.  The consequence tree may be drawn as:

- 5 - - 6 -     EXIT STATE 
Degree of Insurance Number Animal            Car            Insurance

Miss Damage Status damage
1 Alive None       OK

Hit
0 1 Alive None       OK

0.2 2 Dead Minor       OK

0.6 3 Dead Moderate   OK

0.2 0.5 4 Dead Major       OK

0.5 5 Dead Major       Canceled
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Or, in matrix form:

M
P P P P P

P P P P P2
11 12 13 14 15

21 22 23 24 25

1 0 0 0 0 0

0 0 0 2 0 6 0 1 0 1
= =

.

. . . . .

Where Pij= probability of consequence j given entry state i.

These event trees (now expressed as probability matrices) can be combined to give a
probability matrix describing the probability distribution of various consequences (end states) for
each of the defined input driving conditions (entry states).  Let the probability of consequence j
from driving condition i be Pij; then

P P P P P S P Pij i j i j
k

ik kj= + =
=

1 1 2 2
1

2

or, in matrix form: M P M Mij3 1 2= [ ] = ⋅

Numerically, the result is:

M M1 2

0 84 0 16

0 60 0 40

0 66 0 34

1 0 0 0 0 0

0 0 0 2 0 6 0 1 0 1
⋅ = ⋅

. .

. .

. .

.

. . . . .

M3

0 84 0 032 0 096 0 016 0 016

0 60 0 08 0 24 0 04 0 04

0 66 0 068 0 204 0 034 0 034

=

. . . . .

. . . . .

. . . . .

The event tree also can be segmented or decomposed into a succession of simpler event
trees, each one containing only the relevant conditional probabilities (C.P.).  For example,
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Conditional Probability Matrices for Each Step of Event Tree

Question Entry States Exit States Conditional Probability Matrix

Timely notice? (3) 1-normal
      2-sleepy
      3-speeding

(4)  1-no sp, timely not.
       2-no sp, late not.
       3-speed, timely not.
       4-speed, late not.

           0.9    0.1     0    0
M1 =   0.5    0.5     0    0
           0        0      0.9  0.1

Timely braking? (3)  1-timely braking
       2-late braking
      3-no braking

           0.8   0.2    0
M2 =   0      0       1.0
           0.4   0.6    0
            0      0      1.0

Brakes working? (4)  1-timely, brakes ok
      2-timely, brakes fail
      3-late braking
       4-no braking

           .999 .001    0      0
M3 =      0      0    1.0     0
               0      0     0     1.0

Animal evades? (2)  1-miss
       2-hit

1.0   0
M4 =    0.5    0.5

0.5 0.5
             0.3    0.7

Degree of damage? (4)  1-none
       2-minor
       3-moderate
       4-major

M5  =   1.0    0    0    0
              0   0.2  0.6 0.2

FINAL STATE (5)  1-miss, no conseq.
       2-hit, minor damage
       3-hit, mod. Damage
       4-hit, major, ins.ON
       5-hit, major, ins OFF

             1.0    0    0    0    0
M6 =      0    1.0   0    0    0
              0      0   1.0   0    0
              0      0     0   0.5  0.5

The arrows indicate that the exit states of the previous event tree segment are applied as entry
states for the next segment.

Application to Reactor Systems

The methodology outlined in the above example can be applied at any level of complexity
desired by the designer/analyst.  The algebra quickly becomes difficult, so computer codes are
written to relieve the drudgery.  In general, the sequence contains the following steps.
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A. PLANT event tree (from initiating event [IE] to a set of post-accident plant states).

            Plant matrix M = [mkj] ,  where mkj is the probability that initiating event ik leads to plant
state yj.

B. CONTAINMENT event tree (from plant states to radioactive releases).

            Containment matrix C = [ckj], where ckj is the probability that plant state yk will lead to
release rj.

C. SITE event tree (from releases to a set of consequences).

            Site Matrix S = [skj], where skj is the probability that release rk

            will lead to consequence xj.

Now define a set of probability vectors (row vectors):

- Of occurrence of IE f f f fi i i i: , , ,...[ ] = [ ]1 2 3

- Of occurrence of plant state y f f f fi
y y y y: , , ,...[ ] = [ ]1 2 3

- Of occurrence of radioactive release r f fk
r

k
r:[ ] = [ ]

- Of occurrence of damage   x f fx x
l l:[ ] = [ ]

Then, f f My i[ ] = [ ]⋅

And likewise, f f Cr y[ ] = [ ]⋅

f f Sx r[ ] = [ ]⋅

Finally, f f M C Sx i[ ] = [ ]⋅ ⋅ ⋅

Hypothetically, the full risk spectrum of the plant can be described in this way.  In
practice, the method is limited by the need to consider only a relatively small set of initiating
events IE, and by the uncertainty associated with the completeness question: Are all possible
initiating events encompassed by those chosen?  Additionally, are all potential failure branches
included in the event trees?  By their nature, these questions cannot be answered precisely.
Nevertheless, the systematic analysis of any engineered system that is inherent in this
methodology makes it by preferable to the only apparent alternative, which is trial and error.
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2. Laws of Probability
These concepts are well described in Section 2-1 in Chapter 2 of McCormick.

3. The Bayes Equation
A simple development is given in Section 2-2 of McCormick.  Example 2.2 is of particular

interest; further details are given in Kaplan and Garrick, "On the Use of Bayesian Reasoning in
Safety and Reliability - Three Examples", Nuclear Technology 44, 231 (1979).  The following
example is based directly on CANDU operating experience.

The Frequency of Serious Process  Failures in CANDU Stations

The AECB Siting Guide combines probabilistic and deterministic rules that have been
developed over the past 25 years.  One of the fundamental precepts is that "serious process
failures" will occur which require response by special safety systems in order to prevent the
release of radioactive materials from exceeding amounts which could lead to radiation doses above
prescribed limits.  The assumed frequency of such serious process failures ("serious" being
defined as failures in which safety systems must intervene to prevent significant fuel failures) is
one per three operating years.

The Guide provides that, at a frequency of once per three years, it is acceptable that the
station release an amount of radioactive material off-site which would result in a whole-body
dose to the hypothetical "most exposed individual" of 5 mSv.  Consider a subset of serious
process failures that could produce consequences of this magnitude.  Historically, it is known
that such a large release has never occurred.  In fact, only minuscule amounts of radioactive
material have been released from these stations under either normal or accident conditions.

The Bayesian question posed is "Given the observation of more than 160 reactor-years of
CANDU operation with zero radioactive material release as a result of serious process failures
(to the end of 1989), what is the probability of the alternate postulates that the occurrence
frequency of this failure subset is one per 3 years, one per 30 years, etc.?"  The calculation can be
done on a hand calculator in about ten minutes; the result is shown in the following Table.

The Bayesian statistical argument relies on complete independence between each "event".
In this case the event is one reactor year of operation without a serious process failure having off-
site consequences.  It seems fair to assume that one year's experience is independent of the next.
The other data needed are the assigned prior (before the observation) probabilities of each
postulated event frequency.  The Uniform Prior Distribution says that we didn't know what to
expect for the frequency of serious process failures with consequences.  Added information from
the observation "none in 160 years" reduces the probability that the real frequency of occurrence
is one in three years to about 10-20, and the probability that the real frequency is one in thirty
years to 0.3 percent.  The observation cannot distinguish between postulates 3,4, or 5.
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Frequency of Serious Process  Failures with Offsite Consequences in CANDU Reactors

Postulate Number
1 2 3 4 5

Postulated frequency
probability of zero events in
160 reactor years*

3x10-1

0
3x10-2

.008
3x10-3

.618
3x10-4

.953
3x10-5

.995

A.Uniform Prior
Distribution
Probability of Postulate
Probability of postulate given
zero events

0.2
0

0.2
.003

0.2
.24

0.2
.37

0.2
.38

B.Estimated prior
distribution
Probability of postulate
Probability of postulate given
zero events

0
0

.05

.0005
.50
.41

.40

.50
.05
.07

* probability = (1.0-postulated frequency)160

Now, if we use our best judgment about the real frequency of occurrence to estimate the
prior distribution and then redo the calculation, the result of the observation skews the
distribution even further toward the improbable end as seen in the Table under Estimated Prior
Distribution.  There is a diminishing return here because, with the prior distribution estimate, one
is biasing the results.  But at least we can eliminate postulate 1 from the list and can conclude that
the probability of the recurrence frequency being as large as one in thirty years is quite small.  As
operating experience accumulates, now at a rate of 20 operating years per calendar year, these
probabilities will become more firmly established.

The conclusion of this exercise can be expressed as follows: "As a result of direct
operating experience with CANDU reactors, it has been found that the actual probability of
occurrence of accidental radioactive releases is at least a factor of ten less than expected when the
Canadian safety regulations were drawn up.  This record is a credit to the diligence and care of the
Utility operations staff, regulatory staff of the AECB, and finally AECL and Ontario Hydro
designers.  It is a record of which Canada can be proud."  Such a statement should bring a lump to
the throat of folks in the nuclear business and have a positive effect on public opinion of our
enterprise.  It might even reduce the pressure for making licensing regulations ever tighter.

This is an example of the direct use of real operating experience to slowly adapt the
licensing system so that it more closely represents a true picture of plants risks.  (Bayesian
statistical reasoning can be applied to a large number of reliability and safety questions.).
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The Siting Guide could be modified by introducing a second pair of steps in the graphical
illustration, as shown in Figure 3.1.  There would then be a new class of process failures with the
old frequency limit of 1 per 3 years, but with a consequence limit of 0.5 mSv.  The corresponding
dual failure limit would be 1 per 3000 years at a consequence of 25 mSv whole body.  The second
class of process failures would have a limit of 1 per 30 years with the old consequence of 5 mSv;
the dual failure component would have limit of 1 per 30,000 years at a consequence of 250 mSv
whole body. Further years of reactor operating experience might reveal justification for even
greater reductions.

Figure 3.1 – Risk-Limiting Regulation
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4. Probability Distribution Functions

This topic is summarized in McCormick Section 2-3.  It is covered in more detail in
Chapter 3.

5. Probability Concepts for Failure Analysis

This subject is covered adequately in McCormick Section 2-4.

6. Probability Distributions

This topic is covered in Chapter 3 of McCormick.  Knowledge of only a subset of this
information is expected.

7. Data Manipulation, Failure Data

This material is covered in Chapters 4 and 5 of McCormick.  Only general familiarity
with these Chapters is expected.
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