Changes in Reactor Power with time

Neutron Life

- Average distance travelled <1m
- * Life time 0.001 sec

Power Increase

$$P_{1gen} = P_0 \times k$$
$$P_{2gen} = P_0 \times k \times k = k^2$$
$$P_{ngen} = P_0 k^n$$

If a generation is 0.001 second then after 1 second

$$P_{1000} = P_0 \times k^{1000}$$

Power Increase

If a generation is 0.001 second then after 1 second

$$P_{1000} = P_0 \times k^{1000}$$

For a ¹/₂ mk reactivity insertion

$$P_{1000} = P_0 \ 1.0005^{1000} = 1.64 \ P_0$$

This is not the case!!!!

We have not taken into account the effect of the delayed neutrons.

Reactor Period

For small changes in reactivity it can be shown that

$$P = P_0 e^{t/T}$$

Where $T \approx \frac{l}{\Delta k}$ for small Δk

Reactor Period

- The time it takes for reactor power to increase by a factor of e
- * Need to be long to control the reactor
- Proportional to average neutron life time
- * Inversely proportional to changes in reactivity Δk

Reactor Power Changes

Reactor Periods of 10 and 100 sec

Effect of delayed neutrons

≈ 0.65% of all neutrons are delayed
Average life time of delayed neutrons is ≈ 13 sec.
This drastically alters the average neutron life time

 $l = .9935 \ge 0.001 + .0065 \ge 13 = 0.085$ seconds

Effect of Delayed Neutrons

Now our one-half millik change in reactivity after one second

$$T = \frac{l}{\Delta k} = \frac{0.085}{.0005} = 170$$
$$P = P_0 e^{t/T} = P_0 e^{t/170} = 1.006P_0$$

A much more manageable power increase.

Prompt Critical

- * Previous approximation for small Δk
- For large ∆k the effect of the delayed neutrons is negated
- Reactor power changes with prompt neutrons only
- Rapid power changes

Summary

- Reactor period must be long for control to be possible
- Depends on average life-time of neutrons
- Most neutrons have a life time in the range of 1 msec.
 - These are prompt neutrons.
- Delayed neutrons appear after the fission process.
 - Delayed neutrons increase the average life time of the neutrons

Xenon

A Fission Product Poison

Xenon

Equilibrium Xenon

Xenon Disappears

Equilibrium Xenon Concentration

Xenon Transients

Reactivity Temperature Effects

NRX Experiment

- ∗ mk/°C or µk/°C
- Moderator
- Heat Transport System
- * Fuel
- * Each is independent
- * Each happens on its own time scale
- * At power fuel predominates

Fuel

- * Two effects
 - Increased resonance Capture
 - Changes in relative cross sections
- * Coefficient is negative
 - Increase temperature adds negative reactivity

Increased Resonance Capture

Changes in cross sections

Probability of a fission

Probability of absorption in fuel

 $\sigma_{f}^{\mathit{fuel}}$ $\sigma^{\scriptscriptstyle fuel}_{\scriptscriptstyle a}$

Decreases for U-235 (adds negative reactivity)

Increases for Pu-239 (adds positive reactivity)

In equilibrium fuel the Pu-2398 predominates

Plut like 'em hot

Combined Effect

- Resonance broadening always predominates
 - Always negative
- * More negative with fresh fuel
- * Fresh fuel \approx -0.013 mk/°C
- * Equilibrium fuel -0.004 mk/°

Power Coefficient

- Total reactivity change for zero power hot to full power
 - Zero power hot is a term used to denote the moderator and HTS up to operating temperature but low fission power levels
- **∗** ≈ 5 mk

Void Coefficient

- Reactivity change for complete voiding of the HTS
- * ≈+10 mk for complete voiding - This is a bad thing
- * HTS cannot void completely instantly
- Reactor trips on high rate of power change and high power protect the reactor