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Reactivity Control Devices

How the Control Devices Work

Chapter 13

Control = Regulation + Protection
� CANDU reactors use a dual computer system

for automatic regulation of reactor power
– the control room operator does not usually control

reactor power directly, but monitors the automatic
actions of the control computer. 

� Two independent safety shutdown system,
SDS #1 and SDS #2 are always poised to
insert a large amount of negative reactivity
– if their independent instruments indicate a

parameter is outside its acceptable range
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Regulation: requirements
� Hold reactor power at the demanded value

(the power setpoint)

� Increase or decrease reactor power
gradually at the controlled rate requested.

� In the high power range maintain spatial
power control as well as bulk power control

� If bulk or spatial control or other parameters
cannot be regulated, provide power setback
or stepback to regain control and avoid
challenging the SDSs

Protection

The 4 Special Safety Systems
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Protective Systems

� There are four special safety systems
– SDS #1 for independent rapid shutdown

– SDS #2 for independent rapid shutdown

– Emergency Coolant Injections
» to refill the Heat Transport System with water, rewet

the fuel, and provide long term inventory and
cooling after a loss of coolant accident

– Containment System
» to prevent or limit radiation from escaping to the

environment if there are fuel failures on a loss of
coolant accident

The Capabilities of the SDSs

� Rate and Depth of Shutdown
– these are fixed at the design stage by analysis of

worst case design basis accidents

� Each SDS must be able, acting alone, to
reduce reactor power to an acceptable level

� Each SDS must have an effective primary
and backup trip for each upset.
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SDS #1
� A set of 28 or 32 rods, cadmium tubes

sheathed in stainless steel,

� Held out of core, against springs, by electric
clutches that de-energize if any trip
parameter is outside the acceptable range

� Fall by gravity (spring assisted start) into
the core

� Worth at least 80 mk in newer stations
– no credit given in the safety analysis to control

absorbers dropping or zones filling,
» the regulation system does this when it senses a trip.

SDS #2
� 6 to 8 tanks of Gadolinium Nitrate solution

� Injected through nozzles into the moderator
by high pressure helium

� Quick acting valves apply the helium
pressure when any trip parameter is outside
its acceptable range

� Newer stations can inject more than 50 mk in
a second and about 100 mk in just over 3 s
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CANDU Reactivity  Devices

Regulation

Physics of Reactivity Control
� The reactivity devices adjust the amount of

absorbing material in the core
� This affects thermal utilization, f.
� Other reactivity control methods are possible:

» moderator temperature adjustments change reactivity, by
density, path length, and spectrum effects
� occasionally use in a limited way if fuelling machines are

unexpectedly unavailable
» reducing moderator level increases leakage and reduces

reactivity
� was part of  the control system in early CANDUs

» moderator dump: fast neutrons leak out and fission stops
� simple, reliable but slow shutdown system in early, small CANDUs

» booster rods have been used in some CANDUs
� no longer available or licensed for use
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Rod Worth - Driven Slowly
� A rod is worth more in a high flux region

than in a low flux region.

� As a rod is driven in, it starts in a low flux
region (the top of the core) and then has
more “bite” as it drives further.

� However, the rod itself depresses the flux in
the region where it is being driven, making
the rod less effective again at the end of
travel.

Flux Distortion
� If the rod is driven in as a reactivity “shim”,

i.e. with the reactor still at power and the
liquid zones dropping to compensate for the
absorption in the rod
– the flux depression at the location of the rod

will be compensated by flux increase elsewhere

– resulting in a distorted flux shape

� e.g. a rod driven into a high flux region near
the middle “pushes” flux to the edge
– it reduces reactivity mainly by absorption, but

– partly by increased leakage.
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Rod Worth - dynamic reactivity
� When SDS #1 rods drops quickly into core the

prompt population immediately collapses
� The subcritical flux in the core comes from

amplification of the delayed neutrons
� The delayed neutrons will be strongest where

the pre-trip flux was highest & post trip flux is
also highest at these locations

� SDS #1 rods are inserted, by design into the
high flux regions, giving them maximum “bite”
– Safety analysis, nevertheless, conservatively

assumes “static” rod worths
– the rods are assumed to cause flux depressions

where they are inserted, reducing their bite.

the liquid zones
� 14 liquid zone compartments (variable H2O

level) distributed in the core
– these are the first line of regulation for the

automatic regulation system
– they regulate bulk power and

spatial power distribution

� The “worth” of the zones is about 0.07mk per
% zone level
– 7 mk from completely empty to completely full
– best operating practice is to keep them near 40% ,

but definitely in the 20% to 80% range.
» this allows about +1.5, - 3 mk available
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the control absorbers
� 4 Control Absorbers - same construction as SOR

(cadmium tubes sheathed in stainless steel)
– normally not in the core, poised for

» setback (gradual power reduction) and
» stepback (sudden power reduction)

– setback and stepback are not completely
independent of the regulating system

» they use the same instruments and are operated by
the same control computers,
� but are run by different computer software

» they are an integral part of the regulating system
design to help make it more robust.

– also used by regulating system if zones run out
of room high

the adjuster rods
� A set of Adjuster Rods (mildly absorbing

stainless steel rods) is normally in the core.
– typically 21 or 24 rods in 6 or 7 “banks” of  2 to 4

rods

– these can be removed from the core one bank of
rods at a time to increase core reactivity, e.g.

» for override of a xenon transient

» reactivity shim when fuelling is not adequate

� Their function in core is to flatten the flux shape
to allow a more even power distribution
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Adjusters - reactivity shim
� Notice that each bank of adjusters, on

removal, has the equivalent reactivity of
approximately 50% zone level.

� If zones are low (15% level, say),
withdrawal of 1 bank of adjusters while the
zones hold the reactor power constant,
results in zone level rising to about 60%

� Some flux flattening is lost with adjusters
removed
– it may be necessary to reduce bulk power to

limit local flux peaks (hot spots)

Adjuster
� Adjuster banks  must be removed and inserted

in the correct, analyzed, design sequence

� Local flux peaks must be limited
–  operating rules determine the power reduction

necessary before a bank can be withdrawn

– analysis is invalidated if the sequence is changes

� The actual worth of a rod bank changes,
dependant on the configuration of other rods
in core
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Adjusters
� The reactivity worth of a rod depends on the flux

shape.
� A rod near the high flux center of the core has

more reactivity worth than one at the edge.
� If the flux shape is increased or decreased in a

region because other rods are deployed out of
sequence, than the rod worth will not be what
was analyzed
– its effect will not be as predicted.
– such rod interactions are called

» shadowing (when another rod reduces the rod worth)
» anti-shadowing (when another rod increases the rod worth)

Adjusters: Shim and Override

� When adjusters are removed to override xenon
the core flux is less peaky than if the rods are
removed to compensate for insufficient
fuelling (i.e. to raise zone levels)

� Xenon transients are highest where the flux
was highest, so the high peaks are normally
depressed by the xenon.
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the poison addition system
(& purification)

� An addition system for soluble neutron
absorbing chemical, (and purification system
for removing such chemical), is used for:
– xenon simulation
– fuelling shim to allow limited excess fuelling
– fresh fuel shim
– establishing (and removing) the GSS

� Automatic (slow) addition is provided to
offset reactivity addition e.g. by unmonitored
xenon decay.

Which Poison Should We Use,
Boron or Gadolinium?

� The text has quite a bit of information on this

� Some stations no longer use B as the removal
cost is too high

� The most important features that distinguish these
neutron absorbers are:
– cross section: Gd has a much larger σa than B

– ionization: Gd is strongly ionized in solution, B is
weakly ionized
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B and Gd, what does it matter?

� For Nuclear reasons (the cross sections) B
should be used for long term shim (e.g. in
the first few months of reactor operation
with fresh fuel) because it burns out slowly.

� Gd should be used for xenon simulation,
because it burns out at almost the same rate
as xenon builds up to equilibrium

B & Gd Removal from Core
� When Ion Exchange (IX) columns are used

to remove B from the core, the B ions are
weakly attached to the resin.

� They equilibriate with about 5/6 of the B on
the IX resin and 1/6 in the moderator water

� To clean up, a second IX column is needed,
which removes 5/6 of what is left.

� This becomes very expensive if the original
concentration is high.
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Gd Removal from Core
� Gd is strongly ionized and the IX resins remove

essentially all the Gd passing through them.  Each
IX column can be used many times before sending
it to the waste disposal plant.

� For long term use, continuous addition and
removal of Gd is less expensive than using B.

� One disadvantage is that high conductivity in the
moderator water promotes radiolysis of D2O to D2
and O2.
– The recombination unit in the Moderator Cover Gas

system can normally handle this with no problem.

� Other soluble compounds of Gd are being tested.

Reactivity Effects

Quick Review of Previous Chapters
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burnup

� Fuel burnup at full power reduces reactivity
by 0.3 to 0.4 mk per day

� This decrease can be offset by liquid zones
– zones drop about 10% /day if there is no fuelling

� Refuelling typically increases reactivity by
about 0.1 mk to 0.15 mk per channel fuelled
– typically 4 or 8 bundles are replaced on a visit

(in a channel of 12 bundles)

temperature & xenon on a
maneuver

� On a power maneuver the immediate
reactivity effect comes from temperature
change (negative feedback)

� This is followed by a slower bulk xenon
reactivity effect (slow, positive feedback)

� Since power is not uniform across the core,
different xenon transient strength in
different regions may trigger oscillations
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device response to temperature
and xenon on a maneuver

� If the zone levels are too high it is difficult
to reduce power using the zones as they
cannot go much higher
– the temperature effect will add reactivity as

power drops and prevent it dropping further

� It is also difficult to raise power with the
zones too high
– the initial power increase is easy, as the zones

have lots of room to go down
– the subsequent xenon transient, however,

requires a large zone level increase

Equilibrium Xenon after Restart
� Restart on poison out after a trip

� The reactor is made critical as soon as
possible after xenon decays following the
poison out

� When the core is taken critical and power
raised, the xenon will burn down, with no
iodine decay to replace it

� The poison addition system is used to add
neutron absorber.  This is called xenon
simulation

� More on start-up in Chapter 14
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Cold Shutdown to Startup
� When shut down for maintenance the reactor is

placed in the GSS, deeply subcritical

� Reactivity changes on warmup to zero power
hot will not be a concern because the reactor
will have sufficient poison to stay shut down

� Final warm up is done with pump heat and
fission heat after taking the reactor critical in a
controlled way.
– the liquid zones are sized to handle the startup

temperature changes

Miscellaneous Reactivity Effects
� Samarium, Plutonium, Rhodium etc. have

small transient effects on a long shutdown
or on restart after a long shutdown

� These effects are almost always
overshadowed by xenon transient effects

� They contribute to the uncertainty of how
subcritical the core is
– demanding a careful start-up procedure (Ch 14)

but they do not cause operational problems
or problems of reactivity control.
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Miscellaneous Reactivity Effects
(continued)

� The net effect of decay to Sm and Pu after a
shutdown is about +6 mk, but this takes a week
or two to build up.
– on immediate restart after a poison out there is

almost no net reactivity from this source
– on restart following a long shutdown the extra

reactivity is present, so is the extra 28 mk from
xenon decay

– both must be offset using poison addition

� After restart, following a long shutdown, Sm
burns down faster than Pu
– giving temporary extra reactivity for a few days

Reactivity Worth of
Zones & Rod

Offsetting the Inherent Core
Reactivity Effects
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Zones
� The zones, if kept near their mid points by

judicious fuelling
– or use of poison addition after excess fuelling

can compensate for immediate temperature
effects on power maneuvers between, say, 50%
and 100%
– they may need to be backed up by adjuster outdrive or

control absorber indrive
» but this is admission of failure to maintain adequate fuelling

� Adequately sized to limit and then damp out
xenon oscillations

Adjusters
� On an SDS #1 trip from full power the xenon

transient is likely to make the core so subcritical
that it cannot be restarted for 36 hours or so

� The adjusters are sized (typically 15 to 18 mk) to
allow over-ride of the transient if the rods can be
fully removed in 30 to 40 minutes from the trip
(design intent, but not used)
– Considering the slow speed of the rod drives this

means the decision to restart must come about 20
minute after the trip

– Trip review always takes longer than this
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Control Absorbers
� Control Absorbers are typically worth about10 mk

� On a stepback there is a prompt drop from 100% to
about 50% (taking account of temperature
reactivity increase)

� Subsequently, power drops as the delayed neutrons
decay
– below 10% in a few minutes

� Power can be dropped from 100% to 60% (poison
prevent operation) without poisoning out
– i.e. the transient is low enough that adjuster withdrawal

can keep the reactor critical at power through the
transient.

Automatic Reactor Regulation

Reactor Regulating System

RRS
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Control of the Liquid Zones
� The “empty” part of the liquid zone control

compartment, above the H2O, is filled with helium
at pressure, connected to a separate helium circuit
for pressure control
– Helium enters the compartment through a “bubbler”

that measures the water level.

� Water is forced out of the zone compartments at a
constant rate by helium pressure

� Control valves are held partly open at a bias setting
that exactly matches water inflow to outflow

Valve Lift
� The regulating system moves the control valves

away from the bias position to raise or lower the
water level in the zone

� It is not controlling water level, however, but
measured power level

� (Valve Lift)i = (Bias)i + Bulk Lift + (Differential Lift)i

� The label i runs from 1 to 14, labelling each zone

�  Each valve is biased about 50% open, but
different lengths of tubing give different flow
resistances so biases are adjusted individually.
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Power Increase
(Valve Lift)i = (Bias)i + Bulk Lift + (Differential Lift)i

� Suppose the Operator request a power increase by
typing a new power into the control computer.

� This changes the setpoint and there is now a
difference (an “error”) between the measured value
and the setpoint.

� The control system decreases the bulk lift term on
all 14 control valves (valves close in proportion)
– this decrease water inflow while outflow stays constant
– all 14 zone levels drop and power rises
– bulk lift ∝ error, so the valves return to the bias setting

when the error goes to zero.

Temperature Effect on Zone
the advantage of negative feedback

� The zone level will not be the same as it was
before the maneuver
– core reactivity is less because of the higher fuel

temperature (mainly) so the zones stay lower

– on a small, slow maneuver, the zone will simply
move slowly down to the new position while the
power moves gradually up

» it is not necessary for the zones to drop to raise power
and then return above the original setting to stop the
rise, followed by a drop to the original setting to hold
power, as they would without temperature feedback
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Bulk Xenon Effect on Zone

� At higher power burns out xenon faster than it
can presently be replaced
– power will continue to rise slowly.

� The power error is based on the actual power
difference between measured and demanded
power, and on the difference between
measured and demanded rate
– this starts the regulating system opening the

control valves again to raise zone level as the
xenon burns out

Xenon Spatial Effect on the Zones
(Valve Lift)i = (Bias)i + Bulk Lift + (Differential Lift)i

� Xenon burnout is not uniform across the
core, so some individual zone power
measurements deviate from the zone
average.
– the regulating system adjusts the differential lift

term for each zone individually to restore the
power distribution

– the differential lift term in the control algorithm
is proportional to the difference between the
power from the zone and the average power
from all the zones.
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Spatial Control
� If a measured zone level is too high or too low,

the control system reserves the remaining
“room” for bulk power control

� Differential lift is phased out, typically between
80% and 90% and from 10% down to 0%

� RRS tries to prevent level dropping below 5% or
above 95%
– flooding of the helium lines at high level

– helium blow through of the water lines at low level

fails the regulating system

Phase Out of Spatial Control

� Spatial control is not needed, and not
possible once control passes to the ion
chambers

� When power rises on startup, RRS phases in
the differential lift term between 15% and
25% full power

� Transfer from ICs to ICDs is phased in
between 5% and 15%
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Control Absorber Rod Drives Logic

� RRS is designed to drive the rods automatically
when required by this logic diagram

Adjuster Rod Drive Logic

� Once a bank of adjusters start to drive, it does not
stop until it is completely out (or completely in).
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Power Error Ep
� Ep = Klevel [P(measured) - P(demanded)]

+ Krate [Rate(measured) - Rate(demanded)]
� Measurements were described in chapter 10
� Demanded values normally come from the

boiler pressure control program
– BPC asks for reactor power to match the turbine

demand.
» the operator gives the turbine/generator set a requested

power output

– The request can also come from the operator via
the keyboard
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