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ABSTRACT

The FORSIM program is a versatile general package for the solution
of partial and/or ordinary differential equation systems. The
program has been in use as an ordinary differential equation pack-
age for some time, both at Atomic Energy of Canada Limited and at
several other institutions and an adequate user's manual (AECL-
4311) already exists for this application.

The program has now been extended to provide automatic solution of
a variety of linear and non-linear partial differential equations.
The partial differential equations are converted into a set of
coupled ordinary differential equations, which are then integrated
in time using an error controlled variable step integration algor-
ithm.

The equations, initial conditions and any special instructions are
specified by the user in a single FORTRAN subroutine. This is
then loaded with the control routines which perform the solution
and any necessary input or output.

This report contains a description of the application of the
FORSIM system to partial differential equations, instructions for
its use, and several illustrative examples. A more detailed des-
cription of the philosophy and content of the FORSIM system has
been given in Atomic Energy of Canada Limited report AECL-4311.
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FQRSIM - Programme de simulation à vocation FORTRAN pour
la solution automatique de systèmes d'équations

différentielles, partielles et ordinaires

par

M.B. Carver

Résumé

FORS1M est un programme général polyvalent
permettant de solutionner des systèmes d'équations
différentielles, partielles et/ou ordinaires. Ce
programme est employé pour résoudre les équations diffé-
rentielles ordinaires depuis quelque temps à 1'EACL et
dans plusieurs autres établissements. Il existe déjà
un manuel destiné aux utilisateurs (AECL-4311).

Le programme FORSIM a été agrandi pour permettre
de solutionner automatiquement un assortiment d'équations
différentielles partielles, linéaires et non-linéaires.
Les équations différentielles partielles sont converties
en une série d'équations différentielles ordinaires
connectées, lesquelles sont ensuite intégrées dans le
temps au moyen d'un algorithme d'intégration à pas
variable dont les erreurs sont contrôlées.

Les équations, les conditions initiales et
les instructions spéciales sont spécifiées par l'utili-
sateur au moyen d'un sous-programme FORTRAN simple.
Celui-ci est alors chargé avec les sous-programmes de
contrôle qui établissent la solution et avec toute
entrée ou sortie nécessaire.

On trouvera dans ce rapport une description
de l'application du programme FORSIM aux équations diffé-
rentielles partielles, des instructions pour son emploi
et plusieurs exemples. Une description plus détaillée
de la philosophie et de contenu du programme FORSIM se
trouve dans le manuel AECL-4311.
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FORSIM: A FORTRAN-ORIENTED SIMULATION PACKAGE
FOR THE AUTOMATED SOLUTION OF PARTIAL AND
ORDINARY DIFFERENTIAL EQUATION SYSTEMS

by

M.B. Carver

1. INTRODUCTION

The study of partial differential equations (PDE's) is a
classical branch of mathematical analysis with many
important applications in Liie physical sciences and
engineering. Few PDE's have analytical solutions, but
with the advent of digital computers, an ever growing
number of numerical techniques have been developed for
their solution.(2)

Partial differential equations are frequently classified
according to their order, linearity and type. The order
is the highest order partial derivative which appears in
the equation. A linear PDE is of first degree in the
dependent variables throughout, a quasilinear PDE is linear
in the highest order derivative, ana in a nonlinear PDE
the coefficients of the highest order derivatives are
functions of the dependent variable. Finally the type
of equation is determined by analogy with a general
equation

(1)
3x" 3x3y 3y 9x 9y

and is called elliptic, hyperbolic or parabolic
according to whether the determinant

A B
B C

is positive, negative or zero.

The choice of an appropriate technique to solve a given
PDE is governed by its order, linearity, type and the
number of independent variables, so the novice is faced
with a bewildering number of algorithms, each of which has
its associated limits of application, stability problems,
and other quirks. For the numerical analyst, the field is
intriguing and the literature immense, but the engineer or
scientist frequently prefers a method which will supply
answers without requiring involved study in the field.
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For this reason, there has recently been interest in pro-
viding programs which will to some extent automate the
approach to the solution of PDE's and thus relieve the
user of a great deal of responsibility. Prominent examples
of this type of program are PDEL(3), DSS(4), and LEANS(5),
all of which use finite difference methods.

PDEL is a precompiler, in which one writes the PDE's in a
simple special format language which is then converted in-
to PL/1. DSS is FORTRAN oriented; the PDE's are specified
in a normal FORTRAN subroutine. Each of these programs
selects an algorithm appropriate to the type of equation
to be solved, and so is efficient for certain types of
PDE's, but neither can be used for systems of equations.

LEANS, which is also FORTRAN oriented, uses the method of
lines for all types of equations. In this method, each
PDE is converted into a set of ordinary differential equa-
tions, coupled in space, which are then integrated in time.
The method easily extends to equation systems, and this
feature gives it wide application. The FORSIM program has
been used to solve PDE's in a similar way since its incep-
tion (1) and the automation of the method requires no changes
in program structure.

The current version of FORSIM incorporates some of the
features of LEANS together with some improvements in imple-
mentation and accuracy. Three major improvements over
LEANS are the provision of a five-point finite difference
scheme as alternative to the normal three-point scheme,
the fact that FORSIM requires only one subroutine to describe
the equations whereas LEANS requires a minimum of five, and
the provision in FORSIM of an integration routine for stiff
equation systems. The first feature gives greater accuracy
at the expense of little extra computing time; the second is
not only more convenient, but also reduces execution time;
and the third can reduce the execution time by several orders
of magnitude in extreme cases. These features will be dis-
cussed in more detail below.

1.1 THE METHOD OF LINES

The method of discrete ordinates, or method of lines, in
which a partial differential equation is transformed into
a set of coupled ordinary differential equations by discret-
izing the space variable, has been studied extensively,
particularly in the USSR(2). In most early applications
the resulting ordinary differential equations were integrated
continuously in time on an analog computer. Sophisticated
numerical techniques involving automated error control are
now available for the solution of ordinary differential
equations and may be used to integrate 'continuously' on
the digital computer.
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A number of finite difference schemes have been proposed
for the digital solution of partial differential equations,
and implicit formulae, which remain stable for large time
steps, are most useful. For the one-dimensioned heat equa-
tion

at 4
9x

it can be shown that one of the more popular implicit
formulae, the Crank Nicholson scheme is equivalent to a
method of lines solution using three-point spatial differ-
ence formulae, and the trapezoidal rule for integrating in
time^"'. This is stable and accurate within a truncation
error proportional to the square of the spatial increment.
The combination of a five-point spatial difference formula
with an error controlled time integration algorithm reduces
this error to better than the cube of the spatial increment(7)

1.2 THE FINITE DIFFERENCE FORMULAE
FOR THE SPATIAL DERIVATIVES

Finite difference formulae for the derivatives of a poly-
nominal f (x) may be developed by considering the Taylor
series expansion

f(xk+h) = f(xk) (xk)
2

2T
f " { x k )

FT
(xk)

and the forward difference operator

A = f (xk+h) - f(xh) (4)

Using the symbol D for the derivative operator (1) becomes

f (xk+h) = + IT + f(xk) (5)

Combining this with (4) gives

A = e h D - 1

or hD = An{l+A)

which is expanded by Taylor series to give

(6)



- 4 -

hD = A - \ A2 + \ A3 (7)

Thus the derivative D may be obtained by taking the first
n terms of (7) with the n+lth term providing an estimation
of truncation error.

Similar formulae may be developed for higher order deriva-
tives, and also all derivatives may be expressed in terms
of forward or central difference operators. These are dis-
cussed in standard texts such as Hildebrand(8) and are
summarized concisely in Abramowitz and Stegun(9) which lists
the coefficients A. and truncation errors of the general
•xpansion

Dk f(x,) = - ^ - I A. f(x.) (8)
k m'.hK i=0 X X

where k is the order of derivative and m+1 is the number
of points involved in the expansion.

In PORSIM, spatial derivative formulae are programmed for
the three-point (quadratic, m=2) and five-point (quartic,
m=4) approximations.

1.3 THE ALGORITHMS FOR INTEGRATION
IN THE TIME DOMAIN

Once the PDE's have been transfermed by the finite differ-
ence formulae into a set of coupled ODE's in time, they may
be integrated by any standard algorithm. Integration algor-
ithms have been studied extensively, and the accuracy and
stability of a variety of proven routines are described in
suitable texts (10,11). In FORSIM the algorithms have been
chosen to cover a wide, spectrum of requirements and range
from the simplest possible fixed step method to intricate
variable order, error controlled methods. They are, in
order of increasing complexity:

(a) Eulers Method

Integration is performed by the application of the
first two terms of the Taylor expansion

y(t+h) = y(t) + hy1(t) (9)

with a fixed step size h specified by the user. This
first order routine requires only one evaluation of
the derivatives y1 specified in the UPDATE routine and
has a truncation error of order h^. it is prone to
rapid accumulation of error as the integration proceeds,
and becomes unstable at large step sizes h.
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(b) Trapezoidal or Modified Euler Integration

Tne trapezoidal rule is normally stated

y(t+h) = y(t) "(t+h)

and this can be approximated by a simple predictor
corrector method where the predictor is the Euler
formula above

yQ(t+h) = y(t) + hy
1(t)

and the predictor is used to obtain y'(t+h) as
follows

(11)

y(t+h) = y(t) y' (yQ (t+h) (12)

This is a second order method, requiring two deriva-
tive evaluations and has a truncation error of h-.

The above two routines were added to FORSIM to provide
fast simple routines suitable for use while debugging
the UPDATE routine and for approximation purposes.
The following routines which have been included in
FORSIM since its inception, provide greater accuracy
at the expense of requiring more derivative evaluations,
References 1 and 12 contain a discussion of the rela-
tive merits of the routines, their stability and
accuracy limits, and advice on the choice of algorithm.

(c) Fourth order Runge Kutta

This method requires four derivative evaluations and
is accurate to order h 5. It may be used in fixed or
variable step mode. In the latter case the step size
is maniuplated to maintain the local error in each
variable below a specifiable maximum. This requires
a minimum number of eight derivative evaluations per
time step.

(d) Adams1 Variable Order Variable Step
Size Predictor Corrector

This routine is a formulation of the Nordsieck method
of step control in the Adams' predictor corrector
reported by Gear (13), and has some speed advantages
over Runge-Kutta when equations are highly nonlinear.
Again, the step size is error controlled.
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(e) Gear's Variable Order, Variable Step Size,
Predictor Corrector for Stiff Equation Systems

Gear's algorithm(13) is one of the most widely
accepted methods for the integration of stiff equation
systems containing widely varying time constants. In
such systems, standard algorithms are restricted to
small step sizes by stability problems, but Gear's
method permits large step sizes to be taken, once the
initial transients have decayed below the level of
significance. Unfortunately this algorithm requires
a storage proportional to the square of the number of
equations as it requires a matrix inversion. Gear's
method is restricted to 70 equations in FORSIM because
of storage limitations and the time required to invert
the matrix.

(f) The Fowler Warten, Second Order,
Variable Step Routine(14)

This routine was also intended to handle stiff equa-
tions, and while not so efficient as Gear's, it is
a considerable improvement on Runge Kutta for such
systems. It is included in FORSIM as a viable alter-
native to Gear's method, for systems with a large
number of equations.

1.4 ACCURACY, COMPUTATION SPEED,
AND THE SPATIAL VARIABLE

In partial differential equations the accuracy of the solu-
tion obtained will be a function of three factors: the
number of spatial divisions chosen, the order of the finite
difference approximation of the spatial derivatives, and
the algorithm used for temporal integration. These three
factors are by no means independent of each other.

The accuracy will, of course, increase with the number of
spatial increments, but so does the number of equations,
and hence the time required. However, computation time is
not a simple function of the number of increments, as the
maximum time step attained by the integration algorithm is
frequently a function of the size of the space increment.
Thus any decrease in the space interval gives a disproportion-
ate increase in computer time.

A much more rewarding method of increasing accuracy is to
increase the order of approximation of the spatial deriva-
tives. Early investigations using FORSIM showed that to
obtain the accuracy given by the five-point formulae, the
three-point formulae require four times the number of
spatial division and over ten times as much computing time(15)
This is illustrated for a particular application in Figure 1.
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When the finite difference formulae were incorporated into
FORSIM, it was believed that the five-point formulae rep-
resented the optimum trade off between accuracy and computing
time, This has been confirmed by Loeb(16), who has inves-
tigated the possibilities of linking all the spatial points.

For most applications the combination of eleven spatial
points, the three-point difference formulae, and Euler
integration should be used for debugging purposes. The
accuracy of the solution may then be checked by proceeding
to five-point formulae, and then through trapezoidal to
variable step Runge-Kutta integration. The number of points
should probably be increased only as a last resort.
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2. WRITING THE USER'S ROUTINE, UPDATE, FOR PDE'S

2.1 INTRODUCTION

The specification of PDE's in the UPDATE subroutine differs
from the ODE case in that the equation itself is not writ-
ten directly. Instead, one defines the coefficients of a
master partial differential equation, which encompasses
most types of one-dimensional PDE's:

* ~i

(13)

The FORSIM system is designed to solve directly any equa-
tion which fits the format of this master equation, but
can also be easily adapted to handle equations containing
higher order derivatives or further spatial dimensions.

The master equation may have associated boundary conditions
at either limit of x, expressed in the form

— (B.u) + Bou = B-. (14)
9x X 2 3

Coefficients A-j_ and Bj_ may be constants or functions of u,
x, and/or t and the exponent c defines the coordinate system.

The PDE is defined by specifying the coefficients A and B
and some control parameters and then executing a call to
the FORSIM routine PARTIAL which converts the PDE into a
set of coupled ODE's. Linkage to the control routines is
accomplished through labelled common blocks.

2.2 OBLIGATORY COMMON BLOCKS AND THEIR PURPOSE

The UPDATE routine must contain the following blocks:

2.2.1 Integrals and Their Derivatives

COMMON/INTEGLT/U(10),Y
COMMON/DERIVT/DU(10),DY

In the common block INTEGLT, the user reserves space for
the current value of integrated variables, then in the same
order he reserves space for their time derivatives in block
DERIVT. The example indicates an array of variables U and
a single variable Y are to have derivatives

DU(I) = —(U(I)) and DY = — Y.
dt dt
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Any symbols may be used and in the current version of the
program 300 entries in each block are permitted.

The example shown could be used for an equation system
consisting of one partial differential equation (first
order in time) to be solved using ten spatial increments,
and one ordinary differential equation.

For equations which are second order in time, space must
be reserved for the second derivative in the following
pattern.

COMMON/INTEGLT/U(2 0) ,Y,DY
COMMON/DERIVT/DU(20),DYl,DDY

This reserves sequential storage for the two derivative
orders of the ten spatial approximations of U and also a
space for the second derivative of Y. As two common blocks
may not contain the same variable, the first derivative is
written DYl in the block DERIVT, and the UPDATE routine
must somewhere contain the statement

DYl = DY

as well as the definition of DDY. For the PDE, such assign-
ations are done automatically by the routine PARTIAL.

2.2.2 The Block of Reserved Variables

COMMON/RESERVD/T,DT,DTMAX,DTMIN,DTOUT,EMAX,...

T current value of the variable t.

DT current time step in the time integration algorithm.

nTMAY }
DTMIN» uPP e r a n d l o w e r limits set on DT.

DTOUT printout interval.

EMAX maximum relative local convergence error for the
time integration algorithm.

This block also contains other control variables, and all
of these variables except T and DT have default values which
may be changed by the user if necessary. For further des-
cription, see reference 1.
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2.2.3 Printout and Option Control Block

COMMOKT/C0NTR0L/IOUT,METHOD, . . .

IOUT is zero during integration and is set to 1 at
appropriate printout intervals as specified by
DTOUT. It may have other values (1).

METHOD time integration algorithm selector.

If METHOD=1 Runge-Kutta-Romberg is used (default).
-2 Adam's predictor corrector used.
=3 Gear's predictor corrector used.
=4 Fowler Warten method used.
=5 Euler's method used.
=6 Trapezoidal method used.

2.2.4 PDE Control Block

COMMON/PARTS/NDIF,NCOF,XL,XU,NL,NU,C,DX,X(3 00)

NDIF spatial accuracy control.
=0 three-point difference formulae are used.
=1 five-point difference formulae are used.

NCOF non-linearity control.

=0 the coefficients A are all constant or func-
tions of time only.

=1 some or all of the coefficients A are func-
tions of the spatial variable x or the dependent
variable u.

XL,XU

NL,NU

NL

lower and upper limits of the spatial variable x.

boundary condition control at upper and lower
boundaries.

NL=-1 no imposed boundary condition, the deriva-
tive at the lower end point will be computed.

NL= 0 normal boundary condition, the value of u
at the lower end point will be computed as
specified in the boundary coefficients BL.

NL= 1 Non-linear boundary condition in which one
or more of the coefficients BL are functions
of U(l). in this case the user may choose
to^iterate. Partial returns a negative
value- of NCOF if successive approximations
to U(l) do not converge within a relative
error of EMAX.
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C coordinate system control.

=0 cartesian coordinates in x.
-I cylindrical coordinates in x.
-2 spherical coordinates in x.

DX spatial increment.

X(300) spatial variable. Storage for x is reserved in
PARTIAL and made available to the user should he
require it in his routine.

2.3 ADDITIONAL OBLIGATORY STORAGE BLOCKS

The user must also reserve storage for the coefficients of
equations 1 and 2, which will be passed to the routine
PARTIAL.

For linear equations the following statement is adequate:

DIMENSION A(6),BL(3),BU(3)

The coefficients are arranged such that

Ail) = Air BL(1) = B 1 at X=XL, etc.

For equations in which the coefficients A depend on space,
a two-dimensional array must be reserved.

REAL Al(6,10) ,BL(3) ,BU(3)

The second dimension of the array must be the number of
spatial increments required. The coefficients may be set
using any appropriate logic:

A1(3,I) = U(I)**2

2.4 THE CALL TO PARTIAL

After all coefficients and controls have been set, the
discretization is done by calling the routine PARTIAL
£>s follows:

CALL PARTIAL(U,DU,A,N,BL,BU)

where N is the number of spatial increments and the arrays
U, DU, A, BL, BU have been defined consistently with N as
discussed above.
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2.5 STRUCTURE OF THE UPDATE ROUTINE

The UPDATE routine will normally be organized in four
distinct sections.

Storage Section

The first section will be the storage block containing the
common blocks and the coefficient blocks. This may also
contain data statements to set any constants.

Initial Condition Section

The first executable statement will normally check the
independant variable time and transfer to the initial
condition section only if T is zero.

In this section the user should set the initial values of
all the variables in the /INTEGLT/ block, plus any other
variable controls, or coefficients will remain constant
throughout the solution.

Dynamic Section

This section will define any coefficients and controls
which are time dependent and will contain calls to PARTIAL.
The derivatives of any ODE's will also be evaluated here.

Printout Section

This section should be entered only when IOUT=1, and
should contain appropriate output statements. It should
also contain a call to the FORSIM routine FINISH to check
termination conditions.

Examples of typical UPDATE routines are given in Appendix A,
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3. INPUT AND OUTPUT

3.1 INPUT

Data input is quite flexible, in that the user may either
utilize the routines supplied or organize his own input.
Full details are given in (1), but for most PDE's the
following input deck will be sufficient for a single run.

Col.l
4-

Card 1: title alphanumeric
Card 2: *NOPARS*

\

For more than one run per job, run parameters may be read
in using the PARS option.

Col.l Col.11 Col.21 Col.31
4-

Card 1: Title
*PARS*
ALF 1.0 BET O.

*PARS*
ALF 2.0 BET 0.

*FINIT*

The user must then include an additional common block for
parameters in the UPDATE routine.

COMMON/PARAMS/ALF, BET

and the control routines will set ALF and BET at the start
of each run. A new title and run number is given as the
first output of each run. Pages 14-17 of reference 1 des-
cribe the various options available to read input data.

3.2 OUTPUT

3.2.1 Numeric Output

There is an automated output routine which saves the user
the trouble of arranging formats, but for PDE's the user
will probably prefer to structure his own output. Printing
should be done only when IOUT=1 except for debugging runs
when a printout of each iteration step may be desired.

3.2.2 Printer Plot

Up to ten printer plots may be obtained, up to five vari-
ables per plot (pages 15, 18 reference 1).
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4. UTILITY ROUTINES

Fourteen utility routines are loaded with the FORSIM
system, and may be called at any time by the UPDATE routine
They include routines for numeric output, printer plot,
limits, derivatives, switches, table interpolators,
delay functions and transfer functions (pages 17-23,
reference 1). Any FORTRAN library routine or CRNL library
routine may also be used in UPDATE.
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APPENDIX A

EXAMPLES OF TYPICAL UPDATE ROUTINES

The following pages contain descriptions and listings of input
decks including control cards, the UPDATE subroutine, and input
data for a number of selected examples. They include:

1. The unidimensional heat equation
2. The unidimensional wave equation
3. The fourth-order beam vibration equation
4. The two-dimensional Laplace equation
5. A nonlinear equation.

In all cases, the output from the program w.is throughly tested,
against analytical solutions when available.
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Example 1: Unidimensional Heat Equation

^ = c2 $-£ , c2 = K/pCp (A-l)

This equation describes the temperature u(x,t) in a conductor
in which heat is permitted to flow only in the x direction. K
is thermal conductivity, p density and C specific heat.

If this equation is given the boundary conditions

u(0,t) = u(l,t) = 0 ,

u(x,0) = x, 0<x<^; u(x,0) = 1-x, %<x<l

and C = 1.0

The solution may be determined by Fourier series to be

»t) = (-) | T. 2 sin(niTx) e (A-2)
n -• (n=2i-l, m=i+l)

The UPDATE routine required to solve equation (1) is shown in
Figure 2. The initial conditions and the analytical solution
are computed from equation (2) in subroutine EXACT which is
not listed.

The storage area reserves "space for 11 points and the parameter
NDIV is set to 11. The arrays E and ER are not required for the
basic solution, but were used to store the analytical value and
the error between this and the computed value.

The initial values U(I) are set when time T=0 and, as all tne
coefficients of the master equation and boundary equations are
constant, they are also set here. Coefficients A2 and AA are 1.0
and all others zero. The upper and lower boundary coefficients
are identical here so only one array B is required. For UL=0
the boundary coefficient B_ is set to 1.0, the remainder are zero.

The call to PARTIAL must be executed each time UPDATE is entered,
but the printout section is required only when IOUT^O.

The parameters in /PARTS/ c.ll have their default values.



- 19 -

Example 2: Unidimensional Wave Equation

Lateral vibrations in an elastic string are governed by the equa-
tion

9 u 2 8 u
— o = c T (A-3)
31: 3x"

An analytical solution also exists for this equation. The pro-
gramming of the UPDATE routine is identical to example 1 with the
following exceptions.

(1) h± = 1.0, A 2 = 0.

(2) One should reserve space for the second derivative in the
common blocks.

COMMON/INTEGLT/U (at least 2N)
COMMON/DERIVT/DU (at least 2N)

As the system has 300 spaces reserved in eacn block, this
is really only essential when systems of equations are to
be integrated and the variable U is followed by another
variable.

As the UPDATE routine is so similar, it is not shown.
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Example 3; Beam Vibration a Fourth Order Equation

The lateral vibration of a continuous beam follows the equation

32v ,4 34y
T72 = "X 74
9t dy

(A.- 4}

This equation does not fit the format of the master equation as
it contains a fourth order spatial derivative. However, as the
routine PARTIAL may be used to fill any array with the spatial
derivatives of any other array, the fourth derivative is easily
handled by making two calls to PARTIAL, as shown in Figure 2.

Note that a different array of coefficients has been used for
each call to partial. The first call merely sets up the array

2
M = - i-X (A-5)

where M is passed in the normal position for 9y/3t, so no second
derivative in time is required. The second call, however, sets
up the second derivative in time.

i2 ^ay _ _ a y _
at2 = " I ? "

32M

3x2
(A-6)

As the two calls to PARTIAL deal with different arrays, and the
equation is second order in time, the user must also ensure that
M(I+N) is set equal to Y(I+N) -the current values of 9Y(I)/3T -
before executing the second call, as PARTIAL expects the first time
derivative in this position. Again a minimum of 2*NDIV storage
should be reserved for Y, DY and M.

Figure 3 contains the entire deck required to complete three runs
of this problem, and compare against the analytical solution.

For boundary conditions

y(0,t) = y(l,t) = Yxx(0,4) = y v vU,t) = y(x,O) = 0
xx

the primary mode solution is

y(x,t) = sin(iTx) COS(TT \t) (A-7)

This solution is computed at printout time and stored in array E,
and the absolute error between analytical and computed values is
stored in array ER.
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Under the initial conditions, y(x,0) is set to sin TTX and
3/ot(y(x,0)), stored in y(I+N) is set to zero. The coefficients
of the master equation have been set by data statements instead
of assignment statements.

The local routine SECOND returns expired CP time. The FORSIM
function FINISH prints out a message and starts the next run if
time T exceeds 1.0.

The parameter cards on input are set up to run three cases, varyinq
the number of points DIV and the three/five point difference
formula selector DIF. To complete the link, the block

/PARAMS/ DIV,DIF

is used, and as names may not be duplicated in common, the state-
ments NDIV=DIV and NDIF=DIF are required.
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Example 4: The Laplace Equation in Two Dimensions

The equation describing the steady-state temperature distribution
in a conducting plane is

^+1^=0 (A-8)
9x oy

At first glance it appears that this equation cannot be solved by
FORSIM, but a little thought reveals that it can be done quite
readily. As in all such problems, an initial estimate of the
temperature distribution is required, so one may treat the
problem as a transient, integrating the equation

!H -, i!" + A (A_g)
3t 9x^ 3y"

until the derivative approaches zero.
As this is a two-dimensional problem, one arranges an array
U(I,J) = U(x,Y) and completes the equations

— (U(I,J)) = ^-T(U(I,J=const) ) + —5-(U(I=const,J) ) (A-10)
3t 3x^ 3y

This is illustrated below.

The sample problem used is to determine the temperature distribu-
tion in the square plane shown in Figure 4. These were compared
against results obtained using the Gauss-Seidel method on
a 10 x 10 square mesh (16).

The axes chosen are shown in Figure 4 and the listing of the
UPDATE routine in Figure 5. As the problem is two dimensional,
the temperature array U(I,J) requires boundary conditions in
both x and y. The boundary conditions in y are simply

U(I,0) = 0 , U(I,10) = 100

These are specified in arrays BLY and BUY in the initial condition
section. The boundary conditions in x depend on the position
along the y axis, so must be set within the y loop in the dynamic
section.

The entire array U(I,J) is set to an initial value of 50 as a
first estimation, and the coefficients A 2 and A 4 are set to 1 to
compute only the first derivative in time and the second in space.

In the dynamic section the boundary coefficients for the x direc-
tion are specified for each y in arrays BLX and BUY. In the
insulated region
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— = 0

and outside this region

u = 100

The first call to PARTIAL calculates 3 /3x2(U(I,J=const)) , for
all J, and stores it in array Dl. Because of the storage sequence
of two dimensional arrays, this can be done only by passing an
array U(I=l,10,J) for each j. Therefore, to compute
32/3y2(u(i=Const,J)) for each I, one must first transpose the
matrix U(I,J) into the matrix F(J,I) and then compute
32/3y2(p(jti=const)), storing it in D2. The time derivatives
DU(I,J) are then computed by equation A-10.

The complete array is printed out every DTOUT seconds, and one
may check the derivatives for sufficient convergence.
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Example 5: A Nonlinear Equation

Burger's equation

3t 3x 3x2

is of interest in a variety of fluid flow programs and can be
solved analytically. In this equation the coefficient u on the
spatial derivative renders the equation nonlinear.

This type of equation is handled readily in the FORSIM nonlinear
option. This is invoked by setting the parameter NCOF nonzero.
All coefficients in the master equations must now be arrays in
the spatial direction, so the coefficient array A is now two
dimensional and is declared DIMENSION A(6,n) where n is the number
of spatial divisions.

Comparing equation A-ll with the master equation, it is apparent
that for all I, A(2,I) = 1 and A(3,I) = y.

Finally if A(4,I) = -U(I)/2 for each I, the master equation
reduces to A-ll.

The UPDATE routine is shown in Figure 6.
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APPENDIX B

RECENT MODIFICATIONS TO THE FORSIM SYSTEM FOR ODE'S

The Derivative Function PER

The call has been changed to F = DER(A,B,C,N) where the additional
parameter N is a unique index.

Field Length Input Block

As the FORSIM program is now entirely in overlay form, the code
contains calls to SFL to set the appropriate field length for
each overlay. The field lengths provided will be adequate for
most applications, but if a large number of routines are added
with UPDATE, these field lengths may need to be increased. This
is done by supplying two data cards which must precede all other
input for FORSIM. They are:

Col.l
4-

Card 1 *SFL*
Card 2 Octal number right justified in columns 1 to 10

The number on card 2 is an estimate of the additional field length
required and is added to the appropriate field length requests
before overlays are loaded.

Loading the User Routines

When only UPDATE is loaded, the COPYL method described in ref-
erence 1 is adequate.

When other user routines are to be loaded, the COPYN method is
again used; however, the COPYN control cards are a little dif-
ferent. On page 24, reference 1, the COPYN control cards
should now be

1,PLOT,X
UPDATE,SUB2,LGO
c , , A

as the UPDATE routine is now positioned in the middle of the
FORSIM file.
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Editing the FORSIM Program

The FORSIM system contains a number of utility routines which may
not be required for a particular project. The core required to
load may be considerably reduced by editing out the larger
utility routines or some of the integration algorithms. This may
be done readily by using COPYN to select the routines required
straight from the object file. It is not necessary to access
the source code.
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FIGURE 2

UPDATE S'jnooUTIMi: FOR HFAT -QUATI ON

E U P H A T F
C
C FC '<STM P H E TE ̂ T C A S E 1
C S O L U T I O N OF P . A S i n HEAT L Q U ^ T I O N - 1 P . W A ""CUT C E Q U A T I O N
G E Q U A T I O N I S n U / T T = C * O 2 l J / P X Z TA<<-1 C = 1 . r< ANC K X < i
c T f i K E i n t s y o ) = v n < y c . ! i u < x ) = i . - v . i < v < i
c
c
C fctSrlPV-ID COMMON ^LOG< c'.l 0 D A C, C

c
CCM^ON/TNTEGLT/'K 1 1)
C O M M O N / o r * i v T / o u t I D
CCMMOM/RF SFRVH/T,JT
C n T l T
C O i C O L l
C C M ^ O ' i / P C K T S / i v n i - , - I C O K , V L , X J , r J L , M J , : , H <
C I M E N ^ i n N E ( 1 1 ) » r P ( l l ) , A ( n ) , n ( 3 )c
I P ( T ) 1 0 , 1 c , t n

C INITIAL CONOITTONf.
c

10 NCI\/ = 11
C A L L r x t c T ( U . F , - : ^ , r , n x , f J T V , C M X , e a v >
CO 2(1 1 = 1 , N D T w

?a u ( i > = r ( i )
c
C SET UP P f l P A M r T . - J ? r n ^ e f ' T T A L ( T M - - C l\ ->t CON'STAMT H F R E )
C

m i ) - | l ( 3 ) = » ( 5 ) = ! > ( ' : ) = : l ( l ) : ' l ( ] ) : 0 f A ( ? ) = A ( i + ) =P ( 2 ) = 1 ,
c
C C A L L P A R T I A L TO M T:-CV. TT r f T r ' ; f " I 1 4 T I '>J ~ TN ^ P C T E
C

««0 C T L L P A P T I A L ( : j , n | l , i ^ i r i 7 , ' . l , •"')
C

I F ( I O ' T . E 0 . 0 > - L: T ' K ' N
C
C I F P P I ^ l T OUT T T ' i r . j C A L r . u i . A T f ^ X A C T \ M L ' i e >

F X A C 1 ( l J , ' " , f R , T , H X , N 3 1 V , £ ' • ) < , PC V )
C
C CLTPIIT M!0 r n n ";Mf r.K \
c ~ • v

P P I N 1 " 1 0 0 | T , H T , ~ • 1 X , t - ft V , C J ( T ) , r. ( T ) , - ^ ( 1 ) , 1 = 1
1 0 0 F O R M A T ( 1 H U , ( 4 G 1 . ' . " , / ( X , ? ?i 1 ? . 5 ) )

C
I F ( T . r . C ? . 0 0 ) 3 T ) °

c
E N T
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• FIGURE 3

• COMPLFTE OFCK TO RUN 2 CASES OF BEAM v n R A T I C N EQUATION

B E A M , B 2 3 5 - M C , C M i 0 0 0 t i 0 3 , T 2 5 . JO 3 CONTROL CARD
FTN. COMPILE THE LFCATE ROUTINE
ATTACH(Y,FORSIM) AC3fcSS THE FORSIM PROGPAM
COPYL (Y,LGO,GO) INSERT THE LFCATE ROUTINE
GO. EXECUTE

00EOR
SUBROUTINE UPDATE

• FORSIM PDE TEST CASE 3
• SOLUTION OF THE TEAM VIBRATION EQUATION
• D2Y/DTZ = D'«Y/OY't O<X<1
• SIMPLY SUPPORTET HEAM WITH I N I T I A L DEFLECTION Y=S IN(P I»X )

COMMON/DERIVT/OYCfit) / INTEGLT/Y <<»<») /CONTROL/ICUT
COMMON/RESERVD/T,DT/PARAtfS/DIV,DIF
CCMMON/PARTS/NOIF,NCOF,XL,XU|NL,NU, Z

REAL A Y ( 6 ) , A 1 ( 6 ) , S ( 3 > , E u 4 ) , E 3 U < * > , M ( ( * i t > , E l ( i « i » ) , E ? U i » )

• DATA FOR PARAMETERS I N PARTIAL

DATA A M / 1 . 0 , 0 . 0 , 0 . 0 , - 1 . . 0 . 0 , 0 . 0 / , A Y / 0 . ( 1 . 1 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 /

\\ B/0 . 5 , l ! o , 0 . 0 / , D I / 3 . 1 i i l 5 9 2 / '

I F ( T ) 1 0 , 1 0 , 4 0

• I N I T I A L CONDITIONS
*

ID O X = ( X U » X L ) / ( D I V - 1 . 0 )
NDIF=DIF S N = OIV % NN=N-1 i o [ S O = P I * P I
CALL SECOND(Tl)
DO 2 0 _ I = l i N

20 Y ( H

• CALL PARTIAL TWICE 1 t» 1̂ = 02Y /DV2 , 2 * H2Y /D I? =
*

t*Q CALL PARTIAL ( Y , M , A Y , N , 0 , 3 )
DO 5 0 1 = 1 , N

5 0 M ( I + N ) = Y ( I + N )
CALL PARTIAL(M,DY,AM,N,P,9)

IF(IOUT.EQ.0)RETURN

• IF PRINT OUT TIME COMPUTE EXACT VALUES FOR COPFARISON
*

60 DO 70* 1 = 2 ,NN
Ed) =SIN(PI*OX» ( I -11) •COS(PISQ*T)
- - • - - • / ( I ) $ E l d ) =-Y (I)»PISU

[) S EMX=AMAX1(E1<,ABS(ER(I)>>
70 E 2 ( I ) = - F 1 ( I ) * P I S Q

EAV=EA7/(OIV-3)
*

T2=T1 S CALL SECONO(Tl) J SZC=T1-T2
PRINT 100,T,DT,SEC,EHX,EAV,

, ( Y ( I ) , E ( I ) , E R ( I ) , M ( I ) , E l ( l i , O Y ( I + M , E 2 ( I ) , D Y ( I ) , I = l , N )
100 F O R M A T ( * 0 » 5 G 1 2 . 5 , / ( X , S G I 2 . 5 ) )

FIN=FINISH(T,1.0 , '»4TIME)
END

00EOR

EXAMPLE 4 BEAM VIBRATION tQUATION D?Y/QT2=
•PARS*

DINV 2 1 . 0 n i F l .
•PARS*
OIW 2 1 . OIF 0.
•PARS*
DIV 1 1 . DIF 1 .
•FINIT*
A17E0F
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FIGURE 5

UPDATE SUBROUTINE FOR LAPLACE EQUATION
SUBROUTINE UPDATE

C
C FCRSIM PDE TE5T CASE >*
C TEHPERATURE DISTRIBUTION IN A SQUARd PLATE
C LAPLACE EQUATION OU^OT=0=D2U/OX2 + DU2/DY2
C

COMMON/INTEGLT/U<10,10>
COMM ON/ DERIVT/OU( 1 0 , 1 0 )
COMMON/CONTROL/IOUT
COMMON/PARTS/NOIF,NCOF,yL,XU,NL,NU, C,OX
C0MM0N/RESERV0/TIME tSTEP,OTU,DTL,CTCUT,EMAX,ICWEK
REAL B L X ( 3 > , B U X < 3 > , B L Y < 3 ) , 9 U Y ( 3 > .A(-S)
DIMENSION F i i n , i n ) y D l ( 1 0 , 1 0 ) , D 2 ( I 0 , 1 0 )

C IKTIIAL CONDITIONS ®"
C

DATA flLX,BUX,BLY,BUY / 0 . , 1 . , 1 0 0 . , 0 . , 1 . , 1 0 0 . , D . , 1 . , 0 . , 0 . , 1 . ,100. /
, , A / o . , i . , a . , i . , a . , o. /

I F U I M E . N E . O . ) GO TO 120
XL=1 .0E-99
DO 100 1 = 1 , 1 0 0

100 U ( I ) = 5 0 .
C
C DYNAMIC SECTION

120 BLX(1I=BUX(1) = 1 . I BLXm=BUX(?> = 0. $ BLX (3) =PUX( 3)=0.
DC 2 0 0 J = l , 1 0
IF(J.LT.5)G0TO130
BLX(1)=O. * 8LX(2 )=1 . $ BLX(3)=100.
IF(J.LT.8)G0TO130
BUX(lt=O. S BUX<2)=1. f BUX(3)=100.

130 CALL P A R T I A K U d , J ) ,D1 (1 , J ) , * ,10 , EL x,BUX)
00 200 1=1,10

200 F ( J , U = U ( I , J )
00 210 1=1,10

210 CALL Pf tRTIAL(F( l , I> f D2( l , I ) , A,10,BLY,BUY)

CO 211 1=1,10
00 211 J= l , l f l
U(I ,J)=F(J,I)

211 DU(I,J)=D1(I,J)+D2(J,I)

C OUTPUT SECTION

IF(tOUT,EQ.0» RETURN
PRINT 1000,TIME,STEP
PRINT 100U.U.DU

1000 FCRMAT(2X,10G12.5)
END
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F T r - ' l p ; r 6

C
C
C
r

c
c-
c

MOf!

= V

N / i M T r & L T / i i ( ^ i ) / u r ( i v T / n i - , (!• i >/ :>ri
C O M M Û M / P A P Â M S / T I ^ T T V , M r T H T H , ^ T T P
COMMON/P A P T S / ' O T - ; V J C , O F , > L . / ' J , ' L , M ; , : , i ' x
0 IM~ H°, 10 M A ( ̂  , u 1 ) , X ( (• 1. ) , :.M 4j* 1 ) , c r" ( f I > • f M

UPDAT," SJ ;:>

".E-:3.S ; Q U M I O 1 '

•KJUA1 ION

• I N I T I A L V A R I 0 r ' L 7

I F ( T I M " . , t i t . . Q ) ' M T O ? ' I O

C
c
c

c
c
c

CX=(XD-XL

SET CONSTANT COL F "T H î c .'; • S

CC 1 0 0 1 = 1 , N
X ( I ) = n y » ( i - i )

I )

•j r :

1=1. M [ , u ) ' " , n T O 3 ' i '
3 I = 1 , N

1. • , ? . , 3 . 1 •• 1 •

i • •' j . _ \i •:• t J r V '•'- ^

r"iilIF = ci É
fj C 0 F =• 1

o . , 1 . , n

100 fl(^,I)=V

'200

150

180

Tinr.-

DC l v - n I = l , N
l i r : ( T ) = ( C 1 " ( C

I
CC

n

c
c
c

J00
35D

SET t;ON I IMC ft1-"

DC 3 ^ p 1 = 1 , rj
A n , I ) = - l ! ( I ) « 0 . ;,
C A L L " A F T I A L ( ' i , - ) M , f A , M , r > ,
I F U O ' . I T . r Q . Q ) ^ - T i : P M

C
C
C

O U T P U T C ^ L C ' I L " T . : ! ) U N I ; f ' j A L Y T l C A L \) \1[>-.'P>

C C U 0 0 1 = ? , "
£ ^ ( I ) = ^ n ? . ( U ( T ) - U " ) ( T ) ) / i n ( T )
P r - I M T 1 0 f ;. , 1 T M F , 1 T
PPINT 1 0 0 0 , CM I ) , 1 = 1 , ' O
PPIMT i nno, e n d ) , i - i , u )
PRINT i o n o , ( f " ( n . T - i , M

10L-J

I N T i n n o
P R I N T i o n o
FC^.MAT

. D : I = :
( X i 1 G 1 2 .

P A L L f i N I S H t T I M T , ? . H , U H T I ' 1 " . )
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