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A METHOD OF LIMITING INTERMEDIATE VALUES OF VOLUME 
FRACTION IN ITERATIVE TWO-FLUID COMPUTATIONS 

M. B. Carver? 

Multidimensional computational analysis of fluid flow is usually done by segmented iterative methods, as the 
equations sets generated are too large to permit simultaneous solution. Frequently the need arises to compute values 
for variables which must remain bounded for physical reasons. In two-phase computation, for example, the volume 
fraction is restricted to values between 0 and 1, but iterative procedures often return intermediate values which violate 
these bounds. It is fairly straightforward to prevent negative values, however no satisfactory method of imposing the 
upper limit has been published. A method of smoothly applying the limit in reversible fashion is outlined in this note. 

Introduction 
Multidimensional computational analysis of fluid flow 
generates systems of algebraic equations which are too 
large for simultaneous solution. Segmented schemes have 
therefore been developed in which each conservation 
equation is solved in turn to obtain approximate solu- 
tions, which are then driven to convergence by a suitable 
iterative scheme. Most numerical schemes for multidi- 
mensional analysis of single fluid flow are of this nature 
and originate from two sources, the ICE procedures de- 
veloped at LASL (1)$ and the SIMPLE procedures from 
Imperial College (2). Both use the staggered grid concept 
in which velocities are assigned at control volume 
boundaries, and both formulate the conservation equa- 
tions by using a computation of the pressure field to 
drive the iteration scheme to convergence. The solution 
thus consists of a hyperbolic phase in which approximate 
values of velocity are computed from each momentum 
equation, and an elliptic phase in which the influence of 
pressure is extracted from the momentum equations and 
used to convert the continuity equation into a pressure 
equation, which is then solved in a manner to promote 
convergence. 

The two schools of thought are quite similar in ap- 
proach, and differ only in the exact form of the pressure 
equation derived, the manner in which the equations are 
integrated over the control volume, the degree of im- 
plicitness in the time advancement and in minor details 
of the solution sequence. Schemes for two-fluid compu- 
tation, in which individual conservation equations are 
written and solved for each fluid, have been developed 
from both bases (3) (4). This note concentrates, however, 
on the latter base, and schemes which have evolved from 
the SIMPLE algorithm (5H7). 
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The SIMPLE algorithm, and a number of generic de- 
scendants are described with clarity in Patankar (8). 
Some highlights are given here to establish context. 

The SIMPLE iterative scheme 
The SIMPLE scheme is based on solving the momentum 
equations for a first estimate of each velocity component, 
and also extracting a pressure equation from continuity 
considerations. In general, each momentum equation is 
reduced by appropriate discretization, integration, and 
linearization to an algebraic equation, which can be writ- 
ten 

{@rn(pU)rn = + b(P+ - p - )  + c>i i = l ,  3 (l) 
n 

This links the mass flux component ( p U )  at the point m 
to neighbouring mass fluxes in all directions, and to the 
pressure gradient in the i direction. Similarly, the conti- 
nuity equation can be reduced to a discrete form 

1 ei(pUin - puout)i + f = D 0 (2) 
i 

The coefficients a in (1) absorb the nonlinearity of the 
momentum equations, coefficients a, c, and f may incor- 
porate transient terms, and e is the area available to the 
fluid at the appropriate control volume face. The precise 
forms of equations (1) and (2) for a particular case are 
given below in equations (1 5H18). 

First estimates of each velocity component Ui may be 
obtained by solving equations (1) using an assumed 
pressure field. When these are inserted in (2), however, 
the equation will not exactly balance, but instead com- 
pute a divergence, D, because of the nonlinearities and 
inaccuracies in the assumed pressure field. However, a 
new velocity field which will more closely fulfill conti- 
nuity may be obtained by computing the pressure 
changes required to drive D to zero for the next iteration 
m + 1. The Newton-Raphson technique establishes 
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these to be 

Dm+l -Dm -D - 
dD/dP dD/dP 

dP = Pm+l - P, = 

or 

(3) 

An expression for dD is readily determined by differen- 
tiating (2) 

by differentiating (1) and simplifying 

(d(pU)m)i = {b(dP+ - dP-)m}i (6) 
Combining (5) and (6) gives a matrix equation for the 
pressure change field, which can be written in general 
form 

Equation (6) can be used to solve for the required 
pressure change field, which in turn is applied to correct 
the velocities according to equation (7). The entire pro- 
cess must be iterated to converge through the nonlin- 
earities. 

It is useful to note that equations (1) and (7), and in fact 
most other relevant transport equations, can be written 
in a general form 

This is a general matrix equation which relates a variable 
Cp at the point rn to its neighbours at points n. All other 
variables are collected in the source term, S. Thus, the 
same matrix algorithm may be used to solve all such 
equations. Equation (8) can be one-, two-, or three- 
dimensional. Exact solutions are expensive, so inner iter- 
ation may be used to solve (8). Iteration is all the more 
economical, as (8) itself need not be iterated to conver- 
gence as the whole process (l)-(7) is repeated. 

Equations (1)-(8) are the foundations of the SIMPLE 
scheme; a number of variations have been developed 
from the same basic scheme (8). Two-fluid schemes based 
on these principles are required to solve twice as many 
equations and incorporate linkage between the two 
fluids, but all of these again reduce to the common form 
of equation (8), which may be solved by the same 
methods (5H7). 

The volume fraction equation in two-fluid analyses 
In two-fluid analyses, the momentum equations can be 
written in a form similar to equation (1)  for each fluid in 
each direction. The individual continuity equations are 
then used to derive a pressure correction equation and 
an equation for volume fraction, a. It is advantageous to 
use linear combinations of the continuity equations. A 
suitable equation for pressure correction can be obtained 
by adding the continuity equations (2) subscripted for 
each fluid, k (5). 

A more suitable equation is obtained by normalizing 
each continuity equation with respect to a reference den- 
sity of each phase pOk 

D -__ - Dl +L (10) 
POI Po2 

This equation is then differentiated together with equa- 
tions (1) to derive the pressure equation (7) which now 
contains D, and D, . Similarly, a suitable volume fraction 
equation can be derived by subtracting the normalized 
continuity equations, with D, = D, = 0, a, = (1 - a,), 
rk = [pUe/p,],, and i = 1, 3. 

c c 

+ fl fz (11) 
in POI PO, 

Note that equations ( 9 H l l )  may also be written in the 
general form of equation (8). However, equation (10) is 
subject to the additional constraint that a E (0, 1). If the 
solution of equation (11) returns any values of a outside 
this range, the iterative process will no longer maintain 
the continuity of each individual fluid. Also, as equation 
(1 1) is itself an expression of continuity, it is not sufficient 
merely to solve (l l) ,  and then correct stray values back 
into range. This again detracts from continuity, as the 
remaining variables cannot be rationally readjusted to 
reflect the correction. Instead, a method of maintaining 
the bounds within the calculation is sought. 

Imposing the lower bound 
The positivity constraint is relatively easily imposed by 
following Patankar (8). Equation (8) is rewritten as fol- 
lows 

The constraint for positivity of Cp is now that both S, and 
S, remain positive. Thus, if the source term S in equation 
(8) has a positive component S, and a negative compo- 
nent S,, equation (12) is used with S, = S, and S, = 
S,/Cpi, where 4: is the current value of #, . (S = S-, - S, , 
S, 3 0, S, > 0). This ensures that the computed Cp, will 
always retain a positive sign, providing the initial value 
of C p i  is also positive. 

imposing the upper bound 
Patankar also suggests a means of ensuring Cp < 1. 
Unfortunately, this applies only to equations in which 
the source term is dominant. 

His procedure is to monitor current values C p i ,  and if 
the source term S is positive when a particular C p i  ap- 
proaches 1, to write the associated source terms S, = S, 
= S/(1 - (pi), which will return Cp, = 1, providing the 
source dominates the equations. Unfortunately, in the 
two-fluid volume fraction equation above, this does not 
appear to be the case. A method based on under- 
relaxation was therefore developed and this proved to be 
satisfactory. 
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The standard under-relaxation procedure is as follows. 
In order to promote stability, a certain proportion of the 
original variable is retained in the solution. Instead of 
solving (8) directly for &, which would yield &,, one 
prefers to return a value 4 = &5: + (1 - j3)4: where 
/3 E (0, 1). Relaxation may be imposed after the solution 
but this may detract from the integrity of the solution. It 
is preferred to pre-relax, making the relaxation implied in 
the solution. Equation (8) is thus rewritten in terms of 4 
and 4' by substituting for 4; 

where a; = am//3, S' = S - (1 - j3)& 4:. 
The new procedure suggested here to improve the 

upper constraint is to again monitor current values of 
$:, but to approach unity by means of under-relaxation. 
Equation (8) is first rewritten in point Jacobi form 

Although (8) is to be solved in the matrix sense, equation 
(14) will give a good indication of the likelihood that a 
particular 4 in (8) will return greater than unity. Thus if 
4; > (1 - E) ,  individual point relation is applied in the 
form j3 = max (1 - 4:, 7 ) .  The parameters E and y are 
small, values of 0.05 and 10-  lo  have proved satisfactory. 
Equation (8) is then solved in the matrix form of equa- 
tion (1 3) with individually assigned relaxation par- 
ameters. 

The method permits the calculation to proceed 
smoothly to unity, and also subsequently depart from 
unity if required to do so, meanwhile ensuring that con- 
tinuity is maintained throughout. It also merges readily 
with the lower constraint, as positivity is assured first in 
an automatic manner, and the arguments concerning the 
upper bound are merely applied to the resulting coefli- 
cients of equation (12). The imposition of the upper limit 
does not require the source terms to be dominant or even 
significant. 

At first sight one might postulate some advantage in 
reformulating equation (8) to solve for a correction &#I, 
such that 4 = 4" + 64 satisfies (8). The resulting equa- 
tion for &#J is analogous to (8) but is doubly constrained 
such that 64 E (0, 1) and (4' + 84) E (0, 1). Although 
these constraints may also be imposed through under- 
relaxation, the increased overhead destroys any advan- 
tage inherent in the correction formulation. 

Application 
The new method of constraints has been incorporated in 
a two-fluid code which is documented in (9). The particu- 
lar application considered for illustration of the method 
is a comparison with the experiments of Gardner and 
Nelles (10). In these experiments, air and water flow 
through a duct consisting of a vertical riser followed by a 
90 degree elbow and finally a horizontal section. Volume 
fraction profiles were measured at various stations. 

The relevant equations are the continuity equation 
and two momentum equations for each fluid k. The 
equations for fluid 1 are 

r denotes friction and viscous source terms. 
These are transformed to Cartesian form by substitu- 

ting r = 1, alar = a/aX and a/ae = a/ay and omitting 
the coriolis and centrifugal terms. The equations are rea- 
dily transformed into the simplified form of equations (1) 
and (2) by integrating over a finite control volume di- 
mension r dr do. Thus equation (15), for example, be- 
comes 

ae 
This reduces to 

which is equivalent to equation (2). 
In equations (16) and (17) the gravitational and centri- 

fugal forces tend to separate the fluids, the interphase 
drag terms counteract this tendency. 

Computed results for the Gardner and Nelles con- 
ditions are shown in Fig. 1 in the form of bar graphs 
depicting radial air volume fraction profiles at various 
axial stations. Initially in the elbow, the centrifugal force 
drives the heavier water toward the outer radius and the 

Fig. 1. Bar graph showing computed air volume fraction at various 
axial stations from two-fluid simulation of Gardner and Nelles ex- 

seriment 
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air inward. Eventually, however, the gravity term domi- 
nates and the fluids return to the opposite walls. This 
switchover makes the simulation numerically difficult, 
particularly as zero or unit local volume fractions are 
generated at various points in the profiles. However, con- 
tinuity is maintained throughout. Quantitative experi- 
mental comparisons are given in (9). 

Acknowledgements 
The contributions of Professor M. Salcudean of the Uni- 
versity of Ottawa towards the formulation of the two 
fluid project, and of Miss E. P. Gehlert who typed the 
manuscript are gratefully acknowledged. 

REFERENCES 
(1) HARLOW, F. H. and AMSDEN, A. A,, ‘A numerical fluid 

dynamics method for all speeds’, J. Comp. Phys., 1971,8,197. 
(2) PATANKAR, S. V. and SPALDING, D. B., ‘A calculation pro- 

cedure for heat mass and momentum transfer in three dimensional 
parabolic flows’, Int. J. Heat Mass Transfer, 1972,15,1787. 

(3) RIVARD, W. W. and TOKREY, M. D., ‘KFIX: a program for 
transient two dimensional two fluid flow’, LA-NUREG-6623, 
1978. 

(4) LILES, D. R. and REED, W. M., ‘A semi-implicit method for two 
phase fluid dynamics’, J .  Cornp. Phys., 1978,26,390. 

(5) SHA, V. L., et af., ‘Numerical procedures for calculating steady/ 
unsteady single/two phase three dimensional fluid flow with heat 
transfer’, NUREG-CR-0789,1979. 

(6) SPALDING, D. B., et al., ‘Calculation of two dimensional two 
phase flows in Two Phase momentum, heat and mass transfer in 
chemical process, and energy engineering systems (F. Durst et a!., 
editors) 1979 (Hemisphere Press, Washington). 

(7) CARVER, M. B., ‘Conservation and the pressure continuity re- 
lationship in multidimensional two fluid computation’ in 
Advances in computer methods for partial differential equations, I V 
(R. Vichnevetsky, editor) 1981 (IMACS Press) pp. 168-172. 

(8) PATANKAR, S .  V., Numerical heat transfer and fluid pow 1980 
(Hemisphere, New York). 

(9) CARVER, M. B., ‘Numerical computation of phase separation in 
two fluid flow’, submitted to ASME conference on Computational 
Analysis of Three Dimensional Two Phase Flow, and J Fluid 
Engng, 1982. 

(10) GARDNER, G. C. and NELLES, P. H., ‘Phase distribution in 
flow of an air water mixture round bends’, Proc. Instn mech. Engrs, 
1970,1&1,93-101. 

Journal Mechanical Engineering Science Q IMechE 1982 Vol 24 No 4 1982 


