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SUMMARY 

First-order hyperbolic partial differential equations 
are difficult to solve numerically because of their 
ability to transmit steep waves. It is well known 

that the method of characteristics is the natural 
method for such equations, as it precisely follows 
wave interactions. HOWeVer, a characteristic solution 

is expensive, as it requires repeated solution of non- 
linear algebraic equations. This gives considerable 
motivation to the development of fixed grid numerical 
schemes. 

Unfortunately any attempt to use a finite fixed grid 
generates spurious numerical oscillation and disper- 
sion, which must be minimized by artificial damping or 
directional differentiation. For sets of hyperbolic 
equations, the appropriate assignment of damping or 
direction is difficult to determine, as variables are 
coupled in non-linear form. HOWeVer, a clear defini- 
tion of directionality is given in the characteristic 
form of the equations, and may be used to develop a 
pseudo characteristic fixed grid statement of the 
equations, which is readily solved by the method of 
lines, is simple to implement, and produces stable 
accurate solutions. 

Applications are illustrated for the solution of 
equations describing shallow water flow, and compres- 
sible gaseous flow. 

INTRODUCTION 

First-order hyperbolic partial differential equations 
(PDEs) are an extremely important class, as they arise 
inevitably in the modelling of any transient flow sit- 

uation, and are deceptively difficult to solve numeri- 

cally. This difficulty is principally due to their 
inherent ability to transmit spatial discontinuities 
without dissipation. The method of characteristics is 

recognized as the natural procedure for solving such 
equations as it is formulated to precisely follow wave 

interactions&. This requires repeated expensive 
nonlinear algebraic equation solutions or iterations, 
but does permit the propagation of steep fronted 
waves. 

In contrast, fixed grid schemes are inexpensive and 

simple to implement. However, symmetric fixed grid 
finite difference and finite element schemes develop 
spurious numerical oscillations in the neighbourhood 

of steep fronted wa~es~~, and may be used successfully 
only for systems in which response is slow and spatial 
gradients are not severe6. Numerical oscillation may 

be reduced either by using directional differentia- 

tion, or adding artificial damping terms to the equa- 

tions, in fact these alternatives are equivalent, as 
directional differentiation is dissipative. A multi- 
tude of such schemes have been proposed, and the mnre 
popular are summarized in references 3 and 11. 

A single first order hyperbolic equation, such as the 

advective equation discussed in reference 3, or loosely 
coupled equation sets such as those describing flow in 
linear heat exchangers', may be solved efficiently by 

directionally weighted methods. In fact the correct, 
or upwind direction is dictated by the method of 
characteristics7, but is normally obvious from the 
physical situation. 

However, in conservation equations, variables are 
usually coupled in a nonlinear fashion, and waves may 
propagate in both directions, thus directional strat- 
egy is not made obvious by physics, or by the appear- 
ance of the equations in conservation law form. 
Furthermore, non-rigourous application of upwind 
techniques is known to give poor results". In con- 

trast, the characteristic form of stating the same 
equations explicitly defines the governing directions, 
and it has only recently been pointed out that these 
may be utilized to guide the rational formulation of a 
directional finite difference scheme"". Suc.h d 
characteristic finite difference scheme has been 
successfully incorporated in a production code for 
transient two-phase flow simulation'. 

On further investigation it becomes apparent that the 
characteristic form may be used in a similar manner to 
formulate a characteristic method of lines scheme 
which eliminates the necessity of the matrix inversion 
required by the characteristic finite difference 
scheme, and also introduces the possibility of "sing 
higher-order methods in time and space'. 

The method of lines is used collectively to refer to a 
class of methods in which piecewise approximation 
functions are used to represent spatial variation and 
to transform partial differential equations, PDEs into 
coupled sets of ordinary differential equations, ODES. 

A general one-dimensional PDE set may be written 
. 

~i(x,t,","t'"x,"tt,"~~,"~t,...'v."t'...) = 0 

i=l,NPDE 

(1) 

Conversion to ODE form is accomplished by representing 
the spatial variation of u, v, etc., in terms of 
spatial basis functions B(x) and discrete values of u. 
at nx points: 

1 

u,(x,t) = F Bi(x)ui(t) (2) 
i=m 

where l'm 5 n 5 nx and (n-m) is the order of coup- 
ling in space. The approximation (2) is substituted 
in (l), and algebraic manipulation produces a set of 
k=nx*NPDE coupled ODES. 

[AIWtl = [Bl WI + [Cl (3) 

where A, B and C are k square matrices and u, u and k 

column vectors containing the values of the spa E, la1 
variable and its time derivative at each point. 

The choice of the spatial approximation polynomial B 
and its subsequent handling defines the particular 
method. If (2) is applied in an explicit sense a 

l This paper was presented at the 3rd IMACS International Symposium on Computer Methods for Partial Differential 
Equations held at Lehigh University, Bethlehem, Pennsylvania, USA, on tune 20-22, 1979. 
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finite difference method of lines evolves with 

[Al=[Il, otherwise, if (2) is applied in an implicit 

weighted residual sense, a finite element method of 

lines evolves, and [Al is banded and symmetric except 
for the particular case of upwind weighting'. 

In either case, the resulting ODES may be integrated 
by an efficient digital algorithm which will normally 
vary the time step as integration progresses to obtain 
optimal compliance with an imposed tolerable error 
limit. 

The method of lines is extremely flexible as it com- 
prises an infinite number of combinations of spatial 
approximation functions and integrators, any of which 
may be applied to the same equation system. The 
equations are programmed in general form, and the 
appropriate combinations are selected to operate on 
the equations to produce the solution. 

In particular, for hyperbolic equations, a number of 
directionally weighted schemes may be developed. 
Several of these, including upwind Lagrangian, Hermite, 

spline, and weighted residual are reviewed for "se 
with the advective equation in reference 3. 

This paper extends the same approach to coupled PDE 
systems by identifying the characteristic directions 
and transforming the resulting matrix equations into 
an explicit form. 

THE PSEUDO-CHARACTERISTIC METHOD OF LINES 

(a) Incompressible Fluid Flow 

For simplicity, the method is first illustrated for 
two equations describing the flow of fluid over an 
isolated ridgelo. If m is the mass flux, h, the 
depth, and y is the local slope of the ridge, these 
equations ma? be written in conservation law form as 

g [@I + 2 [F($)l = D(0) 

where 

$+],Fz [f+'],D=[-p] 

the primitive form follows directly, 

ah+h&+"ah=, 
at ax ax 

(5) 

Using both symmetric and assymmetric differentiation 
formulae, Heydweiler and Sincovecg were unable tn 
obtain stable solutions to equations (5) until they 
added an arbitrarily large second derivative artificial 
dissipation term to each of the equations (5). 
Principally this is because it is impossible to 
develop a rationale for assigning a directional bias 
to any spatial derivative term in the primitive form 
of equation (5). In fact, waves propagate in both 
directions and the obvious upwind difference scheme 
used for single equations. the simplest form of which 
expresses terms such as 

“Q ax =s ui’pi - P~_~~)/Ax (6) 

where s is the sign of ui, also gives unstable re- 
sults"! 

However, by transformation, equations (5) may be 
written in a form to which the application of (6) 
gives entirely stable results. 

It is convenient to change variables to s = gh and 
c = /s such that the matrices now become 

$ = [j, Al = E ;], G1 = [;“‘x] (7) 

Performing a similarity transform BA 
-1 

B to extract the 
diagonal eigenvectors gives: 

(8) 

Expanding (8) gives the characteristic form 

c e + 2 + ("+c)(c g + E) + gcyx = 0 (94 

c g - g + (u-c)(c $ - E) + gcyx = 0 (9b) 

The requisite directional weighting for equations (9a) 
and (9b) is now dictated by the sign of (u+c) and 
(u-c) respectively. Following Hancox et al' one can 

assign a directional difference scheme for the spatial 
derivatives of each equation, invert the B matrix and 
integrate the equations 

Gt = -B-?J?B@~ - G} (10) 

It is a simple matter, however, to obtain an explicit 

definition of $I which is fully equivalent to (10) 
performing the katrix inversion analytically. When 

by 

derivatives originating from (9a) and (9b) are des- 
ignated + and -, to show differentiation will be in 
the direction dictated by the component along (u+c) or 
(u-c) respectively, this gives 

~+;(~+~,+*(&+&)+ 

+ - + - 

+~(~-~)++&+)+ghyx=O 
- - + - 

’ au g+‘? (s+$) +g+c, 
+ - + - 

+z$&_&, +$(&-$) =o (11) 
+ - + - 

Note that only terms involving (u+c) and (u-c) have 
been directionally differentiated, y, is not a depend- 
ent variable. 

One may now solve equations (11) directly by the 
method of lines, incorporating any suitable direc- 
tional approximation to the derivatives, such as (6) 
or the higher order methods reviewed by Carver and 
Hinds3. 

It is instructive first to apply the simplest first- 
order formula (6) to equations (11). Thus if 

aw (w~-wi_l) &J (wi+l-wi) 
-= 

ax+ AX 
and a~ = 

AX 
(12) 



wi+~-20i+wi-~ 2 

AX 
= -2Ax(+ 

ax2 ’ 

(13) 
and E is volumetric energy, p pressure and Q,f repre- 
sent heat transfer and friction and X 
tion gradient. 

x is the eleva- 

Introducing the speed of sound and the equation of 
state produces the primitive formulation: 

2 
where (adax) and (a dax2) are three-point symmetric 
first and xc&d derivative formulae. 

$$+A&=D 

Inserting these formulae into (11) gives: 

2 2 
2 + " $ + $- + cAx q + ++ = ghyx 

c ax ax c c 
(14) 

2 2 
g + c2 +- + u & + ucAx 2 + cAx Q = 0 

a a 
ax 

c c ax axf 
Bz$+"Bx@=BD 

The similarity transform again produces the character- 
istic form. D=O is now used merely for brevity. 

Note that equations (14) are now the primitive form of 
the equations (5) plus explicitly defined dissipative 
terms, all expressed to second-order accuracy. 
Similar expressions may be derived starting with 
higher-order expressions in place of equations (13). 

or 

In particular, the two most accurate explicit formu- 
lations reviewed in reference 3 may be used readily 
with equations (14). They are the four-point upwind 
Lagrange form 

&"(I)) = SI(U(I-2SI) - 6U(I-SI) 

+ 3U(I) + 2U(I+SI))/6Ax (15) 

and the three-point upwind Hermite expression 

au ap au ap 
(r x + s + (u+c)( P x + jy) = 0 

=2 ap _ g 2 ap 
at + “(C z - ax ix, = 0 

au ap -p-+-+ (“-c)(-pg+g) = 0 
at at 

&J(I)) = sI(u(I+sI) + 4U(I) 

- SU(I-SI))/4Ax - + 2 (U(I-SI)) (16) 
2 

Explicit equations for au/at, etc. may now be obtained 
by inverting the B matrix and assigning the subscripts 

+, ., - to derivatives to be computed according to the 
directions dictated by the (u+c), u, (u-c) vectors 
respectively. 

The example used by Houghton and Kasahara. . - and Heydweiler g + ;(g + g) + %(& + $-) 
+ - + - and Sincovec will be used. This is equations (5) with 

y(x) = max[0,10-10(x/40)2] 

"(0,x) = 60, h(O,x) = 20-y(x), 

u(t,-400) = u(t,+400) = 60, 

h(t-400) = h(t,+400) = 20. 

The solution develops a major stationary shock down- 
stream of the ridge, and smaller fronts move both up- 

stream and downstream. 

Figure 1 shows the solution at t=2, obtained using the 
formulae (12), (15) and (16) respectively in equations 

(14), and clearly illustrates the discontinuities 
developed. Figure 2 shows a typical unstable solution 
obtained by using symmetric differencing of the prim- 
itive equations and progressive stabilization by the 
addition of arbitrary dissipative terms. 

(b) Equations of Compressible Flow 

Following similar principles, the Eulerian equations 
governing one-dimensional compressible flow may be 
expressed in conservation law form similar to equation 

(4), where now 

(17) 

(18) 

(19) 

(20) 

+~(g-?L)+!A$E(~_&)=o 
+ - + - 

g+y(&+&, +gp(g+g) 
+ - + - 

+&+_&, +2&-g) = 0 

+ - + - 

(21) 

Once again, having chosen any suitable formula to 
compute the directional derivatives, it may be shown 
that equations transform into a higher-order symmetric 
approximation to the primitive form (18) with specifi- 
cally defined second derivative dissipative terms 
added. Reference 2 develops this, and shows tests 
illustrating that the pseudo characteristic formula- 
tion (21) caters for flow reversals and choking flow, 
as these automatically influence the difference scheme 
through the characteristic directions. Here we quote 
only one example, the standard shock tube problem 
discussed by Sod", who considers a tube of unit 
length with initial conditions: 

e < x < 0.5: p = p = 1.0, u = 0 
0.7 < x 5 1.0: p = 0.1, p = 0.125, u = 0 
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Fig. 1. HYDRAULIC JUMP PROBLEM 
Pseudo Characteristic Methods 

Fig. 2. HYDRAULIC JUfiP PROBLEM 
Central Difference Methods 

CENT’?IRL OIFFERENCE METHOD QLPHQ = 75. 
o ‘IICCC _IIE 
~ lhLmzlTI 
. npr* 

CENTRUL OIFFERENCE METHOD RL3HR = 160. 

100 

CENTRAL DIFFERENCE METHOD RLPHR = 200.0 
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Fig. 3. SHOCK TUBE PROBLEM Fig. 4. SHOCK TUBE PROBLEM 

PSEUDO CHARRCTERISTIC 
.mcss 
L UuxlTI 
. oEI6liT 

SIMPLE 2PT 

CENTRRL 01 F-F-EKENCE METHOD IJLPHA ,001 

X COOROINRTE X COOROINRTE 

PSEUDO CHARACTERISTIC HERMITE UW 

CENTRDL DIFFERENCE METHOU liLPHD = .ooE; 
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This problem does not involve flow reversals or the 

associated change in boundary conditions, but the 
large pressure ratio generates shock and rarefaction 
waves resulting in four slope discontinuities in the 
pressure profile. Figure 3 shows the pressure pro- 
files obtained from the three pseudo characteristic 
methods (12, 15, and 16) and results obtained by 
symmetric differentiation. These may be compared to a 
number of popular schemes for the conservation equa- 
tions reviewed by Sod", and it will be noted that the 
simple PC method appears more accurate than the popu- 
lar Lax-Wendroff, MacCormack and Rusanov methods, and 
that the higher-order PC methods compare very favour- 
ably to the more complicated methods reviewed. The PC 
method achieves comparable accuracy, is considerably 
easier to implement, even simpler to switch from one 
form to another, and has its foundation squarely in 
the physics, not relying on numerical stabilization 
artifacts. 

Finally, it is of interest to review what happens to 

the example problem when symmetric differencing with 
arbitrary artificial dissipation terms are added. 
Figure 4 shows results obtained for the same problem 
from the conservation statement of the equations with 
an artificial dissipation term cx(a'/ax*)@ added. It 
becomes obvious that the dissipation required to 
stabilize causes excessive attenuation. 

BOUNDARY CONDITIONS 

The correct formulation of boundary conditions in 
systems of conservation equations causes considerable 
concern, as the number, location, and form of boundary 
restraint is not always apparent from the physics or 
the mathematics, and an incorrect formulation will 
obviously destroy the solution. One recourse is to 
avoid the problem altogether by banishing the bound- 
aries to infinity, and while this has been done in 
references 9 and 11 for the two examples quoted here, 
such an approach is not helpful for applied problems. 

Although the presence of three first-order equations 
in three variables suggests that three boundary 
restraints are required, in fact this is not so. The 
number and nature of the boundary conditions is dic- 
tated by the flow configuration at any given instant, 
or more particularly the number and direction of the 
characteristics at each boundary. Thus, a straight 
flow through situation in a pipe requires two boundary 
conditions at the inlet, and one at the outlet, a 
closed pipe with outflow requires one at each end, and 
a pipe experiencing inflow through both ends at any 
given instant requires four conditions, these numbers 
being the number of outward pointing characteristics 
at each boundary for each situation, or equally the 
number of simple directional difference analogs(l2) 
which are not satisfied within the pipe. It is thus 
obvious that any scheme which is to cater for possible 
flow reversal must not only represent this adequately 
in the differencing scheme, but must also permit 
dynamic change in the number and type of boundary 
conditions. The pseudo characteristic method permits 
both these operations to be performed automatically. 

CONCLUSION 

The pseudo-characteristic method of lines is one of 
the few available methods which completely automates 
integration time step selection, spatial differentia- 
tion weighting and the handling of flow reversal and 
choking flow. It is easy to implement in a general 
fashion which permits selection between alternative 
approximation functions, and derives its stability 
directly from physical rather than numerical consider- 
ations. 
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