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Abstract:
This essay discusses the best current understanding of the relationship between 

mathematical and empirical knowledge.  It focuses on two questions:

Does mathematics have some sort of deep metaphysical connection with reality, and1.
if not, why is it that mathematical abstractions seem so often to be so powerfully predictive 
in the real world?

2.

Mathematics is the model of a-priori knowledge in the Aristotelian tradition of rationalism. 
Among the Greeks, geometry was regarded as the highest form of knowledge, a potent key to 
the metaphysical mysteries of the Universe.  This is a rather mystical belief, and the connection 
to mysticism and religion was made explicit in cults like the Pythagorean.  No culture since has 
semi-deified a man for discovering a geometrical theorem!

The Greek awe of mathematical knowledge is still with us; it's behind the traditional 
metaphor of mathematics as "Queen of the Sciences".  It's been reinforced by the spectacular 
successes of mathematical models in science, successes the Greeks (lacking even simple 
algebra) could never have foreseen. Since Isaac Newton's discovery of calculus and the inverse-
square law of gravity in the late 1600s, phenomenal science and higher mathematics have been 
closely symbiotic -- so much so, that the existence of a predictive mathematical formalism has 
become the hallmark of a "hard science".

For two centuries after Newton, phenomenal science aspired to the kind of rigor and purity 
that seemed to be embodied in mathematics.  The metaphysical situation seemed simple; 
mathematics embodied perfect a-priori knowledge, those sciences able to most mathematicize 
themselves were the most successful at phenomenal prediction; perfect knowledge would 
therefore consist of a mathematical formalism, arrived at by science and embracing all of reality, 
that would ground a-posteriori empirical understanding in a-priori rational logic.  It was in this 
spirit that Condorcet dared to imagine describing the entire universe as a mutually-solving set of 
partial differential equations.

The first cracks in this inspiring picture appeared in the latter half of the 19th century when 
Riemann and Lobachevsky independently proved that Euclid's Axiom of Parallels could be 
replaced by alternatives which yielded consistent geometries.  Riemann's geometry was modeled 
on a sphere, Lobachevsky's on a hyperboloid of rotation.

The impact of this discovery has been obscured by later and greater upheavals, but at the 
time it broke on the intellectual world like a thunderbolt.  For the existence of mutually 
inconsistent axiom systems for geometry, any of which could be modeled in the phenomenal 
universe, called the whole relationship between mathematics and physical theory into question.

When there was only Euclid, there was only one possible geometry.  One could believe that 
the Euclidean axioms constituted a kind of perfect a-priori knowledge about geometry in the 
phenomenal world.  But suddenly we had three geometries, an embarrassment of metaphysical 
riches.

For how were we to choose between the axioms of plane, spherical, and hyperbolic 
geometry as a description of "real" geometry?  Because all three are consistent, we couldn't 
choose on any a-priori basis -- the choice had to become empirical, based on their predictive 
power for a given situation.
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Of course, physical theorists had long been accustomed to choosing formalisms to fit a 
scientific problem.  But it had been widely, if unconsciously, assumed that the need to do so ad 
hoc was a function of human ignorance; that, given good enough mathematics and logic, we 
could deduce the correct choice from first principles, producing a-priori descriptions of reality to 
be confirmed, as an afterthought, by empirical check.

But now, the Euclidean geometry that had been considered the model for axiomatic 
perfection in mathematics for over two thousand years, had been dethroned.  If one could not 
know something as fundamental as the geometry of space a-priori, what hope was there for a 
purely "rational" theory encompassing all of nature?  Psychologically, Riemann/Lobachevsky 
struck at the very heart of the enterprise of mathematics as it was then conceived.

Furthermore, Riemann/Lobachevsky called the nature of mathematical intuition into 
question.  It had been easy to believe implicitly that mathematical intuition was a form of 
perception -- a glimpse of the Platonic noumena behind reality.  But with two other geometries 
jostling Euclid, nobody knew for sure what the noumena looked like any more!

Mathematicians responded to this dual problem with an increase in rigor, by trying to apply 
the axiomatic method throughout mathematics.  It was gradually realized that the belief in 
mathematical intuition as a kind of perception of a noumenal world had encouraged sloppiness; 
proofs in the pre-axiomatic period often relied on shared intuitions about mathematical "reality" 
that could no longer be considered automatically valid.

The new thinking in mathematics led to a series of spectacular successes; among these 
were Cantorian set theory, Frege's axiomatization of number, and eventually Russell & 
Whitehead's monumental synthesis in Principia Mathematica.

However, it also had a price.  The axiomatic method made the connection between 
mathematics and phenomenal reality narrower and narrower.  At the same time, discoveries like 
the Banach-Tarski Paradox suggested that mathematical axioms that seemed to be consistent 
with phenomenal experience could lead to dizzying contradictions with that experience.

The majority of mathematicians quickly became "Formalists", holding that pure mathematics 
could not be philosophically considered more than a sort of elaborate game played with marks on 
paper (this is the theory behind Robert Heinlein's pithy characterization of mathematics as "a 
zero-content system"). The old-fashioned "Platonist" belief in the noumenal reality of 
mathematical objects seemed headed for the dustbin, despite the fact that mathematicians 
continued to feel like Platonists during the process of mathematical discovery.

Philosophically, then, the axiomatic method lead most mathematicians to abandon previous 
beliefs in the metaphysical specialness of mathematics.  It also created today's split between 
pure and applied mathematics.

Most of the great mathematicians of the early modern period -- Newton, Liebniz, Fourier, 
Gauss, and others -- were also phenomenal scientists (i.e. "natural philosophers").  The 
axiomatic method incubated the modern idea of the pure mathematician as super-esthete, 
unconcerned with the merely physical.  Ironically, Formalism gave pure mathematicians a bad 
case of Platonic attitude.  Applied mathematicians stopped being invited to tea and learned to 
hang out with physicists.

This brings us to the early 20th century. For the beleaguered minority of Platonists, worse 
was yet to come.

Cantor, Frege, Russell and Whitehead showed that all of pure mathematics could be built on 
the single axiomatic foundation of set theory.  This suited the Formalists just fine; mathematics 
coalesced, at least in principle, from a bunch of little disconnected games to one big game.  It 
also made the Platonist minority happy; if there turned out to be one big, over-arching consistent 
structure behind all of mathematics, the metaphysical specialness of mathematics might yet be 
rescued.
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Unfortunately, it turns out that there is more than one way to axiomatize set theory.  In 
particular, there are at least four major different combinations of assumptions about infinite sets 
that lead to mutually exclusive set theories (the Axiom of Choice or its negation; the Continuum 
Hypothesis or its negation).

It was Riemmann/Lobachevsky all over again, but on a much more fundamental level.  
Riemannian and Lobachevskian geometry could be modeled finitely, in the world; you could 
decide at least empirically which one fit.  Normally, you could regard all three as special cases of 
the geometry of geodesics on manifolds, thereby fitting them into the superstructure erected on 
set theory.

But the independent axioms in set theory don't seem to lead to any results that can be 
modeled in the observable finite world.  And there's no way to assert both the Continuum 
Hypothesis and its negation in one set theory.  How's a poor Platonist to choose which system 
describes "real" mathematics?  The victory of the Formalist position seemed complete.

In a negative way, though, a Platonist had the last laugh.  Kurt Godel threw a spanner in the 
Formalist program of axiomatization when he showed that any axiom system powerful enough to 
include the integers would have to be either inconsistent (yielding contradictions) or incomplete 
(too weak to decide the truth or falsehood of some assertions in the system).

And that is more or less where things stand today.  Mathematicians know that any attempt to 
put forward mathematics as a-priori knowledge about the universe must fall afoul of numerous 
paradoxes and impossible choices about what axiom system describes "real" mathematics.  
They've been reduced to hoping that the standard axiomatizations are not inconsistent but 
incomplete, and wondering uneasily what contradictions or unprovable theorems are waiting 
discovery out there, lurking like landmines in the noosphere.

Meanwhile, on the empirical front, mathematics continued to be a spectacular success as a 
theory-building tool.  The great successes of 20th-century physics (general relativity and 
quantum mechanics) wandered so far from the realm of physical intuition that they could be 
understood only by meditating deeply on their mathematical formalisms, and following through to 
their logical conclusions, even when those conclusions seem wildly bizarre.

What irony.  Even as mathematical 'perception' came to seem less and less reliable in pure 
mathematics, it became more and more indispensable in phenomenal science!

Against this background, Einstein's famous quote wondering at the applicability of 
mathematics to phenomenal science poses an even thornier problem than at first appears.

The relationship between mathematical models and phenomenal prediction is complicated, 
not just in practice but in principle.  Much more complicated because, as we now know, there are 
mutually exclusive ways to axiomatize mathematics!  It can be diagrammed as follows (thanks to 
Jesse Perry for supplying the original of this chart):
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The key transactions for our purposes are C and D -- the translations between a predictive 
model and a mathematical formalism.  What mystified Einstein is how often D leads to new 
insights.

We begin to get some handle on the problem if we phrase it more precisely; that is, "Why 
does a good choice of C so often yield new knowledge via D?"

The simplest answer is to invert the question and treat it as a definition. A "good choice of C" 
is one which leads to new predictions.  The choice of C is not one that can be made a-priori; one 
has to choose, empirically, a mapping between real and mathematical objects, then evaluate that 
mapping by seeing if it predicts well.

For example, the positive integers are a good formalism for counting marbles. We can 
confidently predict that if we put two marbles in a jar, and then put three marbles in a jar, and 
then empirically associate the set of two marbles with the mathematical entity 2, and likewise 
associate the set of three marbles with the mathematical entity 3, and then assume that physical 
aggregation is modeled by +, then the number of marbles in the jar will correspond to the 
mathematical entity 5.

The above may seem to be a remarkable amount of pedantry to load on an obvious 
association, one we normally make without having to think about it.  But remember that small 
children have to learn to count...and consider how the above would fail if we were putting into the 
jar, not marbles, but lumps of mud or volumes of gas!

One can argue that it only makes sense to marvel at the utility of mathematics if one 
assumes that C for any phenomenal system is an a-priori given.  But we've seen that it is not.  A 
physicist who marvels at the applicability of mathematics has forgotten or ignored the complexity 
of C; he is really being puzzled at the human ability to choose appropriate mathematical models 
empirically.

By reformulating the question this way, we've slain half the dragon.  Human beings are 
clever, persistent apes who like to play with ideas. If a mathematical formalism can be found to fit 
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a phenomenal system, some human will eventually find it.  And the discovery will come to look 
"inevitable" because those who tried and failed will generally be forgotten.

But there is a deeper question behind this: why do good choices of mathematical model exist 
at all?  That is, why is there any mathematical formalism for, say, quantum mechanics which is 
so productive that it actually predicts the discovery of observable new particles?

The way to "answer" this question is by observing that it, too, properly serves as a kind of 
definition.  There are many phenomenal systems for which no such exact predictive formalism 
has been found, nor for which one seems likely.  Poets like to mumble about the human heart, 
but more mundane examples are available.  The weather, or the behavior of any economy larger 
than village size, for example -- systems so chaotically interdependent that exact prediction is 
effectively impossible (not just in fact but in principle).

There are many things for which mathematical modeling leads at best to fuzzy, contingent, 
statistical results and never successfully predicts 'new entities' at all.  In fact, such systems are 
the rule, not the exception.  So the proper answer to the question "Why is mathematics is so 
marvelously applicable to my science?" is simply "Because that's the kind of science you've 
chosen to study!"
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