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Abstract: For fast, repeated calculations of the heavy water
thermodynamic properties such as those occurring in CANDU PHWR safety
Iy ¢ studies, linear interpolation algorithms to the D30 thermodynamic
tables are commonly used. Such an approach, while being direct and
relatively simple is not necessarily the most efficient. An alternative
approach using simple low order numerical functions to approximate the
D20 thermodynamic properties has been developed. These approximations
T B . are presented and provide means for rapid calculation of the D20
properties as functions of pressure and temperature. The presented
functions generally ensure a computation accuracy not worse than
1.3 percent of the current thermodynamic table values. They cover a
range of pressure from atmospheric up to 15 MPa which is sufficient for
the majority of normal and abnormal operating conditions. In developing
the approximation formulas an emphasis has been placed on nonlinear
functional approximation rather than on nonlinear regression of power
series expansions. The approximations are sufficiently simple that they
’ may be effectively used with programmable calculators, as well as with
micro computers.
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'1 .0 INTRODUCTION

Heavy water thermodynamic properties are used extensively in many areas
of CANDU PHWR analysis. These properties are often calculated by
commonly used linear interpolation algorithms applied to thermodynamlc
tables stored in computer memory. '

Such an. approach, while being direct and relatively simple, is not
necessarily the most efficient. Storage of the tables can oecupy a large
amount of computer memory and the process of inputting the table data
into a computer is time-consuming, prone to input ‘errors and difficult
for verification. Furthermore, the linear interpolation algorithms, .

which themselves are quite simple, require a searching algorithm for
selecting proper numbers from the table.- Such searching algorithms,
particularly in case of large, two-dimensional (pressure and temperature)
property tables used for frequent calculations, can result in substantial
use of computer time. '

For the purpose of system analysis an -accuracy of one percent in the
computation of these properties is usually quite satisfactory.
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Therefore there is no need for more accurate calculation of the heavy
water thermodynamic properties, particularly when employed in codes. used
for approximate, scoping analysis.

The purpose of this paper is to demonstrate some very simple algorithms
which enable rapid calculation of D0 thermodynamical properties

without employing the vast input data tables. During development of
these algorithms an emphasis has been placed on nonlinear functional
approximation rather than on nonlinear regression of power series
expansions, Using this approach a more uniform accuracy over the whole .
range of independent variables has been achieved.

The approximations are simple enough to be effectively used with
microcomputers as well as with programmable calculators. The range of
validity of both pressure and temperature variations is sufficient for
the majority of normal and abnormal operating conditions applicable to
CANDU reactors. An approximation accuracy is 'usually better than

1.3 percent which is more than adequate for the kind of simulation tasks
specified. o

2.0 _ NONLINEAR FUNCTIONAL APPROXIMATION APPROACH

An emphasis has been placed on utilization-of simple nonlinear functions
of an a-priori given form rather than on employing the commonly used
methods of linear and nonlinear regression of power series expansions.
This is justified by a desire to obtain approxima;ionvforms which are
very simple and easy for computer implementations. Also, a preference
was given to the approach of "almost exact matching to table data"
instead of minimizing a mean square error of the approximation.

In a case of regression-type approximation, particularly when utilizing
low~order models, the best mean-square error fittings lead to
approximations with relatively small mean-square errors but often with
substantial local deviations from the given data. Utilization of
higher-order regressional models usually corrects this problem but leads
to more complicated models. Moreover, the regression models tend to
deviate very rapidly from the given table values when used outside the
range used in the regression. This tendency is particularly evident for
higher order nonlinear regression models.
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The approach used in this paper is based on detailed analysis of the
given data tables and on finding simple nonlinear functions which provide
a satisfactory fit to the given data rather than on minimizing a
mean-square-error of the approximation. There is no universal,

‘algorithmic formula which would do this task automatically. Instead,

each physical property to be approximated has been analyzed separately.
A‘graphical representation of the data often helped in finding an
adequate approximation function. Wherever possible, normalized general
exponential functions were used and then re-scaled to yield good matching.

Having chosen the type of approximation function, some of its parameters
were correlated with temperature and pressure to ensure adegquate
approximation accuracy over a pre-defined region of the independent
variables.

In order to maintain the computational simplicity of the approximation
formula, the ranges of temperature and pressure variations were often
partitioned into smaller sub-regions. Then, for the each sub-region
'separate correlations for individual parameters of the employed
approximation function have been developed. Computational iterative
procedures were often used. For some of the D30 properties,
correlations with pressure are neglected in the pressure region between
0.1 and 15 MPa and the resulting accuracy of approximation remained
satisfactory. :

It should be stressed that the approximation forms for the D30

thermodynamical properties described below ensure an adequate accuracy
achieved by very modest and simple means. At the same time the presented
formulas are simple enough to be effectively used even in hand
calculations with programmable calculators.
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3.0 APPROXIMATION TO D-O THERMODYNAMIC PROPERTIES

The AECL tables of thermodynamic properties of heavy water, Reference 1,
have been used as a reference source of data. The range of temperature

and pressure variations considered are correspondingly, about (27-350)°C
and (0.1-15) MPa. : :

3.1 Specific Volume-Liquid Phase at Saturation Conditions

An approximation vg to the Dy0 specific volume-liquid phase vE
given in Reference 1, Table 2 for saturation conditions, is glven below
as a simple linear function of pressure P, :

Approximation algorithm:

A ,
Ve = 9.602x1074 + 5.11333x107°P, for P £ 2.3 MPa;
Gf = 1.00938x10"3 + 3,05429x107°P, for P ),2.3 MPa;
where: P = saturation pressure, [MPa]
Qf = approximation to specific volume-flu1d, [m3/kg]

Recommended range of use: (0,1-14)MPa with accuracy € not worse than
2,56 percent.

Accuracy of the approximation formula is shown in Table 1 below and in
Figure 3.1.

TABLE 1: Accuracy of the Approximation Formula
for D0 Specific Volume-Liguid Phase

Pl
P, [MPa] ve, [m3/kg] Ve, [m3/kg] €= YEVE (3]
V§
0.1 0.0009412 0.0009653 ~2.56
0.2 0.0009568 0.0009704 -1.42
- 0.5 0.0009858 0.0009858 0
0.8 0.0010060 0.0010011 +0.49
1 0.0010173 0.0010113 . +0.59
1.5 0.0010416 0.0010369 +0.45
2 0.0010625 0.0010625 : 0
2.5 0.0010813 0.0010857 -0.41
3 0.0010989 0.0011010 -0.19
4 0.0011317 0.0011316 4+0.01
5 0.0011626 0.0011621 +0.04
8 0.0012529 0.0012537 , -0.07
10 - 0.0013158 , 0.0013148 ' +0.08
12 . 0.0013845 0.0013759 +0.62
13 0.0014222 0.0014064 +1.11
15 © 0.0015077 0.0014675 +2.66
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3.2 Specific>V6lume—Vap0ur Phase gt Saturation Conditions
. PN .. o . .

An estimate v, of D0 specific volume-vapour phase is obtained by
employing linear and second-order parabolic functions of pressure P as
approximations to the inverse of specific volume (vapour) at saturation
conditions, ’

Approximation algorithm:

(%g) ™t = 5.5468 P + 0.1073, - for 0.1 MPa{ P{ 3 MPa;
'(cg)'l = 0.16511(P)2 + 4,41083 P + 2,02911, for 3 MPa{P{ 14 MPa;
where: Cg = approximation to D50 specific volume-vapour phase,
(m?/kg]
P = saturation pressure, [MPa].

Recommended range of use: (0.1-14)MPa with accuracy € not worse than
2.9 percent,

The approximation accuracy is indicated in the Table 2 and Figure 3.2.

TABLE 2: Accuracy of the Approximation for
D70 Specific Volume-Vapour Phase

A
P, [MPa) Vg [m3/kgl Gg. [m3/kg] €=J9"q, (3]
Vg
0.1 1.51073 1.51073 0
0.2 0.79885 0.82196 -2.89
0.5 0.33750 0.34714 -2.86
1 0.174741 0.17686 -1.22
1.5 0,118279 0.11866 -0.3
2 0.089343 0.08928 - +0,07
3 0.059710 0.059710 0
4 0.044519 0.044815 -0.66
5 0.035233 0.035447 -0,61
8 0.020935 0.020884 © +0.24
10 0.016007 0.015962 +0.28
12 - 0.012634 0.012701 | -0.53
13 0.011306 0.011458 -1.35
14 0.010147 0.010401 -2.51
15 0.009121 0.009493 -4.08

Note that within a narrower pgessuré range, between 1 MPa and 12.5 MPa
the accuracy is better than 1.25 percent, which is quite satisfactory.
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3.3 Saturation Temperature

An exponential function of pressure P, with pressure variations
normalized to 10 MPa is used to get an approximation formula to the D0
saturation temperature Tgap.

Approximation algorithm:

N
Tgar = 310.06 Gféf
1

a = { 0.241 for P < 0.3 MPa
0.236 for P) 0.3 MPa

N el
where:  Tgap = approximation to D,0 saturation temperature, [°C]
P = pressure, [MPa]

Recommended range of use: (0.,1-15)MPa with accuracy better than
1.1 percent. '

Accuracy of the approximation formula is presented in Table 3 and in the
attached Figure 3.3, ‘

TABLE 3: Accuracy of the Approximétion to b0 Saturation Temperature

N
A -
P, [MPa) Teap, [°C] - Tgap. [°C] €= 3§££LE§§2, [#]

~ Tgpr
5%10-2 - 82.99 86.48 -4,21
0.1 101.05 102,20 -1.14
0.2 121,41 120.78 : +0.52
0.5 ' 152.66 152.90 -0.16
1 180.38 180,07 40.17

1.5 198,58 198,15 +0.21
2 212,51 212,07 +0.20
3 233.75 233,37 +0.16
5 263,51 263,27 " +0.09
8 294,24 294,15 : +0.03

10 310.06 , 310.06 0

13 329.69 329.87 -0,05

15 340.86 341.20 ~0.10

It is worth to point out that within the pressure range from 0.5 MPa up
to 15 MPa the accuracy of approximation is very good, namely better than
0.21 percent.
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3.4 Enthalpy of Liguid Phase at Saturation Conditions

Exponential functions of the saturation pressure P, normalized to three
pressure levels: 1.5 MPa, 5 MPa and 10 MPa are employed.

Approximation algorithm:

A 0.255

hg = 819.15 (&) ,» for 50 kPa{ P< 1.5 MPa;

A 0.256

heg = 1112.0 (&) , for 1.5 MPa{ P{ 5.2 MPa;
5 .

N .0.283

hg = 1350.14 (Ig) » for 5.2 MPa{ P{ 15 MPa;

approximation to saturation enthalpy of D,0 liquid
phase, [kJ/kg].
saturation pressure, [MPa].

where: hg

4

P

Recommended range of use: (0.1-14)MPa, with accuracy not worse than
1.2 percent.

Accuracy of the approximation is illustrated in Table 4 below and in the
attached Figure 3.4.

TABLE 4: Accuracy of the Approximation to D70
Liquid Phase Enthalpy at Saturation Conditions

;ﬂ!ﬁ

. ~
Pal —
P, [MPa) hg, [k3/kg] he, [k3/kgl €= 2L, )
£
5%1072 334.16 344,11 . =2.98
0.1 409,49 410,64 -0.28
0.2 494,14 490,03 +0.83
0.5 624.36 619.01 +0.86
1 741.20 738.69 +0.34
1.5 819.15 819.15 0
2 879.75 879.49 +0.03
3 974,14 975,69 -0.16
5 1112.0 1112.0 0
6 1167.75 1168.41 ' -0.06
8 1264.90 ~1267.52 -0.21
10 1350.14 1350.14 0
12 1428.48 1421.63 +0.48
14 1503.19 1485.02 +1.21
15 1540.10 1514.30 +1.68 :

Note that in the bPressure range between 1 MPa and 11 MPa the
approximation accuracy is better than 0.35 percent,
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3.5 Enthalpy of Evaporation

For approximation to the D0 evaporation enthalpy hfg, normalized
exponential functions and simple linear relation are used.

The approximation algorithm is:

P2y

hgg = 2202.7 - 879.4 (EJa , for 50 kPa{P{ 2.5 MPa;
_ 7.5 :
a =2,27
hgg = 2181.2 - 857.9 (E.)a , for 2.5 MPa{ P{ 7 MPa;
7.5 . .
a=2.10 '
A A
hgg = 1754.8 - 57.53 P , for 7 MPa{ P& 15 MPa;
Wal .
where: hfg = enthalpy of evaporation, [kJ/kg]
P = saturation pressure, [MPa]

Recommended range of use: (0.05-15)MPa with accuracy better than
0.8 percent.

The accuracy of approximation is shown in Table 5 below and in Figure 3.5.

TABLE 5: Accuracy of Approximation to D30 Evaporation Enthalpy

. .A _A
P, [MPa] ~ hgf, [k3/kgl hgg, [kJ/kg] €= E‘&L’.‘s.f., (%]
hqf
1x10~2 2210.3 2155.1 +2.5
2x10~2 2174.0 2138.1 +1.65
5x10™2 _ 2119.3 2106.0 +0.63
0.1 2071.4 2071.4 . 0
0.2 2015.7 2024.6 -0.44
0.5 1924.2 1936.0 -0.61
1 1834.2 1840.7 -0.35
1.5 1768.9 1769.9 ' -0.06
2.5 1667.6 1672.8 -0.31
3 1624.8 1626.6 -0.11
5 1478.7 1473.9 +0.32
7 1353.1 1352.1 +0.,07
10 1178.9 1179.5 -0.05
12 1064.4 © - 1064.4 0
i3 - 1006.2 1006.9 -0.07
14 946.6 : 949 .4 -0.29 )
15 ' 884.9 : 891.9 -0.79

Within a narrower pressure range, from about 1 MPa up to 14 MPa the
obtained accuracy is better than 0.35 percent.
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3.6 Subcoolgd Liqyid Enthalpy

Simple linear functions of temperature T are used for the approximation.
Variations with pressure P are neglected due to fact that subcooled
enthalpy only slightly varies with pressure. The coefficients of the
approximation function are calculated at the reference pressure

P = 10.0 MPa.

Approximatioh algorithm:

hgup = 4.1615 (T-1.2494), for 25°C { T 100°C;

hsys = 4.2199 (T-3.436), for 100°C¢ T 225°C;

hgyg = 4.7733 (T-29.992), for 225°C¢ T 310.1°C;
where: ﬁSUB = approximation to D20 subcooled enthalpy, [kJ/kg]

T subcooled temperature, [°C]

Recommended range of use: (25-310)°C with accuracy not worse than
1 percent at pressure P = 10.0 MPa. :

Accuracy of the approximation at P = 10.0 MPa is given in Table 6 below
and in Figure 3.6v v

TABLE 6: Accuracy of the Approximation to
D20 Subcooled Enthalpy at P = 10.0 MPa

_ ~ =

T, [°C] hgups [k3/kg] hgyp, [kI/kg) €= DsuB™hsuB, (4
hsup
25 98,3 98.8 ~0.51
50 ~ 203.5 202.9 +0.30
80 328.8 327.7 +0.34
100 411.8 407.5 +1.04
140 577.1 576.3 +0.14
180 743.7 745.1 ' ~0.19
200 828.2 829.5 -0.16
220 914.6 913.9 +0.08
260 1094.5 1097.9 -0.31
300 1293.7 1288.8 +0.38

310 1349.8 . 1336.6 +0.98

Observe that pressure reduction at constant temperatures (below
saturation point) results in relatively insignificant variations of the
subcooled enthalpy. For example, at P = 2 MPa and T = 40°C the subcooled
enthalpy is, according to Reference 1, h = 155.0 kd/kg. Reducing the
pressure down to 0.1 MPa yields h = 153.4 kJ/kg. In both the cases our
approximation yields value of 161.3 kJ/kg with an accuracy of 4.1 percent
and 5.1 percent, correspondingly.

(aludaFeiN
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3.7 Specific Heat of Liquid Phase

Normalized exponential and parabolic functions in temperature T are used
for the approximation. Variations with pressure have been neglected.

Coefficients of the approximation are correlated at pressure P = 10.0 MPa.

Approximation algorithm:

A _
Cpf = 4.205, - for 20°C (T £ 45°C;
épf = 4.213 - 0.0017T + 8.75x10-6 (%)%, for 45°C 4T 130°C;
T=T - 140
2
Cpg = 4.131 - 2.333x10747 + 3.25x2075(0) °, for 130°C4 T 255°C;
T=r1-130
A : 1.95
C.c = 4.269 + 0.881 (T=200, . for 255°C { T £ 290°C;
pt 90
. .6 S
pf = 4.130 + 1.691 (I2120y. -, - for 290°C £ T ¢ 310.1°C;
: 190.1

N
where: Cpf = approximation to specific heat of D70 liquid phase, [ kJ_)
: kg.°K

T ‘temperature, [°C]

Recommended range of use: (20~310)°C with accuracy not worse than
0.41 percent at constant pressure P = 10,0 MPa.

Accuracy of this approximation is illustrated in Table 7 below and in
Figure 3.7.
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TABLE 7: Accuracy of the Approximation to Specific Heat
of Dy0 Liquid Phase at Pressure P = 10.0 MPa

: A~ Cop=C Max
T, [°C]  Cpg, [kd/kg)  Cpg, [ki/kgl €= BETRE, (3] €] ;7 (%)
pf
20 4,208 4,205 +0.07 7 0.87
30 4,211 4.205 +0.14 0.83
50 4.197 4.197 0 0.55
60 4,186 4.183 +0.08 0.57
80 4,161 4.159 +0.05 0.53
100 4.140 4.143 -0.06 . 0.43
120 4.130 4,133 -0.07 0.48
150 4,145 4,139 ‘ +0.14 0.82
180 4.204 4,201 +0,08 . 0.92
200 4.269 4.274 ~0.12 0.86
230 4.419 4.433 -0.31 0.98
250 4,571 4.571 : -0 1.55
270 4.793 4.809 -0.33 1.25
290 . 5.150 5.141 +0.17 1.48

310 5.821 5.821 .0 _ 0

Ielgax = maximum absolute value of the approximation error over
. whole range of pressure variations between 100 kPa and 10 MPa,
restricted to liquid phase.

Note that the maximum possible error of approximationkﬂ%ax caused by
pressure variations does not exceed 1.6 percent which is quite
satisfactory, keeping in mind the simplicity of the approximation
algorithm. '
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3.8 Dynamic Viscosity

Heavy water dynamic viscosity M=vp for liquid and vapour phéses,
re-calculated from the kinematic viscosity in Reference 1, Table 10,
while accommodating for pressure and temperature variations of densityf ’
is shown in the following Table 8.

Based on this table, simple approximations to liquidvphase dynamic
viscosity/ﬁf and vapour phase dynamiC/ﬂg have been developed.

3.8.1 Dynamic Viscosity of Ligquid Phase

A combination of exponential and hyperbolic functions is used for the
approximation to dynamic viscosity Mg.

The approximation algorithm is:
Mg = [25(10)% + 0.1f3x Pl;

- 250 : -
X = : = 5
127+T /Z

]

approximation to D0 dynamic viscosity (liquid), in [10~6 .kq)

h A
wnere:
: /1f m.s

T =btemperature, [eC] o
P = pressure, [MPa]
/3 = correction factor

Recommended range of use: from 5°C up to saturation temperature, with
accuracy not worse than 4.7 percent at constant pressure of 10 MPa,

The algorithm ensures good accuracy within the range of nominal operating
conditions of a typical CANDU-PHW reactor outlet header, that is in the
vicinity of P = 9.5 MPa and T = 290°C.  The accuracy deteriorates with
decreasing temperature T, particularly in the range of (90-190)°C but
even there it is not worse than 4.7 percent. This is illustrated in
Table 9, as follows:
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TABLE 9: Approximation Accuracy for Dynamlc Viscosity of
D20-Liquid Phase at Pressure P # 10.0 MPa

Fa ) _A
T, [°C] Jeo 1076k M, (10m6ka) € =2L7E (g
m.s: ‘ MeS ME
3.85 2034.44 2044.37 -0.49
26.9 1048.17 1060.98 -1.22
76.9 434.87 427.89 +1.84
126.9 258.25 246.24 +4.65
177 ] 177.05 170.29 +3.82
227 ’ S 133.31 130.69 +1.97
277 106.60 . 107.06 . -0.43

When reducing pressure to 0.1 MPa, the inaccuracy of approximation to
/1f does not exceed 5.3 percent which is still acceptable. Note that
the estimates of /”f are needed mainly in computation of the Reynolds
and Prandtl numbers and there is no need to calculate these numbers very

accurately.

Nevertheless, the accuracy of this approximation can be substantially
improved by correlating the correction factor /3 with temperature T and
pressure P. Regular patterns of that correlation can be observed but
their description is beyond the scope of this paper.

3.8.2 Dynamic Viscosity of Vapour Phase

A linear function of temperature T w1th coefficients correlated w1th
pressure P has been used for the approximation.

The approximation algorithm is:

el

Mg = aT+b; 3
a = (42212 + 0.148 P)x10~2 } for 100 kPa{ P 2.5 MPa;
b = 8.25 - 0.6428 P
a = . (4.31 + 0.108 P)x10~2 L\ for 2.5 kPa{ P 10.0 mpa;
b = 8.133 -~ 0.633 P + 0.0149(P) =
a = (5.27 + 0.012 P)x10™2 } for 10 MPa {P{ 15 MPa;
b = 3.027 - 0.0268 p;

= approximation to D20 dynamic viscosity (vapour), in [10~6 ..K9]
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T = temperature (above saturation Value), [°C])
pressure, [MPa]
linear coefficients
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Recommended range of use: (0.1-15)MPa and (Tgar=530)°C, with overall
accuracy better than 1.33 percent. )
This simple correlation ensures good approximation to.the dynamic '
viscosity over wide range of pressure and temperature variations of
the vapour phase. Accuracy of the approximation is shown in Table 10.
In the table the underlined figures represent true values of‘/”g,
re—-calculated from the Reference 1 and shown here also in the upper-right .
half of Table 8. Above each underlined number there is a number:
representing the appregimation value f:g and above it the accuracy of

approximation € =‘£S:~H, in percent.
/g

Note that the accuracy deteriorates only at very high pressures, about
20 MPa and close to the saturation temperature. Even there it is not
worse than 4. 7 percent. With increasing temperature and steady pressure
the estlmate./4g becomes gradually more precise.

4.0 CONCLUSIONS

The demonstrated algorithms provide means for fast and reasonably
accurate calculations of variety of heavy water thermodynamic

properties. The ranges are suitable for typical CANDU-PHW reactor
safety~related studies. Straightforward, compact form of the
approximation formulas contribute to simplicity of the programming effort
during implementation. In fact, the approximation algorithms are so
simple that they have been programmed on the hand-held calculator
Hewlett-Packard HP41-C. : .

The approximation accuracy is good, usually better than 1.3 percent over
the wide range of pressure and temperature variations. Only in case of
the liquid phase viscosity /“f the accuracy deteriorates to about

5 percent. However, even this accuracy is satisfactory when used in
calculation of the Reynolds and Prandtl numbers during evaluation of the
convective heat transfer coefficients. In commonly used correlations for
circular tubes such as Dittus-Boelter or Sieder-Tate equation, the
Reynolds number is used with 0.8 exponent and the Prandtl number is used
with 0.4 exponent and therefore the effect of approximation inaccuracy is
reduced. Nonetheless, a much better accuracy for the Mg formula can

be obtained by correlating the correction coefficient JE) with both
temperature and pressure but the resulting algorithm becomes more
complicated.
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