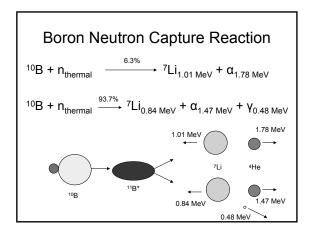
BNCT/BNCS

Victor Kreft B.Sc. (Hon.) Department of Medical Physics

Why I'm Taking Eng. Phys. 4D3


• To develop a better understanding of neutron transport modeling and interactions

• 3 types of neutron sources for medical use, at present:

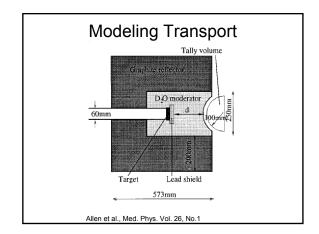
-radioactive isotopes (i.e. ²⁵²Ca)
 -accelerator (i.e. protons on Li)
 -fission reactor (i.e. beam port)

Introduction

- BNCT stands for Boron Neutron Capture Therapy - refers to cancer treatment
- BNCS stands for Boron Neutron Capture Synovectomy - refers to treatment for symptoms of rheumathoid arthritis

What Happens on a Cellular Level?

•Both the Li and α particles have high linear energy transfer (LET)


- •The path length of these particles is approx. 8 µm (about the size of a cell)
- •The particles deposit almost all their energy in the cell

Idea

If we can get tumour (or synovial) cells to specifically uptake the Boronated compounds we can kill the cells preferentially

i.e. Kill tumour cells
 Spare normal tissue

Multi-Disciplinary Field	
ChemistryBiology	 → -produce boron compounds → -determine if compound is preferentially taken up into target cells
Physics	→-modeling neutron transport -determine dose to each tissue
●Engineering → -target design -moderation process -reflector design	

Monte Carlo

 Monte Carlo actually tracks individual particles from the source

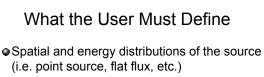
Probability of a first collision for a particle between I and dI along its line of flight is given by: $p(I)d = e^{\cdot \Sigma^n I} \Sigma dI$

Setting the random number as:

 $\xi = \int_{\Omega} \left[e^{-\Sigma^* I} \Sigma ds = 1 - e^{-\Sigma^* I} \right]$

Distance to collision is:

 $I = -1/\Sigma^* ln(1-\xi) = -1/\Sigma^* ln(\xi)$



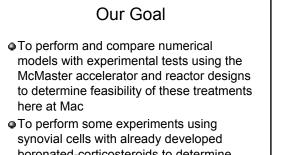
- 1. Collision nuclide is identified
- 2. Elastic or Inelastic scattering is selected based on probability data
- 3. New direction and Energy is determined
- 4. Neutron Capture occurs for neutrons based on probability data
- 5. Photons are optionally generated

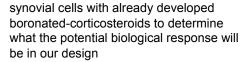
Selection of Nuclide

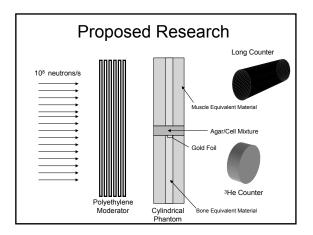
• If there are n different nuclides forming the material in which the collision occurred and ξ is the random number [0,1) then the kth nuclide is chosen as the collision nuclide if:

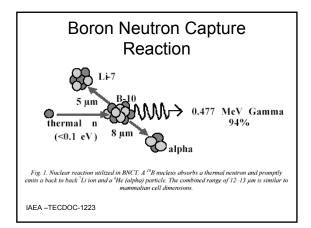
$$_{\mathsf{I}=1}\boldsymbol{\Sigma}^{k\text{--}1}\,\boldsymbol{\Sigma}_{t,\,\mathsf{I}}\ <\ \boldsymbol{\xi^{\star}}_{\mathsf{I}=1}\boldsymbol{\Sigma}^{n}\,\boldsymbol{\Sigma}_{t,\,\mathsf{I}}\ \leq\ _{\mathsf{I}=1}\boldsymbol{\Sigma}^{k}\,\boldsymbol{\Sigma}_{t,\,\mathsf{I}}$$

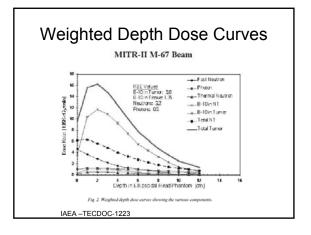
- Boundaries of cells using surfaces
- Material composition of the cells
- •Scattering and absorption cross sections
- Tallies required (i.e.flux, fluence, dose, etc.)
- Variance reduction techniques


Variance Reduction


Flux of about 10⁹ n/s is required


- MCNP gives feedback as to how statistical soundness of the model
- Results are deemed acceptable when R \leq 0.05 where:


 $R \equiv S_{mean}/mean \approx \sigma_{mean}/mean$ \bullet But is the mean correct?


Some Variance Reduction Techniques • Truncation Methods i.e. energy cutoff, geometry cutoff • Population Control Methods i.e. particle splitting, Russian roulette • Modified Sampling Methods i.e. implicit capture, forced collisions • Partially Deterministic Methods i.e. random walk biasing, next event estimators

