Summary:
The basic definitions and perspectives for the behaviour of free neutrons as they interact with their surrounding media are introduced. This forms the basis for the detailed study to follow.

Table of Contents

1 Introduction ... 3
 1.1 Overview .. 3
 1.2 Learning outcomes ... 4
 1.2.1 To understand the following physical processes ... 4
 1.2.2 To understand the basics of neutron processes ... 4
 1.2.3 To understand the main issues for reactor modelling ... 4

2 The Life and Times of the Neutron ... 5
 2.1 The Fission Event ... 5
 2.2 Neutron Life Cycle in CANDU .. 6
 2.3 Density of neutrons required to produce 1 watt/cm³ ... 8
 2.4 Neutron Energy ... 9
 2.5 Units .. 11

3 1/E Spectrum .. 12
 3.1 Derivation of 1/E spectrum (equation 8-14 of D & H) ... 12

4 Decay .. 13
 4.1 Math aside ... 14
 4.2 Example (D&H #2.3) .. 15

5 Cross Section ... 17
 5.1 Microscopic cross section, σ [cm²] .. 17
 5.2 Example (D & H 2.7) .. 18
 5.3 Macroscopic Cross Section, Σ [cm⁻¹] .. 19
 5.4 Mean Free Path ... 20
 5.5 Calculation of Nuclei Density ... 20

6 Nuclear Reactions .. 21

7 Summary .. 25
 7.1 Summary of key concepts ... 25
 7.2 Summary of approximations ... 26

8 A Look Ahead ... 27
 8.1 The neutron balance ... 27
 8.2 The Central Role of Flux ... 28
List of Figures

Figure 1 Course Overview .. 3
Figure 2 The fission event .. 5
Figure 3 Fission cross section of U-235 [source: DUD1976, figure 2-17].. 5
Figure 4 Neutron life cycle [source: unknown] ... 6
Figure 5 Another view of the neutron life cycle [source: EP712 course notes, chapter 2] 7
Figure 6 Neutron Energy Distribution ... 10
Figure 7 Nuclear Transformations [Source: A. A. Harms, McMaster University] 22
Figure 8 Segment of the Chart of the Nuclides [Source: A. A. Harms, McMaster University] ... 23
Figure 9 Number of neutrons and protons in stable nuclei [Source: A. A. Harms, McMaster University] ... 24
Figure 10 Neutron processes ... 27

List of Tables

Error! No table of figures entries found.
1 Introduction

1.1 Overview

Figure 1 Course Overview
1.2 Learning outcomes

1.2.1 To understand the following physical processes
- fission
- neutron life cycle
- the neutron environment
- neutron energy distribution

1.2.2 To understand the basics of neutron processes
- decay
- absorption and scattering
- kinematics

1.2.3 To understand the main issues for reactor modelling
2 The Life and Times of the Neutron

2.1 The Fission Event

The neutron, which is uncharged, can interact with a U235 nucleus leading to fission.

The result is the creation of fission products (which may be radioactive), radiation (usually γ’s and β’s) and 2 to 3 neutrons at high energy (1-2 MeV).

The probability of the event is a strong function of the neutron energy, as shown next.

![Figure 2: The fission event](image)

$$Figure\ 2\ The\ fission\ event$$

![Figure 3: Fission cross section of U-235](image)

$Figure\ 3\ Fission\ cross\ section\ of\ U-235\ [source:\ DUD1976,\ figure\ 2-17]$

$\sigma \equiv \text{microscopic cross section [cm}^2\text{]} = \text{effective interaction area}$

1 barn $\equiv 1 \times 10^{-24}$ cm2

σ is usually quoted in units of barns since the effective area is so small.
2.2 Neutron Life Cycle in CANDU

Figure 4 Neutron life cycle [source: unknown]
Neutrons Slowing Down

- When the number of slow neutrons is constant, the system is critical.
- Delayed neutrons appear after ~10 seconds.
- Fast neutrons slow down in ~1 millisecond.

Leaked Neutrons

- Prompt neutrons from fission
- "ASHES" (Fission Products)
- Heat
- U235 Fission
- Slow neutrons
- Captured neutrons (some neutrons are captured in U238 and so produce useful fuel - Pu239)
- Neutrons diffusing
- Delayed neutrons (from fission)
- Neutrons slowing down
- Leaked neutrons

Figure 1 – The Neutron Cycle in a Thermal Reactor

Figure 5 – Another view of the neutron life cycle [source: EP712 course notes, chapter 2]
2.3 Density of neutrons required to produce 1 watt/cm3

Consider a beam of neutrons moving at velocity, v cm/s.

The average distance travelled before a fission interaction is \bar{X} cm (in U235)

\[\therefore \text{Average time per interaction} = \frac{\bar{X}}{v} \text{ seconds and frequency of interaction} = \frac{v}{\bar{X}} \text{ s}^{-1} \text{ per neutron.} \]

If the density of neutrons is n neutrons/cm3, then interaction rate $= \frac{nv}{\bar{X}}$ interactions/s-cm3.

For

\[\frac{1 \text{ watt}}{\text{cm}^3} = \frac{1 \text{ Joule}}{s - \text{cm}^3}, \]

\[1 \frac{\text{J}}{s - \text{cm}^3} = \text{energy} \times \frac{\# \text{fissions}}{\text{fission}} \times \text{s}^{-1} \text{ cm} \]

\[= 200 \times 10^6 \text{ eV} \times 1.602 \times 10^{-19} \frac{\text{Joules}}{\text{eV}} \times \frac{nv}{\bar{X}} \]

\[\therefore \text{n} = \frac{\bar{X} \sim 1 \text{ cm}}{2 \times 10^8 \times 1.6 \times 10^{-19} \times v \sim 2 \times 10^5 \text{ cm/s}} \]

\[= 1.5 \times 10^5 \text{ n/cm}^3 \]

Compare this to the typical nuclei density $\sim 10^{22}$/cm3

Conclusion: Neutrons do not interact with each other.

This is an important conclusion.
2.4 Neutron Energy

Thermal distribution:

\[n(v) = 4\pi \left(\frac{m}{2\pi kT} \right)^{3/2} n_0 v^2 e^{-mv^2/2kT} \]

\[\downarrow \]

\[n(E) = \frac{2\pi n_0}{(\pi kT)^{3/2}} E^{1/2} e^{-E/kT} \]

\[\phi(E) \equiv n(E) v = v n_0 M(E) \]

\[= \frac{2\pi n_0}{(\pi kT)^{3/2}} \left(\frac{2}{m} \right)^{1/2} E e^{-E/kT} \]

Maxwellian Distribution

Now, \(n_o = \int_0^\infty n(E) dE = \int_0^\infty n(v) dv \)

Note: \(n(E) = \# \) of neutrons in interval dE [\# / eV]

\(n(v) = \# \) of neutrons in interval dv [\# / (m/s)]

Thus \(n \left(\frac{1}{2} mv^2 \right) \neq n(v) \) since interval size is different

But \(n(E) \ d(E) = n(v) \ dv \) so that \(\int_0^\infty n(E) dE = \int_0^\infty n(v) dv \)

Most probable vel:

\[\frac{dn(v)}{dv} = 0 \Rightarrow v_p = \sqrt{\frac{2kT}{m}} \]

\[= 2200 \text{ m/s} \]

\[\Rightarrow E(p) = kT = 0.025 \text{ eV at 20° C} \]

Most probable energy:

\[\frac{dn(E)}{dE} = 0 \Rightarrow E_p = \frac{1}{2} kT \]

\[\bar{E} = \frac{3}{2} kT \]

\[\frac{1}{v} = \sqrt{\frac{8kT}{\pi m}} \]
Figure 6 Neutron Energy Distribution
2.5 Units

\[V_p = \sqrt{\frac{2kT}{m}} = \sqrt{\frac{2 \times 1.3806 \times 10^{-23} \text{ Joules} / \text{K} \times 293.13 \text{K}}{1.67 \times 10^{-27} \text{kg}}} \]

= 2201 m/s

\[E \equiv \text{gm} \frac{\text{cm}^2}{\text{sec}^2} = \text{erg} \quad \text{or} \quad \text{kg} \frac{\text{m}^2}{\text{sec}^2} = \text{Joules} \]

Recall:

\[F = ma \Rightarrow \text{dyne} = \text{gm cm/sec}^2 \]

\[\therefore E = F \cdot x = \text{dyne - cm = erg} = 10^{-7} \text{ J.} \]
3 1/E Spectrum

3.1 Derivation of 1/E spectrum (equation 8-14 of D & H)

Assume the neutron is slowing down in H in the absence of absorption. Further assume that there is no upscatter.

\[
\frac{[\Sigma_s(E) + \Sigma_a(E)]\phi(E)}{\text{# of neutrons leaving energy } E} = \int_0^\infty \Sigma_s(E') \phi(E') \, dE' + S(E)
\]

Since \(\Sigma_a(E) = 0\), we have

\[
\frac{\Sigma_s(E)\phi(E)}{\text{equal probability of scatter (isotropic)}} = F(E)
\]

\[
\therefore F(E) = \int_{E_0}^{E_a} \frac{F(E')}{E'} \, dE' + S_0 \delta(E - E_0)
\]

\[
\frac{d}{dE} F(E) = -\frac{1}{E} F(E)
\]

\[
F(E) = \frac{S_0}{E} + S_0 \delta(E - E_0)
\]

\[
\therefore \phi(E) = \frac{S_0}{\Sigma_s(E) E} + \frac{S_0}{\Sigma_s(E)} \delta(E - E_0)
\]

\[
\Sigma_s \sim \text{const} \Rightarrow \phi \sim \frac{1}{E}
\]

At this point you should be able to answer Questions 1, 2, 3 and 4 at the end of this chapter.
4 Decay

\[- \frac{dN(t)}{dt} = \lambda N(t)\]

\[
N(t) = N_0 e^{-\lambda t}
\]

\[
\therefore - \frac{dN(t)}{dt} = \text{RATE} = \lambda N_0 e^{-\lambda t}
\]

\# decaying in dt at \(t\) = \(-\frac{dN(t)}{dt}\) = \(\lambda N_0 e^{-\lambda t}\) dt

fraction of initial decaying in dt at \(t\) = \(\lambda e^{-\lambda t}\) dt

mean lifetime,

\(\bar{t} = \int_0^\infty p(t) dt = \lambda \int_0^\infty t e^{-\lambda t} dt = \frac{1}{\lambda}\)

\[
\therefore \bar{t} = \frac{1}{\lambda}
\]

Half Life, \(T_{1/2}\)

\(N(T_{1/2}) = \frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}\)

\[
\Rightarrow T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}
\]
4.1 Math aside

If we have two functions $f(x) + g(x)$:

$$d(fg) = f'g + g'f \quad \Rightarrow \quad \int d(fg) = fg$$

$$= \int f'gdx + \int g'fdx$$

$$\therefore \int_0^\infty \frac{t}{f} e^{\lambda t} dt = -\frac{te^{-\lambda t}}{\lambda} \bigg|_0^\infty - \int_0^\infty \frac{e^{\lambda t}}{(-\lambda)} dt$$

$$= 0 + \frac{1}{\lambda^2}$$
4.2 Example (D&H #2.3)

Decay chain for an initially pure radioactive sample.

\[
\frac{dN_1}{dt} = -\lambda_1 N_1 \quad \Rightarrow \quad N_1(t) = N_1(0) e^{-\lambda_1 t}
\]

\[
\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2 \quad \Rightarrow \quad N_2(t) = \frac{\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} [e^{-\lambda_1 t} - e^{-\lambda_2 t}]
\]

\[
\frac{dN_3}{dt} = \lambda_2 N_2 - \lambda_3 N_3 \\
\vdots \\
\frac{dN_N}{dt} = \lambda_{N-1} N_{N-1} - \lambda_N N_N
\]

\[\Rightarrow \text{messy solutions}\]

To solve for \(N_2\):

Rewrite to get:

\[
\frac{dN_2}{dt} + \lambda_2 N_2 = \lambda_1 N_1
\]

\[\Rightarrow \quad d N_2 + \lambda_2 N_2 dt = \lambda_1 N_1 dt\]

Multiply by \(e^{\lambda_2 t}\):

\[\Rightarrow \quad e^{\lambda_2 t} d N_2 + \lambda_2 e^{\lambda_2 t} N_2 dt = \lambda_1 N_1 e^{\lambda_2 t} dt\]

\[\Rightarrow \quad d(e^{\lambda_2 t} N_2) = \lambda_1 N_1(0)e^{(\lambda_2 - \lambda_1)t} dt\]

\[\therefore \quad e^{\lambda_2 t} N_2 = \frac{\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} e^{(\lambda_2 - \lambda_1)t} + C\]
Now at $t = 0$, $N_2(0) = 0$ \[\Rightarrow C = \frac{-\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} \]

\[\therefore N_2(t) = \frac{\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} [e^{(\lambda_2 - \lambda_1)t} - 1] e^{-\lambda_2 t} = \frac{\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} [e^{-\lambda_1 t} - e^{-\lambda_2 t}] \]

For fast decay of 1 and slow decay of 2 ($\lambda_1 >> \lambda_2$)

\[N_2(t) \sim \frac{\lambda_1 N_1(0)}{\lambda_2 - \lambda_1} [e^{-\lambda_1 t} - e^{-\lambda_2 t}] \]

\[\sim N_1(0) e^{-\lambda_2 t} \]

i.e. decay dominated by decay of 2.

For slow decay of 1 and fast decay of 2 ($\lambda_2 >> \lambda_1$)

\[N_2(t) \sim \frac{\lambda_1 N_1(0)}{\lambda_2} e^{-\lambda_1 t} = N_1(t) \frac{\lambda_1}{\lambda_2} \]

i.e. $\lambda_2 N_2(t) = \lambda_1 N_1(t)$

This is called “secular equilibrium”.

(lasting a long time, indifferent, not religious)
5 Cross Section

5.1 Microscopic cross section, σ [cm2]

Consider a beam of neutrons incident on a target. The rate of interaction (neutron-nuclei) is

$$\text{Rate of interaction} = \sigma \frac{I}{n} \frac{N}{cm^2} [\equiv \frac{\#}{cm^3 \cdot s}]$$

Recall that 1 barn = 10^{-24} cm2

The total cross section, $\sigma_{\text{total}} = \sigma_{\text{scatter}} + \sigma_{\text{absorption}}$

ie. $\sigma_T = \sigma_s + \sigma_a$

Diagram:

- Total
- Scatter
 - Inelastic
 - Elastic
- Absorption
 - Fission
 - Capture (n, γ)
 - $(n, 2n)$
 - $(n, 3n)$
 - (n, p)
 - (n, α)
5.2 Example (D & H 2.7)

Question: How long, on average for a given nuclei to suffer a neutron interaction?

\[
\text{Rate} = \frac{\sigma I}{N} = 4 \times 10^{-24} \times 10^{12} \text{ interactions/sec} = 4 \times 10^{-12} \text{ interactions/sec for 1 nuclei}
\]

\[
\therefore \text{ seconds/interactions for 1 nuclei} = \frac{1}{4 \times 10^{-12}} \text{ s} = 2.5 \times 10^{11} \text{ seconds}
\]
5.3 Macroscopic Cross Section, Σ [cm$^{-1}$]

Rate $= \sigma I N \equiv \Sigma I$

$$= -\frac{dI}{dx}$$

$$\Sigma \equiv \sigma N \left[\frac{cm^2 \cdot \#}{cm^3} \right]$$

$$= cm^{-1}$$

$$\left(-\frac{dI}{I} \right) = \Sigma$$

= fractional change of I in distance dx

= probability of reaction per unit length

$$\downarrow$$

$$I(x) = I_o e^{-\Sigma x}$$

$$\frac{I(x)}{I_o} = \text{probability of going } x \text{ with no interaction}$$

$$= e^{-\Sigma x}$$

Probability of interaction at x in dx is: $(p(x)dx)$

$$-\frac{dI}{I_o} = \frac{I(x)}{I_o} \cdot \Sigma dx = \int \frac{I(x)}{I_o} \cdot \Sigma e^{-\Sigma x} \, dx$$

At this point you should be able to answer Questions 5 at the end of this chapter.
5.4 Mean Free Path

\[\bar{x} = \int_0^\infty p(x) \, dx = \int_0^\infty \Sigma e^{-\Sigma x} \, dx \]
\[= \frac{1}{\Sigma} = \text{mean free path} \]

cf: \[\bar{t} = \int_0^\lambda \lambda e^{-\lambda t} \, dt = \frac{1}{\lambda} \]

Mean time between collisions:

\[\frac{\bar{x}}{\text{velocity}} = \frac{1}{v\Sigma} \]

Collision frequency = \(\frac{1}{\text{time}} = v\Sigma \)

5.5 Calculation of Nuclei Density

\[\Sigma_t = \Sigma_a + \Sigma_s \]

\[\Sigma_s = \sum_i \Sigma_{i_s} \]

\[\Sigma_a = N_x \sigma_{a_x} + N_y \sigma_{a_y} + ... \]

\[= \sum_i N_i \sigma_{a_i} \]

\[N_i = A \left(\frac{\#}{\text{gm - mole}} \right) \cdot \rho \left(\frac{\text{gm}}{\text{cm}^3} \right) \]

where \(A = \text{Avogadro's number}, 6.0221367 \times 10^{23} \)
6 Nuclear Reactions

Reactions:

\[a + b \rightarrow c + d \]
\[a \ (b, c) \ d \]

Example:

\[_{92}^{235}U + _{0}^{1}n \rightarrow _{92}^{236}U + \gamma \]

Radioactive Capture: \((n, \gamma)\)

Fission: \(n + X \rightarrow X_1 + X_2 + \gamma + n + \text{energy} \)

Scattering: \((n, n)\) elastic
\((n, n')\) inelastic

Source of neutrons:
1. Fission
 A. Initiated by cosmic radiation
 B. Spontaneous
 C. Neutron absorption
2. \((\alpha, n)\)

\[_{4}^{9}Be + _{2}^{4}He \rightarrow _{6}^{12}C + _{0}^{1}n \]
from radium, Pu, polonium

3. \((\gamma, n)\) (photoneutrons)

\[_{1}^{2}H + \gamma \rightarrow _{1}^{1}H + _{0}^{1}n \]
\[_{9}^{4}Be + \gamma \rightarrow _{4}^{8}Be + _{0}^{1}n \]
Figure 7 Nuclear Transformations [Source: A. A. Harms, McMaster University]
Figure 8 Segment of the Chart of the Nuclides [Source: A. A. Harms, McMaster University]
Figure 9 Number of neutrons and protons in stable nuclei [Source: A. A. Harms, McMaster University]
7 Summary

7.1 Summary of key concepts

- neutrons do not interact with each other
- life cycle
- neutron energy spectrum
- decay
- chart of the nuclides
- σ, \sum
- mechanics of collision (addendum)
7.2 Summary of approximations

\textbf{Boltzmann Transport Eqn's}

\[n (F, E, \Omega, t) \]

\[c_0 (F, E, t) \]

\textit{became isotropic}

\[n (F, E, t) \]

\[c_i (F, E, t) \]

\textit{continuum of Energy \rightarrow neutron energy groups}

\[n_g (F, t), g = 1, \ldots, G \]

\[c_g (F, t), i, \ldots, N \]

\textit{number of energy groups}

\textit{number of delayed precursor groups}

\textit{Transport of neutrons approximated by Diffusion theory}

\textbf{Diffusion eqn's}

\[(n_g (F, t), c_g (F, t)) \]

\textit{where} \[n_0 = DU \nu \]

\textit{Choice of simplifications}

\textit{Multigroup neutron diffusion eqn's}

\textit{Fick's law}

\textit{Multi-group steady state diffusion one \textbf{delayed precursor} group (F, t)}

\[n_g (F, t) \]

\[c_g (F, t) \]

\textit{for short times (seconds)}

\textit{delayed precursor investigations (neutron poisoning) etc}

\[t \sim \text{sec} \]

\textit{One group (F, t)}

\[n_0 (F, t), c_0 (F, t) \]

\textit{space-time kinetics for longer times (minutes hours)}

\[t \sim \text{min} \]
8 A Look Ahead

8.1 The neutron balance

Figure 10 Neutron processes

Neutron balance:

\[
\frac{\partial n(r, t)}{\partial t} \equiv \frac{1}{v} \frac{\partial \phi(r, t)}{\partial t} = S(r, t) - \sum_a \phi(r, t) - \nabla \cdot J(r, t) \tag{2}
\]

\[= + \nabla \cdot D \nabla \phi(r, t) \text{ from Fick's Law: } J \equiv -D \nabla \phi\]

Reactor physics is all about the calculation of the neutron density, n, or flux, \(\phi\).
8.2 The Central Role of Flux

- Fick’s Law
- Neutron balance eqn. (continuity eqn.)
- Sinks, Σ_a, Σ_s

Dim.
SS or tran.
Delayed precursors
of groups
variance in material properties.
-depletion
-inhomo
-control
-power dependence (Temperature effects)
Radiation damage on structure

Effect on samples
(γ, heating, ϕ, etc.)

t/h calc. \Rightarrow T, P, density flows

Dimensions # of grid pts. Type of cell at each grid pt.

Radiation damage on structure

$\phi_g (r, t, E, \Omega)$

$N_i (r, t)$

$C_i (r, t)$

- Say 69 groups

Fuel Control

Moderator

Cell Materials & Composition

1

Cell Defn (group collapse)

Grid Prop Setup

Grid

Initial Flux

Flux calc’s
- Multigroup diffusion
- Transport
- Monte Carlo

Mat. Lib.

Burnup

Fuel Management

Fission Products
- Xenon
- delayed precursors

Detector Response

Control

Rod position

Effect on samples
(γ, heating, ϕ, etc.)

t/h calc. \Rightarrow T, P, density flows

Dimensions # of grid pts. Type of cell at each grid pt.

Radiation damage on structure

$\phi_g (r, t, E, \Omega)$

$N_i (r, t)$

$C_i (r, t)$

- Say 69 groups

Fuel Control

Moderator

Cell Materials & Composition

1

Cell Defn (group collapse)

Grid Prop Setup

Grid

Initial Flux

Flux calc’s
- Multigroup diffusion
- Transport
- Monte Carlo

Mat. Lib.

Burnup

Fuel Management

Fission Products
- Xenon
- delayed precursors

Detector Response

Control

Rod position
9 Some Questions

9.1 Question on characteristics

Given this brief look at neutrons and their life cycle, what are some of the issues/characteristics that you would expect to arise in the design of a nuclear power plant?

9.2 Reactor Modelling Issues

Imagine a reactor consisting of a central fuel region surrounded by a moderator. There is a variable absorber for control. What are some of the issues to consider in setting up a model of the reactor?

9.3 Question of n(E)

Illustrate on a graph of n(E) vs. ln(E) the life cycle of a neutron in a fission reactor.

9.4 Question of non-Maxwellian

Illustrate how the thermal neutron spectrum differs from a Maxwellian and explain why.

9.5 Question on Cross section

Consider:

\[I(x) = I_0 e^{-\Sigma x} \]

What are some of the assumptions in or limitations of this equation?

What are some of the things implied by this equation?