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Summary: 
 
Dynamic Characteristics of neutron chain reactors, with time scales ranging from prompt-
neutron lifetime (10-9 s to 10-3 s) through temperature-induced feedback, delayed neutron 
precursor production and decay, control systems response up to the time scale of fuel burnup and 
irradiation damage structures (∼ 10+8 s). 
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Introduction to the Dynamics of Power Reactors 
 
This document (“gulp”) deals in a mostly qualitative manner with the broad range of topics that 
must be considered in the course of fission reactor design.  The main physical and functional 
aspects are introduced as a lead-in to the more precise and quantitative treatment described 
elsewhere. 
 

1. Qualitative Comparison with a Coal Furnace 
 
Figure 1 shows a sketch of these two processes. The left side of the Figure represents a coal station.  
Here we see that process inputs are fuel and air; the flow of each of these is controlled to match 
demand for the primary output, which is heat for boiling water.  A relatively small amount of heat 
is needed to raise the fuel-air 
mixture up to the furnace 
temperature. 
 
Fuel flows directly into the 
furnace and is burned within a 
few seconds to produce the 
secondary outputs, combustion 
gases and fly ash.  Combustion 
gases transfer heat to water and 
steam is produced.  There is only 
a small amount of fuel in the 
furnace at any time. 
 
The highest possible temperature 
in a coal furnace is equal to the 
flame temperature of the fuel.  
This temperature is near, but still below, the melting temperature of furnace materials. Combustion 
gases (containing trace amounts of several toxic elements) have a very large volume that makes 
purification expensive, though still possible.  The unavoidable waste product is carbon dioxide.  
Tertiary output called bottom ash has a very large volume and contains toxic materials.  No 
effective method has yet been found for long-term isolation of this waste from people. 
 
A flow diagram for a nuclear plant is shown in the right-hand side of Figure 1. The first notable 
characteristic is that the process uses no air. Also, there is no secondary waste output.  Fuel is 
added in batches, daily in some designs and yearly in other designs.  The mass of fuel used is very 
small compared with the mass needed for a coal plant because its specific potential energy is large.   
Tertiary output (fission product material) is sealed inside the used fuel bundles. 
 
The largest environmental advantage of nuclear technology is that it is possible to design a plant 
with zero waste output during normal operation.  Used fuel is highly radioactive but is easy to 
manage safely.   It decays to a very low level of toxicity in about five hundred years.  This low 
level is then maintained, effectively forever.  At the same time the fuel must be carefully protected 
from overheating during operation, to ensure that no radioactive materials are released 
accidentally. 
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In most designs the primary output, heat, is carried away from the reactor by water coolant under 
pressure. This coolant then is used to produce steam. 
 
The most important unique feature of this process is that an intermediate product (neutrons) is 
essential to keep the fission process going.  These neutrons are necessary to cause further fission.  
The neutrons “flow” through the reactor, slow down, and are absorbed.  Control of the process is 
through increasing or decreasing the neutron capture rate within this flow so that the fission rate 
(energy released) matches the demand for steam to drive the turbine.  Control materials are moved 
into, or out of, the neutron flow as required to achieve this goal. 
 
Three characteristics of the process must be remembered.  First, the chain reaction can be stopped 
very quickly by capturing a few more neutrons of the neutron flow.  When this is done the neutron 
flow stops in a few seconds.  Second, if control is lost for any reason it is possible for the neutron 
flow to increase very quickly and to release large amounts of heat from the reactor fuel.  This is 
possible because a large amount of fuel (in terms of its potential energy) is located inside the 
reactor core at all times. 
 
The fission rate has no intrinsic upper limit.  As a result there is no effective limit to the fuel 
temperature.  Fuel temperature can rise far above the melting temperature of reactor materials.  
Furthermore, coolant that normally contacts the fuel sheath can itself be vaporized at 
high temperature.  Vapour is much less effective than water in removing fuel heat.  Volume 
increases on vaporization and can lead to overpressure of containment barriers. Continued cooling 
of the fuel is required so that fuel temperatures remain low.  Control and safety systems are 
required to prevent the fission rate from exceeding safe limits. 
 
Reviewing this scenario, structural materials and coolant will degrade at very high temperatures.  
The radioactive fission products are located inside the fuel, in exactly the same place where most 
of the fission heat is released.  If the fuel is not cooled these radioactive materials eventually will 
be released.  
 

2. Reactor design  
 
Providing equipment and 
systems to maintain the correct 
balance of heat production 
processes (neutron dynamics) 
and heat removal processes 
(coolant dynamics) at all times is 
one major task of the reactor 
core designer.  Materials 
selection and structural design is 
the other major task. This course 
deals with the heat production 
part of the process design task.   
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As illustrated in Figure 2, keeping the fuel cool (or, more precisely, “at the correct temperature”) 
demands that a balance be maintained between heat production (from fission) and heat removal 
(to the steam turbine).  The energy is transferred, in the form of electricity, to transmission lines 
and eventually to the load.  Variation of this electrical load is the most fundamental source of 
perturbation in reactor steady state operation.  There are many other sources of perturbation, each 
of which acts on a typical time scale.  We will examine each of these in increasing order, starting 
with those acting on a nanosecond timescale. 
 

3. Short time scales 
 
Fission reactions occur in the order of one-hundredth of a picosecond – so short that the time of 
interaction between neutrons and nuclei can be considered instantaneous.     
 
The next time scale of interest is the time-of-flight of a neutron from its production in fission to 
its first collision with another nucleus.  We can calculate this time approximately from 
knowledge of the energy of fission neutrons and the mean distance of travel of neutrons in the 
reactor at that energy.  In a typical uranium dioxide lattice the mean first-track length is about 4 
centimetres.  Calculating the neutron velocity from the equation E=1/2 m V2, the time taken for a 
fission neutron to travel this distance is about 2 nanoseconds. 
 
The first neutron collision seldom results in fission (as necessary for continuation of the fission 
chain) the most probable interaction is neutron scattering.   Several collisions normally occur 
before the neutron finally is absorbed by a nucleus.  The designer is interested in the time taken 
between fission and absorption, because this time determines many of the dynamic 
characteristics of the reactor.  This time is known as the prompt neutron lifetime or generation 
time.  [Note: We are interested only in the ensemble average time interval because the neutron 
population is very large.]  In thermal reactors this time includes the time to slow down from 
fission energy plus the time elapsed during diffusion in the lattice at thermal energies. 
 
Of course, not all neutrons are emitted at the time of fission.  About twenty fission product 
isotopes decay through neutron emission with half-life from about one-tenth of a second up to 60 
seconds.  These isotopes are important to control via their first-order delay on neutron population 
changes.  They also are very important to space-time dependence of the neutron population; the 
so-called point model of reactor kinetics often fails because of its failure to account for the time 
delay in adjustment of the neutron density distribution following local perturbations.  The more 
sophisticated adiabatic model often fails in the other extreme through its assumption that 
delayed neutrons always are emitted with the same spatial distribution as are prompt neutrons. 
 
In special cases we find yet another source of delayed neutron emission (delayed, that is, relative 
to the original fission event) that must be accounted for in high-precision calculations.  One of 
these special cases appears in reactors employing heavy water as moderator or coolant.  Gamma 
rays emitted in the process of fission induce decay of deuterium and emission of a neutron.  
Strictly, these delayed reactions depend on the history of gamma ray distribution rather than 
neutron distribution; but most models simply add these reactions to the equations for delayed 
neutron production and decay from fission.  The resultant error is small. 
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The neutron-absorbing properties of nuclear fuels change with temperature as a result of (a) 
density changes, and (b) changes in absorption properties of the nuclear resonances that occur in 
the few-kilovolt range of neutron energy.  All temperature changes depend on the integral over 
time of the instantaneous reaction rate; including heat losses leads to the local temperature 
following a temporal convolution integral of the instantaneous reaction rate.  The effect of fuel 
temperature on the chain reaction depends on the particular reactor characteristics; it may be 
positive (increasing fission rate) or negative (decreasing fission rate.) 
 
The local temperature of reactor coolant is determined mostly by the time-integral of fuel 
temperature, that itself depends, as discussed above, on the time-integral of the fission rate.  And 
so, except when a coolant changes phase (liquid to gaseous) this density change has a second-
order effect on fission rate. 
 
In the case of boiling the relationship is more complicated, depending on the coolant flow rate 
and especially on transient pressure (that directly changes the saturation temperature).  One of 
the most important accident events in a pressurized water reactor such as CANDU would be 
breaking of the heat-transport system boundary.  Such an event would lead to fast 
depressurization of the coolant as well as sudden vaporization or ‘flashing’.  Boiling may have a 
direct influence on fission rate (either positive or negative) and an indirect influence via the 
resulting increase in fuel temperature.  If the failed pipe were located inside the reactor, 
vaporization of the coolant can change the neutron moderator’s geometry very rapidly.  This 
change may have a direct effect on the chain reaction as well as on its spatial distribution. 
 
 All control actions are very slow compared with the time scales discussed here, and are 
discussed in a later section of this lecture.  The exception is emergency shutdown following 
detection of an unsafe state.  Shutdown action can be designed to significantly decrease the 
population of neutrons, and therefore the energy release rate, within one-tenth of a second 
(discounting the detection and initiation lag time that depends on particular design 
characteristics.) 
 
A highly simplified view of reactor 
dynamic characteristics is shown in 
Figure 3.   The ‘effective’ neutron 
lifetime was estimated by assuming a 
single half-life for delayed neutrons 
and using an arbitrary step increase 
in reactivity.  It can be seen that all 
reactors behave the same when the 
step reactivity increase is less than 
about 0.5 times the delayed neutron 
fraction. 
 
At higher values of reactivity, a 
reactor having a short prompt 
neutron lifetime responds very, very 
rapidly.  On the other hand, when the 
prompt neutron lifetime is around 
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one millisecond (typical of the CANDU reactor) the effect of this “prompt-critical transition” 
effect is much smaller.  In extreme circumstances, a power reactor with long prompt neutron 
lifetime is easier to control, and the consequences of a complete loss of control are less severe. 
 
The Nuclear Engineering website http://epic.mcmaster.ca/~garlandw/index.htm includes 
download programs.  One of these, EXKIN, is a simple point-kinetics model that can be run to 
look at the effects of different reactor parameters on dynamic reactor behaviour.  This exercise is 
not intended as a precise model of reactor dynamics, but only as a device to assist you in 
understanding of the various parameters involved. 
 

4. Medium Time Scales 
 
Reactor control systems are used to (a) bring the reactor assembly to a self-sustaining (critical) 
state, (b) to raise power output, (c) to control power and spatial power distribution within 
prescribed limits, and (d) to shut down the reactor.  Control changes are very slow during normal 
operation (typically seconds or minutes).  These changes can be separated logically from safety-
related control actions that always act to reduce local and global power when an abnormal 
condition is detected.  (Most power reactor control systems actually act on the neutron flux 
through either increasing or decreasing local parasitic absorption.  Such changes directly effect 
power production. 
 
Further discussion of control systems is best reserved until we address the set of reactor flux 
equations in more detail. 
 
Some of the fission products produced during operation have high neutron capture cross-
sections.  [Historical note: When the first high-power reactor was started in Hanford, 
Washington in the 1940’s, staff were surprised when the reactor shut itself off shortly after the 
power was increased.  It was then realized that the concentration of the isotope Xenon 135 
slowly increases as the fission process continues at high power.]  Added neutron absorption from 
this Xenon subsequently reduces the reactivity of any thermal reactor so it will shut itself down if 
no control action is taken.  Most of this Xenon is produced indirectly via the decay of Iodine 135, 
with a half-life of 6.6 hours.  The balance between production and capture of Xenon 135 leads to 
an equilibrium concentration at a given steady-state power and a rapid decrease in concentration 
as power is raised (reactivity increase), followed by a subsequent increase in concentration 
(reactivity decrease).  The steady-state concentration of Xenon saturates at high power levels. 
 
The reactivity introduced by Xe135 in a CANDU reactor at full power is about -28 mk; rapid 
buildup after shutdown prevents restart of the reactor for about 40 hours unless restart to a 
significant power level is achieved within about 30-40 minutes.  Even at the stable level of about 
60% power, all of the adjuster rods must be withdrawn in order to prevent consequent "poison-
out" of the reactor.   
 
Samarium149 is also produced indirectly through decay of Pm149; the prime differences being 
that its capture cross section (and hence its negative reactivity effect) is much smaller and that it is 
stable after formation while Xe135 is radioactive. 
 

http://epic.mcmaster.ca/~garlandw/index.htm
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All isotopes experience collisions with neutrons, with various outcomes.  For any given isotope in 
the reactor, the neutron reaction rate is given by: 
 

i
x iR N� ��  

 

where i
x� is the microscopic cross section of type “x”, �  is the local neutron flux, and iN  is the 

number of atoms of isotope “i”, at the local position. 
 
The balance equation for the number of atoms of isotope "i" present can be written as: 
 

Rate of Change Rate of absorption
Rate of Formation

for "i" atoms plus rate of decay

� � � � � �
� � � � � �� �� � � � � �� � � � � �

 

 
For reactions taking place in fuel there will be a set of "chains" of isotope formation, neutron 
scattering, capture, fission, and isotopic decay.  Each fission event produces two or more fission 
products, with a known probability-versus-mass distribution at a given incident neutron energy.  
Generally, this equation can be applied to model the time-dependent behaviour of each isotope, 
once the neutron flux is known.  Of course, the concentration of a given isotope determines to 
some extent, the neutron flux.  So we expect to find that the flux equations will include space-and-
time dependence of their coefficients, in a quasi-linear fashion. 
 
The whole set of reaction and decay rates of isotopes can be arranged in matrix form, thus: 
 

	 
dN
A N

dt
��                       where: 

 

� �1 2 3, , ,........., nN N N N N�  is a vector of isotope concentrations and 	 
A  is the matrix of isotopic 

reaction and decay terms. 
 
Taking the minus sign inside the matrix bracket, we can write the solution of this equation as: 
 

 � 	 
� �  � 	 
  �exp 0 0N t A t N Bt N� � �  

 
The most straightforward way to solve this equation is to expand the matrix [Bt] in series, and 
truncate the expansion when the n'th term is smaller than a given convergence criterion.  [Q -What 
is the necessary and condition for convergence of this series?]  The Euclidean norm of the n'th 
term is a convenient measure of its importance to the series.  Therefore: 
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Term 1n�� �  

 
This solution can easily be programmed as a general matrix exponentiation routine.  For any 
particular case, the terms of matrix [A] can be generated and the vector of isotope densities at the 
end of the time interval can be found.  It may be necessary in some cases to couple these equations 
in some manner to the flux equations, which also are time-dependent. 
 
Direct radiation damage of fuel and fuel sheath materials sometimes leads to life-limiting effects.  
Activation of metals and corrosion products can result in high radiation fields in accessible areas.  
In CANDU, tritium production followed by leakage into the containment structure poses an 
additional design problem. 
 
Fission products accumulate in the fuel elements at a rate approximately proportional to the time 
integral of the neutron flux.  They absorb a significant number of neutrons, thereby reducing the 
excess neutrons per cycle (measured by the value of reactivity.  Along with the depletion of 
fissionable isotopes (mainly U235 initially, partly balanced by the conversion of U238 to Pu239) 
and the buildup of the higher isotopes of plutonium, this additional absorption leads to a reduction 
of reactivity and forces discharge of the fuel bundle.  Without steady refuelling, the rate of 
reactivity decrease in the CANDU 600 MWe design is about 0.4 mk per day. 
 
The fission products consist of a large collection of neutron-rich isotopes, many of which are 
beta-active.  They produce a significant fraction of the total fission heat; at steady-state full 
power about 7% of the total heat production in the reactor is due to fission products.   
 

5. Long Time Scales 
 
The longest time range is that of structural damage to reactor materials.  This damage occurs 
continuously over the life of the reactor.  Macroscopic evidence of damage does not appear earlier 
than a few months.  The most important factor in CANDU reactors is damage to the zirconium 
alloy structures.  Knock-on collisions between fast neutrons and atoms in the metal lattice result in 
dislocations, similar to cold working but on a sub-microscopic scale.  The material hardens 
considerably, with an increase in ultimate tensile strength of about 30 percent and a decrease in 
ductility.  A very important effect is enhancement of stress- induced creep as well as stress-
independent growth due to changes in the shape of the crystal lattice.  The stress effect arises 
because of the introduction of glide planes near dislocations.  The pressure tubes and calandria 
tubes tend to sag, lengthen, and dilate due to the creep effect.   
 
The same dislocations tend to shorten the major axis of zirconium crystals and widen the minor 
axes.  Since the manufactured tube has many of the major axes oriented perpendicular to the wall 
of the tube, the tube lengthens with time.  Over a period of 30 years, the pressure tubes will stretch 
as much as 15 cm over their 6 m length.  Obviously, such large changes require careful design 
considerations to adapt to them.  
 
Radiation damage in light water reactors results in embrittlement of in-core and pressure vessel 
steels.  Fast breeder reactors use stainless steel internal structures.  In this case the most important 
damage effect is swelling of steel due to production of helium atoms.  Helium is formed in (n, 
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alpha) reactions with the high fast-neutron fluxes existing during operation.  Fast neutron fluxes 
cause hardening and embrittlement of pressure vessels and vessel internal structures of light-water 
reactors 
 
Another type of radiation damage that occurs in CANDU reactors is radiolysis of water in the core.  
The water molecules are split up by collision with high-energy particles; free oxygen can then 
react with the structural zircaloy.  To reduce this effect the heat transport water is doped with 
excess hydrogen to speed up the recombination of hydrogen and hydroxyl ions and thereby reduce 
the metal oxidation rate.  Radiolysis also is important in the moderator water, because hydrogen 
can be produced in the cover gas and result in explosive mixtures.  This effect is countered by 
circulation of the cover gas through catalytic recombiners. 
 
Free hydrogen migrates into the zircaloy (primarily into pressure tubes) and forms a solid solution.  
Over a long period of time, the concentration can exceed the solid solubility limit.  When this point 
is reached hydrogen precipitates as zirconium hydride. Zr hydrides are quite brittle, but have little 
effect on the structural properties unless the material is under high stress, because the hydride 
platelets are randomly oriented.  However, in a high tensile stress field the platelets reorient with 
their planes perpendicular to the stress, and tend to migrate to the areas of maximum stress.  In this 
orientation the platelets can crack and produce a slow progression of cracking, local stress 
enhancement, migration, and further cracking which leads eventually to tube failure.  This process 
is referred to as ‘delayed hydride cracking’. 
 
Figure 4 is a summary of the 
various characteristic time scales 
governing dynamic behaviour of 
a power reactor.  At this point we 
can go on to specific cases 
required for different parts of 
design analysis.  The analyst will 
carefully choose to neglect those 
time-dependent behaviours that 
are not relevant to the question 
under study.  But the overall 
picture must be kept in mind at 
all times so that the analysis 
captures all of the essential 
elements to permit the correct 
design decision to be made. 
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