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Chapter 2     Probability Tools and Techniques

2.1 Introduction

2.1.1 Chapter Content

This chapter presents basic probability tools and techniques, drawing heavily from McCormick [MCC81]
for the basic probability theory (up to Section 2.9).  Alan Monier guided the bulk of the remainder.

2.1.2 Learning Outcomes

The objective of this chapter is to provide the basic probability tools and techniques needed to explore
reactor safety analysis.  This will allow the quantification of the concepts and designs developed in the rest
of the course. The overall learning outcomes for this chapter are as follows:

Objective 2.1 The student should be able to identify the terms and symbols used in probability
calculations.

Condition Closed book written examination.

Standard 100% on key terms and symbols. 

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a

Objective 2.2 The student should be able to recall typical values and units of parameters.

Condition Closed book written or oral examination.

Standard 100% on key terms and symbols. 

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a
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Objective 2.3 The student should be able to analyse simple systems and compute unavailabilities.

Condition Open book written examination.

Standard 75%. 

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a a

2.1.3 The Chapter Layout

First, the general rules of probability (AND and OR rules) and Bayes Equation are introduced but, for the
most part in this course, we will rely on the approximations of rare and independent events.  Time
dependent systems are addressed, covering failure rates, repair, continuous operation, and demand systems. 

We encounter a simple shutdown system, illustrating the concept of testing to increase system availability. 
We also consider the basic '2 out of 3' system so prevalent in reactor safety systems.  By way of contrast to
the shutdown system, which is a demand type system, the emergency core cooling system is also examined
as an example of a demand system with a mission time.
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P(A)/probability of event A

'limn64( x
n

) (1)

(Axiom #1) 0 # P(A) #1 (2)

(Axiom #2): P(A)%P(Ā) ' 1 where Ā means "not A". (3)

A1 _ A2 or A1A2 or A1 AND A2

(This is not A1 times A2)
(4)

(Axiom#3)
P(A1 A2) ' P(A1|A2) P(A2)

' P(A2|A1) P(A1)
(5)

P(A1A2....AN) ' P(A1)P(A2|A1)....P(AN|A1A2....AN&1) (6)

P(A1A2....AN) ' P(A1)P(A2)....P(AN) (7)

A1 ^ A2 or A1%A2 or A1 OR A2. (8)

P(A1%A2) ' P(A1) % P(A2) & P(A1A2) (9)

P(A1%A2%...%AN) ' j
N

n'1
P(AN) & j

N&1

n'1
j
N

m'n%1
P(AnAm)

±...%(&1)N&1P(A1A2...AN)
(10)

2.2 Definitions and Rules

If event A occurs x times out of n repeated experiments then:

The intersection of 2 events, A1 and A2, is denoted:

The conditional probability  P (A1 | A2) means the probability of A1 given that A2 has occurred.

The product rule for probabilities states:

For example, if A1 is the probability that part 1 fails and A2 is the probability that part 2 fails then
P(A1  A2)  =  probability that both 1 and 2 fail
    =  probability that 2 fails and ( part 1 fails given that part 2 fails).

If the failures are independent, 
P(A2 | A1) = P(A2).

This can be extended to give:

If events are independent:

The union of two events is denoted:

We have:

In general:

If events are independent:
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1 & P(A1%A2%....%AN) 'k
N

n'1
[1&P(AN)]

(11)

P(A1%A2% ... AN) • j
N

n'1
P(AN)

(12)

P(A1A2....AN) ' P(A1)P(A2).....P(AN) (13)

Rare events approximation (and independent)

and we previously had (equation 7):
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P(AnB) ' P(An) P(B|An) ' P(B)P(An|B) (14)

ˆ P(An|B) ' P(An)
P(B|An)

P(B)
(15)

j
N

n'1
P(An|B) ' 1 (16)

P(B) ' j
N

n'1
P(B) P(An|B)

' j
N

n'1
P(AnB)

' j
N

n'1
P(An) P(B|An)

(17)

P(An|B) '
P(An) P(B|An)

j
N

m'1
P(Am) P(B|Am)

(18)

2.3 The Bayes Equation

Given an event or hypothesis, B, and An mutually exclusive events or hypotheses  (n=1, 2....N):

Now, since the events, An are mutually exclusive:

Multiplying by P(B):

Substituting 17 into 15:

So if we know P(B|An) then we can calculate P(An |B).  This is an important result because it enables you
to "reverse" the order of information.  This is especially useful for analyzing rare events.
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Figure 2.1  Core Monitoring System

P(TS|CMS)' P(TS) P(CMS|TS)
P(IC) P(CMS|IC) %P(TS) P(CMS|TS) % P(PS) P(CM|TS)

'
0.04x0.015

0.02 x 0.10 % 0.04 x 0.15 % 0.01 x 0.10
' 0.667

(19)

0.04
0.02%0.04%0.01

'
4
7

(20)

2.4 Example - Core Monitoring System

A Core Monitoring System  (CMS) is
composed of the 3 sensors as shown:

We know from the manufacturer the failure
probabilities over the period of time under
consideration (this is the axiomatic data):

P(IC) = 0.02  
P(TS) = 0.04
P(PS) = 0.01

Testing of the installed system shows that
P(CMS|IC) = 0.10 (i.e., when IC fails, the
CMS fails 10% of the time.

Also P(CM|TS)  = 0.15
       P(CMS|PS) = 0.10

What is the chance that a failed CMS is caused by a failed TS?

Solution:

Comment:

Based on the axiomatic data P(IC), P(TS)  & P{PS) one would expect the TS to be a problem in
proportion to its failure rate relative to the other devices i.e.,

So, in the above example, the testing data, P(B)|An) is used to modify the axiomatic data to yield a revised
relative frequency of sensor failure, given a system failure, by P(An|B).  This is called a posterior
probability.
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P(X) ' m
X

xmin

p(x)dx

' cumulative probability
' P(x < X)

where p(x) / probability density function.

(21)

Table 2.1 Bayesian calculations for the example [Source:
MCC81, page 19]

2.5 Failure rate estimation when no failures have occurred

We can use Bayes Equation to glean information from non-events as well.

Consider the case where 4000 fuel shipments have been made with no radioactive release.  Can we
determine the probability of release per shipment?

Let B = 4000 shipments with no release
A1 = release prob. = 10-3

A2 = release prob. = 10-4

.

.

.
A6 = release prob. = 10-8

If A1 were true, then:
P(B|A1) = (1-10-3)4000 = 0.0183 
since we can assume shipments are
independent, the probability of a
single success is 1-10-3, 
and P(B|A1) is just the intersection of
4000 events.

Likewise we find (as shown in table
2.1):

P(B|A2) = 0.6703
P(B|A3) = 0.9608

If we know P(A1),...P(A6) we could calculate P(An|B) or the probability of our statement An being actually
true.  If we assume P(An) = 1/N = 1/6, we find that P(A1|B) = 0.04, ie, it is not too likely.  If we use a more
likely P(An) we see that P(An|B) is adjusted downwards and we conclude that the failure rate is significantly
less than 10-3.

2.6 Probability Distributions

There are two types of systems:
1) Those that operate on demand (ie, safety systems)
2) Those that operate continuously (ie, process systems)
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ˆ P(Wn&1) ' P(D1 D2 D3 ... Dn&1) (22)

P(D̄n Wn&1) ' P(D̄n|Wn&1) P(Wn&1) (23)

P(D1D2D3...Dn&1 D̄n) ' P(D̄n|Wn&1) P(Wn&1)

' P (D̄n|D1D2...Dn&1) . P (Dn&1|D1D2...Dn&2)....P(D2|D1) P(D1)
(24)

P(D1D2...Dn&1D̄n) ' P(D̄) [1&P(D̄)]n&1 (25)

ˆ P(D̄3120|W3119) ' 10&4 (1&10&4)3119

' 0.732 x 10&4. (26)

2.7 Demand Systems

We define:
Dn /nth demand
P(Dn) = probability of success on demand n
P(D̄ n) ' probability of failure on demand n
Wn = system works for each demand up to and including demand n.

So

If all demands are alike and independent, this reduces to:

Data for demand failure is often published using the symbol Qd.

Example:

 for a switch is 10-4.  What is the probability that the switch fails at the end of 3 years when theP(D̄)

switch is used 20 times per week?

Solution:
Number of demands = 20x52x3 = 3120.

This is the same as any single specified failure, say on demand 25 or 87.

If the switch were repaired immediately upon any failure, then the probability that it would fail once at
anytime within the 3 years is just 3120 times the probability that it would fail at any specified demand, i.e., 
3120 x 0.732 x 10-4 = 0.228.
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f(t)dt ' probability of failure in the interval dt at time t
 

F(t) ' accumulated failure probability

'm
t

0

f(t ))dt )
(27)

R(t) ' 1 & F(t)

'm
4

0

f(t ))dt ) &m
t

0

f(t ))dt )

'm
4

t

f(t ))dt )

(28)

f(t) ' &
dR(t)

dt
'

dF(t)
dt

(29)

f(t)dt ' 8(t) dt R(t)
or f(t) ' 8(t) R(t)

' &
dR
dt

(30)

ˆ dR
dt

' &8(t) R(t) (31)

ˆ dR
R

' & 8(t) dt (32)

ˆ m
R(t)

R(0)

dR
R

' & m8(t)dt ' ln R(t) & ln R(0) (33)

R(t) ' exp &m
t

0

8(t)dt (34)

R(t) ' e&8t. (35)

2.8 Failure Dynamics

Failures are not static events. Let's look at failure dynamics.

Assuming that the device eventually fails the reliability, R(t) is defined as

So,

If 8(t) dt = prob. of failure at time t given successful operation up to time t (defined as the conditional
failure rate), then:

Since R(0) = 1,

If 8 is constant, (ie, random failures):
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MTTF '

m
4

0

t f(t)dt

m
4

0

f(t)dt

' m
4

0

t f(t)dt

' m
4

0

t 8 e 8t dt (assuming 8 ' random)

'&
1
8

(36)

R(t) # A(t) # 1. (37)

Table 2.2 A summary of equations relating 8(t), R(t), F(t), and f(t)

Given 8(t), we can determine everything else.  See table 2.2 for a summary of commonly used terms and
relationships.  See figure 2.2 for typical 8vs t.

Mean time to failure (MTTF)

Availability, A(t)

If a device undergoes repair then R(t) 6 A(t)

A(t) = R(t) for devices that are not repaired.
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time

8 (t)

Typical mechanical
equipment

Typical
electrical
equipment

Life expectancy
Random failure

rate

Burn-in or
debugging
period

Useful life period
Wear-out
period

Figure 2.2 Time dependence of conditional failure (hazard)rate [Source: MCC81, page 26]
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F(t)'1 & (1 & 8t %
82t 2

2
...)

. 8t for t < J in any interval
and t is measured the time of lastrepair.

(38)

ˆ<F> '
8J
2

. (39)

<F> '

m
J

0

F(t)dt

m
J

0

dt

'

t |
J

0
%

e&8t |
J

0

8
J

'
8J % e&8J&1

8J
.

(40)

2.9 Continuous operation with Repair

Assume random failures.  This implies
8 = constant
R(t) = e-8t = reliability, illustrated in figure 2.3.

Failure probability = F(t) /1 - R(t)
/1 -e8t, illustrated in figure 2.4.

Let repair occur at time interval, J.  Then F(t) is a sawtooth as illustrated in figure 2.5.

If J << 8 then 

This is a useful rule of thumb but you can always calculate accurately from:

A common design task is to design a system (composed of components that have a known failure rate) to

meet some target unavailability .  Given a design, the repair interval is the remainingĀ (Ā ' F)

variable.  A frequent repair cycle (low J) gives a low  , but such frequent repair may be untenable dueĀ

to excessive cost on downtime or even hazard to repair personnel.  In such a situation, alternative designs
would have to be considered.

Often, repair may not be required in order to return F to 0.  it may be sufficient to simply test the
components to ensure that they are available.  This is usually the case for "demand" systems.
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R

time

1

Figure 2.3 Reliability vs. Time

time

1

F

Figure 2.4  Failure probability vs. Time

time

F

J

Figure 2.5  Failure probability with repair
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Ā . 8J
2

' 0.001 J (41)

J ˜ 10&3

0.001/year
' 1 year (42)

Figure 2.6 Simple SDS

2.10 Example - Shutdown System

Consider the case of a single shutoff rod (SOR) for a reactor.  Given a failure rate based on previous
experience of 8 = 0.002/year and a required unavailability of #10-3, what is the required test period, J?

To meet the  target of 10-3,Ā

This is certainly a reasonable test period.  But if the  target were 10-6 or if the failure rate were 2 /Ā

year, then the required test period would be 10-3 years or about 3 times per day!  This would not be
reasonable.

A more realistic shutdown system would have a bank of, say, 6 SORs, as illustrated in figure 2.5.



Probability Tools and Techniques 2-15

wjg  D:\TEACH\Thai-rs1\Chap2.wp8  September 5, 1998  14:58

Event # rods
drop

# rods fail
to drop

E0 6 0

E1 5 1

E2 4 2

E3 3 3

E4 2 4

E5 1 5

E6 0 6

Table 2.3 SDS event possibilities

<F> . 8 I
2

(/ p for conciseness) (43)

P(Ek) '
N!

(N&k)!k!
(1&p)N&kp k

(44)

j
N

k'0
P(Ek) ' 1 (46)

When the shutdown system (SDS) is activated some, all or none of the rods drop into the core.  The
possible events are enumerated in table 2.3.

Assuming that the rods fail independently and that the failure
rate is 8, then the probability of a given rod failing on average
is:

as before.  And the success probability is 1-p.  In general the
probability for event Ek, k = 1, 2... n is

The factor gives the number of possible ways forN!
(N&k )!

k!

that event to happen, the factor  is the probability(1&p)N&k

that N-k rods all successfully drop and the factor pk is the
probability that k all fail to drop.

Thus:

P(Eo) = (1-p)6

P(E1) = 6(1-p)5p
P(E2) = 15 (1-p)4p2

P(E3) = 20 (1-p)3p3

P(E4) = 151-p)2p4

P(E5) = 6(1-p)p5

P(E6) = p6

Since these are the only possibilities, they sum to unity, i,e:

Normally, there are more SOR's than necessary for reactor shutdown and it is sufficient to require that,
say, 4 of the 6 rods must drop.  If this were the design criteria, then events Eo, E1 and E2 represent the
successful deployment of the SDS.  Events E3 6 E6 represent system failures.

The system unavailability for a 4 out of 6 criterion is thus:
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Ā ' j
N

k'3
P(Ek) ' 1 & j

2

k'0
P(Ek)

' 1 & (1&p)6 & 6(1&p)5p & 15(1&p)4p 2

where p '
8J
2

(47)

Ā ' 1 &
5!

5!0!
(1&p)5 &

5!
4!1!

(1&p)5p

' 1& (1&p)5 & 5(1&p)4 p
/ Ā1 (to denote unavailability with 1 rod out of service)

(48)

Given a 8 and an assumed J, the  is calculated and compared to the required unavailability.Ā

The J is then adjusted until the  target (say 10-3) is met.  For a 8 of, say 0.02/year, we find that isĀ Ā

2 x10-5 for a J of 1 year.  Thus testing every year is more than enough for this design to meet the
unavailability target.

The above assumes that, when testing occurs, any deficiencies are immediately and instantaneously
repaired so that the "clock" is effectively reset and the failure probability is reset to zero.  However, repairs
cannot usually be made right away.  The plant will have to operate with less than 6 SORs available and the
unavailability target must still be met.

For instance, assume that the operator finds that one rod fails the test and has to be declared "out of
service".  The above calculation needs to be repeated based on a 4 out of 5 criterion rather than a 4 out of
6.

Thus:

A J of 1 year gives  = 0.00098, which just meets the  target of 10-3.Ā1 Ā

We continue in this way by also considering the case where 2 rods fail their test and are taken out of
service.  Now the SDS must operate on a 4 out of 4 basis.  All remaining rods must drop.  In this case the
unavailability is

A2 = 1 - (1-p)4

For J = 1 year, we find  = 0.039 and the operator must step up the testing program dramatically (J =Ā2

0.02 years or once every week) to achieve  = 10-3 or better.Ā
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Case JĀk
 (per year)

Operator Action

0 rods fail test 2 x 10-5 1 None

1 rod fail test 0.00098 1 Repair rod

2 rods fail test .0008 .02 Repair rods 
Test every week until rods are repaired

3 or more rods
fail test

1 Shutdown since need at least 4 rods available

Table 2.4 SDS summary

To summarize:
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These modes are automatic failures since at
least 4 rods are required.

Ā0 ' j failure modes when 0 rods are out of service

' p 6 % 6(1&p)p 5 % 15(1&p)2p 4 % 20(1&p)3p 3

where p '
8J
2

(49)

Ā (no rods out of service) ' (1&p)6 Ā0 (50)

Ā1 ' j failure modes when 1 rod is out of service

' p 5 % 5(1&p)p 4 % 10(1&p)2p 3 % 10(1&p)3p 2
(51)

Ā2 ' j failure modes when 2 rods are out of service

' p 4 % 4(1&p)p 3 % 2(1&p)2p 2 % 4(1&p)3p
(52)

Ā ' (1&p)6 Ā0 % 6(1&p)5p Ā1 % 15(1&p)4p 2 Ā2 (53)

2.11 Fault Tree Example

A more systematic way to carry out the same analysis as per the previous section is to develop a fault tree. 
We start by identifying the end result (SDS1 fails to deploy) and itemize all the ways that this can happen. 
In  this case, SDS1 can fail in any one of its 7 modes:

Event E0 0 rods out of service
Event E1 1 rods out of service
Event E2 2 rods out of service
Event E3 3 rods out of service
Event E4 4 rods out of service
Event E5 5 rods out of service
Event E6 6 rods out of service

All these modes are mutually exclusive so we OR
their probabilities of failures.  The fault tree is shown in figure 2.6.  We expand each option until we can
no longer decompose the event or we arrive at a point where we know the probability of failure.

For the case of 0 rods out of service, the probability of being in that mode is (1-p)6 as before.  Within that
mode, failure occurs if either:

6 rods fail to drop [probability of this failure mode = p6]
5 rods fail to drop [probability of this failure mode = 6 (1-p) p5]
4 rods fail to drop [probability of this failure mode = 15 (1-p)2 p4]
3 rods fail to drop.[probability of this failure mode = 20 (1-p)3 p3]

These events are mutually exclusive.  Thus that portion of the tree is expanded as shown.  The
unavailability of SDS1 while in the E0 mode is simply:

The contribution to unavailability of the system for this segment of the fault tree is:

The other modes can be expanded in like fashion to give:

Finally, the total system unavailability is:

Note that the system unavailability does not include the unavailability for modes 3 through 6 since these are
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Ā ' Ā0 ' Ā1 ' Ā2 ' Ātarget (54)

modes where the unavailability if known.  In those cases, the plant would be shut down and put in a fail
safe mode by other means.  Thus, these modes do not contribute to operating unavailability.  

Also note that, in contrast to the example developed in the previous section, the above is based on a
common J.  In the previous example J was varied within each mode to meet the target unavailability so
that:
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SDS1 fails
to deploy

SDS1 fails
in E6 mode

SDS1 fails
in E0 mode

SDS1 fails
in E5 mode

SDS1 fails
in E4 mode

SDS1 fails
in E3 mode

SDS1 fails
in E2 mode

SDS1 fails
in E1 mode

5 rods
fail to
drop

4 rods
fail to
drop

3 rods
fail to
drop

6 rods
fail to
drop

failure probability = 1
once in these modes

+

+ + +

5 rods
fail to
drop

4 rods
fail to
drop

3 rods
fail to
drop

2 rods
fail to
drop

4 rods
fail to
drop

3 rods
fail to
drop

2 rods
fail to
drop

1 rods
fail to
drop

Figure 2.7 SDS1 fault tree
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Condition of relays
DEF
(1 = OK, 
0 = FAILED)

Condition of
sub-system

Probability

000 0 p3

001 0 p2 (1-p)

010 0 p2 (1-p)

011 1 p (1-p)2

100 0 p2 (1-p)

101 1 p (1-p)2

110 1 p (1-p)2

111 1 p (1-p)2

Table 2.5 Possible sub-system states and probabilities
Ā '

3!
3! 0!

p 3 %
3!

2! 1!
p 2 (1&p)

' p 3 % 3 p 2 (1&p)
(55)

Ā ' j
k'N

k'M

N!
(N&k)!k!

(1&p)N&kp k

' 1 & j
k'M&1

k'0

N!
(N&k)!k!

(1&p)N&kp k

(56)

D

D

E

E

F

F

Figure 2.8  '2 out of 3' Logic - Relay example

2.12 2 / 3 Logic Example

Figure 2.8 illustrates a relay setup that operates on a 2
out of 3 logic, or 2/3 logic.  There are 3 physical relays,
D, E and F but each relay has two sets of terminal pairs,
allowing them to be connected as shown.  The relays are
normally open but close when a signal (D, E or F) from
their respective channels are received.  If any two
channels are activated, then the circuit is completed and
current can flow between top and bottom.  If the sub-
circuit is in a safety system circuit, the safety system is
activated when two or more of channels D, E and F are
TRUE.  If the probability of failure of any relay is p,
what is the overall unavailability of the sub-circuit?

This situation is, in fact, completely similar to the SOR
case previously examined.  Here success is defined as 2
out of 3 events occurring.  The unit fails if 3 relays fail or if 2 relays fail.  All other states constitute a
working sub-system.  This is summarized in table 2.4.  All the states are mutually exclusive.  The
unavailability, then of the unit is simply the sum of the failure probabilities:

In general, for a M out of N system:
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Figure 2.9 '2 out of 3' Ladder Logic
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Figure 2.10 '2 out of 3' Ladder Logic - Separate Relays

2.13 Ladder Logic

Consider now the system shown in Figure 2.9(a) where the relays D, E and F have two sets of terminals
just like the previous example.  In the standby or ready state, the relays are energized closed, providing a
current path from top to bottom.  When the system "fires", ie, when signals are received at the relays, the
current path is broken if at least 2 relays change state (go from closed to open).  Failure of a component (a
relay in this case) occurs when it fails to change state as requested.  The failure modes are the same as for
the previous example and are given in table 2.5.  We conclude that the system depicted by figure 2.9 is
entirely equivalent to that of figure 2.8.

Since safety systems are generally wired so that a
power failure will invoke the safety system, the ready
state has the relays powered closed and the relays open
when power is lost.  The relays are designed to fail
open, thereby tending to fire the safety system if the
safety system logic or components fail.  The MNR
safety trip signals, for instance, are all wired in series
and any one signal breaks the current to the magnetic
clutches holding up the shutoff rods.

In actual systems, the relays of the ladder shown in
figure 2.9 do not have dual terminals.  Rather, separate
relays are used, depicted as D1 , D2, etc. in figure
2.10.

Failure of the system due to relay failures now occurs when all 3 ladder steps fail, ie, when step 1 fails
AND step 2 fails AND step 3 fails.  The system will succeed if any step succeeds in breaking the circuit
(assuming signals at all 3 channels D, E and F).

Step 1 fails if either D1 or F2 fails to switch state upon demand (from closed to open).  The fault tree is
shown in figure 2.10.  The system
unavailability is thus:

if all relays fail with probability p.  Since
p<<1, the unavailability of this circuit with 6
relays is significantly lower than the previous
example which uses 3 relays.

We'll see in Chapter 5 how we can combine
the relay fault tree with the SOR fault tree to
give the full fault tree for a shutdown system.
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Figure 2.11  Fault Tree for the Ladder Logic Relays 
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Figure 2.12 Time dependent unavailability

2.14 Unavailability Targets

The unavailability of a system at any given time is, in general, a function of the system configuration. 
Valves, switches, etc., fail from time to time.  System configuration is a function of time.  Hence,
unavailability is a function of time, as illustrated in figure 2.7.  Safety targets can be defined in terms of
some average unavailability or in terms of an instantaneous unavailability.  In the later case, the operating
station would need to continuously monitor the plant status in order to continuously calculate the station
"risk" level.  This is likened to having a "risk meter" for the station.  Station personnel would respond to
equipment failures that lead to a rise in station risk by fixing equipment, maintaining equipment or invoking
standby or alternate systems.  Working to an average unavailability, on the other hand, does not require
such a vigilance;  instantaneous risk can be permitted to rise in the short term as long as the averages are
achieved.  This is more workable but less precise in maintaining control of station risk.
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2.15 Dormant vs active systems

So far we have focussed on systems that are normally dormant and are required to operate on demand. 
Safety systems generally fall into this category.  However, some systems, like the Emergency Core Cooling
System (ECCS), are required to activate on demand and to continue to function for some defined mission
time.  The normal response of the ECC to a Heat Transport System (HTS) break (termed a Loss of
Coolant Accident or LOCA) is for the ECC to detect the event and initiate the injection of high pressure
(HP) cooling water.  Then , after the HTS have depressurized, medium pressure and finally low pressure
water is injected.  The HP water is supplied via a water supplied that is pressurized by gas cylinders. 
Medium pressure cooling water is supplied from the dousing water via ECC pumps and low pressure water
is retrieved from the sumps.  For CANDU reactors a 3 month mission time has been set.  The ECCS is
consequently divided into two separate fault trees for the purposes of analysis:  Dormant ECC and Long
Term ECC (designated DECC and LTECC respectively).  The DECC fault tree focusses on failure to
detect the LOCA event, failure to initiate high pressure (HP) cooling water, failure to distribute the flow,
and failure to provide medium and low pressure water.  The LTECC fault tree focusses on the failure to
provide long term low pressure cooling due to pump failure, valve failure, flow blockage and loss of
coolant supply.  ECC is discussed in more detail in Chapter 7.

. . . . . . 

Before we get into the specifics of applications, we develop safety criteria and design basis accidents in the
next two chapters.

2.16 Exercises

1. For the example fault tree of Section 2.11, calculate  from the success modes.  Which way isĀ0
better
a. in the 4/6 case
b. in the 26/28 case?

2. A horn on a car operates on demand 99.96% of the time.  Consider each event independent from all
others.  How many times would you expect to be able to honk the horn with a 50% probability of
not having a single failure?

3. A light bulb has a 8(t) = 5x10 -7 t, where  t is the time in days.
a. What is the MTTF for the bulb?
b. What is the MTTF if 8(t) = 5x10 -7 t?
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