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Chapter 5     Fuel - Coolant Heat Transfer

5.1 Introduction

The interface between the fuel and the coolant is centrally important to reactor design since it is here that
the limit to power output occurs.  Nuclear fission can provide a virtually unlimited heat generation rate,
far more than can be transported away by the coolant.  Herein we investigate the heat transfer at the fuel
site so that this limitation can be factored into the reactor design.

5.2 General Heat Conduction Equation

For a solid, the general energy thermal energy balance equation of an arbitrary volume, œ, is:

where ρ is the material density, e is the internal energy, œ is the volume, S is the surface area, q''' is the
volumetric heat generation, q'' is the heat flux and n̂ is the unit vector on the surface.  We replace the
internal energy with temperature, T, times the heat capacity, c.  Using Gauss' Law to convert the surface
integral to a volume integral and dropping the volume integral everywhere:

We further need a relation to specify the heat flux in terms of temperature.  In a solid, Fourier's law of
thermal conduction applies:

where k is the thermal conductivity.  This gives the usable form:

The parameters have the following units:
ρ kg/m3

c J/(kg EK)
k J/(mEK-sec)
q'' J/(m2-sec) = W/m2

q''' J/(m3-sec) = W/m3

T EK
α defined as k/ρc = m2/sec.
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Figure 5.1 Radial fuel pin geometry [Source:
DUD76, figure 12-3]
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5.3 Radial Heat Transfer

Consider a typical cylindrical fuel pin composed of fuel meat surrounded by a metal clad, as shown in
figure 5.1.  There is usually a small gap between the fuel and the clad which offers substantial resistance
to heat transfer.  The flowing coolant surrounds the pin.  We will look at the fuel, gap, clad and coolant
separately to develop the temperature profile in each material.  Then, we will combine the equations to
give the full fuel to coolant temperature profile.  It is sufficient for our purposes to focus on the steady
state.

5.3.1 Fuel Meat

Equation 4 in the steady state is:

The pins are much longer than their diameter,
hence, axial heat conduction can be ignored.  In
radial coordinates:

This can be directly integrated to give:

The constant of integration is zero since the temperature gradient at r=0 is zero.  The thermal
conductivity, k, is a strong function of T in fuel.  Hence, the subsequent integration of equation 7 is:

where the subscript 0 indicates the centre point and the subscript F indicates the fuel meat radius.  Since
T=T0 at r=0, the constant of integration is again zero.  Finally we have:
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Note that we get the same ∆T for a given q' no matter what the fuel radius.  For UO2 ceramic, kF is
typically 0.02 - 0.03 W/cmEK.  At a q' of 500 W/cm, the ∆T is about 1400EC. 

5.3.2 Gap

Equation 4 in the steady state for the gap region is:

This can be directly integrated to give:

The constant of integration is determined by considering the heat flux, q'' at the fuel - gap interface:

Substituting equation 12 into 11, we get:

Integrating again we have:

where the subscript C indicates the gap-clad interface.  The boundary conditions T=TCat r=rF+tG is
incorporated into the above solution.  Finally we have:

The gap conductivity kG is ~ 0.002 W/cmEK but it varies considerably with the amount of fission product
gases.   For a gap thickness of 0.005 cm, we get a ∆TGAP of about 300EC for a q' of 500 W/cm.  Since the
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fuel will swell to touch the clad (although not perfectly since the surfaces have a finite roughness), an
effective heat transfer coefficient, hG is used:

Thus:

A heat transfer coefficient of 0.5 - 1.1 W/cm2EK give a ∆TGAP less than 300EC.

5.3.3 Clad

As per the gap region,  the steady state equation for the clad region is:

This is solved in the same manner as for the gap to give:

where the subscript S indicates the clad-coolant surface interface.  The boundary conditions T=TSat
r=rF+tG+tC is incorporated into the above solution.  Finally we have:

The clad conductivity kC is ~ 0.11 W/cmEK giving a ∆TCLAD of about 80EC for a q' of 500 W/cm.

5.3.4 Coolant

From the clad to the coolant, the heat flux is determined by:

where TFL is the bulk temperature of the coolant fluid.  Thus the temperature drop from the clad surface to
the bulk fluid temperature is:
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Figure 5.2 Heat flux vs. ∆T for pool-boiling heat transfer [Source: DUD76,
figure 12-9]
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A heat transfer coefficient of ~4.5 W/cm2EK give a ∆TCOOL of about 10 - 20EC.

5.3.5 Overall Temperature Difference

Adding up all the temperature differences we find:

Thus, given a bulk coolant temperature, the centre line fuel temperature floats on top of the coolant
temperature by an amount that depends on the heat being generated and the various resistances to heat
flow.  For a given fuel design, most of the parameters are fixed under normal operation.  The one
exception is hS.  As illustrated in figure 5.2, hS (defined as the slope of the q'' - ∆T curve) can vary
considerably.  If the surface temperature is too high, a vapour blanket forms at the surface and the heat
cannot flow out of the fuel.  In effect, hS drops.  This is the dreaded fuel cooling crisis that can occur if
power regulation is lost, if a loss of coolant flow occurs or if a loss of coolant inventory occurs.  The
result of such a crisis is clad failure and release of fission products to the coolant system, and possibly to
the turbine cycle and the atmosphere.

5.4 General Thermal Energy Equation

To determine the axial temperature distribution in the coolant, we need to consider the axial heat transport



Heat Transfer 5-6

wjg D:\TEACH\THAI-TM2\text\CHAP5.wp8   January 29, 2003  12:34

mmm
œ

M(ρh&P)
Mt

dœ ' & mm
S

ρhv̄@n̂ds % mmm
œ

q )))(r̄,t) dœ & mm
S

q̄ ))(r̄,t)@ n̂ds

% Pv̄ and friction terms that are relatively small and tend to cancel
(26)

mechanisms.  For this we need the general form of the thermal energy equation:
where the last two terms are the viscous heat dissipation (friction heating) and pressure work terms,
respectively (more on this in chapter 9).  The first term on the right hand side of equation 25 represents
the flow of energy through the surfaces, i.e., energy transport.  As we shall see, this can be rearranged in
terms of enthalpy (h = e + P/ρ):
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Figure 5.3 Axial energy balance

5.5 Axial Temperature Distribution

In typical power reactors, MP/Mt << Mρh/Mt so that term can be ignored.  For the steady state situation, the
energy balance on a lump of fluid coolant of length dz surrounding the fuel pin (see figure 5.3) is, thus:

Since there is no heat generation in the coolant itself (apart from some minor turbulence heating), q''' = 0. 
Defining the mass flow as W = Aρ v (kg/sec) and converting q'' to q', we have:

We note that W is constant along the channel length since mass is neither created nor destroyed.  Also
note that the heat flux is a function of axial position since the power generation axial distribution in a
reactor is not uniform.  To a first approximation it is a cosine shape.  In single phase, then:

where H is the channel length, z = 0 at the channel midpoint and c is the fluid heat capacity.  Integrating
from the channel entry (z = -H/2) to the channel outlet (z = + H/2) gives:
This is plotted in figure 5.4
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Figure 5.4 Axial temperature profile [Source: DUD76, figure 12-8]
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5.6 Axial Quality Distribution

Equation 28 can be used to calculate the axial quality distribution by noting that:

where x is the weight fraction of steam in a two-phase mixture, hfSAT is the saturated liquid enthalpy and
hfg is the latent heat of vaporization.  Thus:

If the axial position of the start of bulk boiling (the point where h(z) = hfSAT) is defined as zBB:

The quality as a function of axial position is, finally:

5.7 Critical Heat Flux

The local quality is of central importance to the margin to dryout in a reactor channel since x is the one
parameter that was experimentally found to relate to centre line melting and sheath dryout, two
phenomena that serve as indicators of the onset of a heat transfer crisis.  Figure 5.5 shows a typical plot of
heat flux and quality as a function of axial position.  We shall discuss the explicit experimental
correlations used in the industry in chapter 9 but, in the meantime, figure 5.5 also shows a sketch of the
Critical Heat Flux (CHF) as a function of local quality.  Re-plotting actual heat flux vs. quality on the
same graph allows an estimation of the margin to dryout or centre line melting.    If the channel power
were to increase, this curve will move up and to the right, approaching the CHF curve. The channel power
that causes the two curves to touch is the limiting or critical channel power.  The Critical Power Ratio, or
CPR, is defined as the ratio of this critical power or heat flux and the nominal power or heat flux.
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Figure 5.5 CHF and CPR
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5.8 Summary

This chapter has dealt with the heat transfer situation in the fuel channel.  Heat flux limitations here set
the limit for plant power output.  In previous chapters we have covered the basic notions of overall plant
thermalhydraulic and thermodynamic phenomena and the simplified governing equations for those
phenomena.  We are now in a position to appreciate and investigate the following topics:

- overall plant control
- overall plant design optimization
- thermalhydraulic design evolution
- detailed systems equations and modelling
- design verification.

This topics are covered in the subsequent chapters.


