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Chapter 6     Thermalhydraulic Network Simulation

6.1 Introduction

6.1.1 Chapter Overview

This chapter introduces some more advanced numerical algorithms for solving systems of ordinary
differential equations such as found in the modelling of thermalhydraulic networks.  Explicit algorithms
are simple to devise and program but they are restricted in time step so as to ensure stability.  The more
implicit the formulation, the more stable the solution in most instances.  Larger time steps can be used for
implicit algorithms but the accompanying matrix manipulation is computationally costly.  Herein, we
explore the tradeoffs.

6.1.2 Learning Outcomes

Objective 6.1 The student should be able to apply the various numerical methodologies (fully
explicit to fully implicit) to special cases of the thermalhydraulic system equations.

Condition Workshop or project based investigation.

Standard 75%. 

Related
concept(s)

The various numerical methods.

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a

Objective 6.2 The student should be able to produce a general node-link code based on the
cumulative concepts presented in this course.

Condition Workshop or project based investigation.  A skeleton code is to be supplied.

Standard 75%.  The code may be written in the computer language of choice.

Related
concept(s)

The integral form of the conservation equations.
The rate form of the equation of state.
The water properties.
The numerical algorithms.
Computer programming.

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a a
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Objective 6.3 The student should be able to evaluate the efficacy of the various numerical
algorithms.

Condition Workshop or project based investigation.

Standard 75%. 

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a a

6.1.3 Chapter Layout

Porcsching’s method is explored to show the methodology and its limitations.  Then the rate form of the
equation of state is used with the conservation equations to develop a generalized fully implicit (at least in
terms of the main variables) formalism.  Porsching’s method is a special case of the general method.  The
chapter concludes with some programming notes.

 
6.2 Porsching’s Method

One of the more successful algorithms for thermalhydraulic simulation is based on the work of Porsching
[POR69, POR71]. This algorithm, involving the Jacobian (derivative of the system state matrix), is used
originally in the computer program FLASH-4 [POR69] and subsequently in the Ontario Hydro program
SOPHT  [CHA77] and evolved into forms used in RETRAN [AGE82].

The strength of Porsching's approach lies in its recognition of flow as the most important dependent
parameter and, hence, its fully implicit treatment of flow. This leads to excellent numerically stability,
consistency and convergence. Further, the Jacobian permits a generalized approach to the linearization of
nonlinear systems. This allows the development of a system state matrix which contains all the system
dynamics in terms of the dependent parameters of mass, energy and flow. Back substitution finally gives
a matrix rate equation in terms of the system flow (the unknown) and the system derivatives. While this
approach is certainly a proven and successful one, it has some disadvantages. The matrix rate equation
involving the Jacobian is as complicated as it is general. The resulting expressions are somewhat obtuse
and it is difficult to obtain an intuitive feel for the system. This complexity also hinders implementation in
a simulation code and makes error tracking a tedious process. The pervasiveness and obtuseness of the
algorithm begs a revisit so as to distil the salient features, leaving them exposed for pedagogy and further
scrutiny.

Chapter 5 discussed the use of the Rate Form of the equation of state. This work showed that by casting
the equation of state in the form of a rate equation rather than the normal algebraic form, the system state
matrix can be more logically formed from the normal conservation rate equations for mass, energy and
momentum plus the pressure rate equation. These form the four cornerstone equations in thermalhydraulic
systems analysis (figure 6.1). Numerical implementation of the rate form proved to be very successful,
leading to roughly a factor of 10 improvement over the algebraic form of the equation of state, largely due
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1  Porsching actually uses U, total energy rather than H, total enthalpy in a hybrid form:

0Ui ' j
jœd

(Hj/Mj) Wj & j
jœu

(Hj/Mj) Wj % Qi

There is no advantage to tracking both H and U in a simulation; thus in this course, H is used throughout.
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0u ' f( t,u) (1)

0u ' f t % ∆t J 0u (2)

∆u ' ∆t f t % ∆t J ∆u (3)

[I&∆t J]∆u'∆t f t (4)

dWj

dt
'

Aj

LJ

Pu % SWP∆Pu & Pd & SWP∆Pd % kj Wj % SWW∆Wj
2 % bwj

'
∆Wj

∆t

(5)

dMi

dt
'j

jœd
(Wj % SMW ∆Wj) & j

jœu
(Wj % SMW ∆Wj) .

∆Mi

∆t
(6)

to the iterative nature of the algebraic form. Incorporating the implicit pressure dependency in the
numerical method also drastically improved the numerical stability.

Since Porsching's method also carried the pressure dependency implicitly (via the Jacobian), the question
arises as to how the Rate form compares the Porsching's method. This chapter is devoted to an
explanatory derivation of the fully-implicit back-substituted form (FIBS), which is a more general than
the Rate form. It is shown that the Porsching form is identical to the Rate form and is a subset of the fully-
implicit back-substituted form and is easily derived from it [GAR87b, reproduced as appendix 6]. The
FIBS form thus offers an alternative to Porsching, is found to be of some pedagogical usefulness and is
far more intuitive and easier to code.

6.3 Derivation of FIBS

Following Porsching [POR71], the general form of system equations can be written

where u is the vector of dependent mass, total enthalpy and flow variables {Mi, Hi, Wj} for all nodes
i=1..N and all links, j=1..L.  Equation 1 is linearized, assuming no explicit t dependence to give:

or

to give

where J is the system Jacobian, composed of elements Mfk /Mul.

For typical thermalhydraulic systems using the node-link notation1: 

Typically bwj = (Aj/Lj) (hjρjg + ∆Ppump) where hj = height.
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dHi

dt
'j

jœd
(Wj% SHW ∆Wj)

(Hj % SHH ∆Hj)
(Mj % SHM ∆Mj)

& j
jœu

(Wj% SHW ∆Wj)
(Hj % SHH ∆Hj)
(Mj % SHM ∆Mj)

% Qi

'j
jœd

WjHj

Mj

%
SHWHj

Mj

∆Wj %
SHH Wj

Mj

∆Hj &
SHM Wj Hj

M 2
j

∆Mj

& j
jœu

WjHj

Mj

%
SHWHj

Mj

∆Wj %
SHH Wj

Mj

∆Hj &
SHM Wj Hj

M 2
j

∆Mj % Qi

.
∆Hi

∆t

(7)

∆Pi '
MPi

MMi

∆Mi %
MPi

MHi

∆Hi %
MPi

MVi

∆Vi

or
∆Pi

∆t
' Cli

∆Mi

∆t
% C2i

∆Hi

∆t
for constant volume.

(8)

∆M ' ∆t AMW[W t%SMW ∆W] (9)

AMW '

&1 0 0 1 0
1 &1 0 0 1
0 1 &1 0 0
0 0 1 &1 &1

nodes
\ (10)

where j indicates a sum over all links for which the node i is a downstream (d) or upstream (u) node.

Switches, S, are used to provide user control over the degree of implicitness:
0 = explicit
1 = implicit.

The system unknowns to be solved for are ∆W, ∆M, ∆H and ∆P using equations 5, 6, 7 and 8. The
general strategy is to reduce the number of unknowns so that the size of the matrices to be inverted in the
simultaneous solution of these equations is reduced. The mass equation 6 is simple and is used to
eliminate ∆M in terms of ∆W. Flow is chosen as the prime variable since it is the main actor in
thermalhydraulic systems. The enthalpy equation poses a problem as it is too complex to permit a simple
substitution. Porsching surmounts this by setting SHH = SHM = 0, ie making the solution explicit in specific
enthalpy. However, we need not make this assumption; by casting the equations in matrix notation,
the full implicitness can be retained while still allowing the back substitutions to be made. 

Proceeding then, using matrix notation:

where, for a 4 node - 5 link example (Figure 6.2):
links Y

This matrix contains the total system geometry.  It is constructed by the following procedure:
For each column (link), insert -1 for the upstream node and +1 for the downstream node for that
link since the link supplies (adds) flow to the downstream node and takes it away from the
upstream node.  Flow reversal is handled automatically since the sign of W will take care of mass
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∆W ' ∆t AWP P t%SWP∆P % AWW W t%2SWW∆W %BW (11)

AWW '

&k1*W1*
&k*W2*

0

0 &k5*W5*

(12)

AWP '

A1/L1 &A1/L1 0 0

0 A2/L2 &A2/L2 0

0 0 A3/L3 &A3/L3

&A4/L4 0 0 A4/L4

0 &A5/L5 0 A5/L5

(13)

BW '

A1/L1(h1ρ1g % ∆Ppump1)
A2/L2(h2ρ1g % ∆Ppump2)

@
@

(14)

∆H ' ∆t AHW W t%SHW∆W %SHHAHH (

∆H( & SHMAHM (

∆M(%BH (15)

∆H( '

∆H1
∆H2
∆H3
∆H4
∆H4

, ∆M( '

∆M1
∆M2
∆M3
∆M4
∆M4

(16)

accounting properly.

The form of other matrices in the following are derivable from AMW.  This can be used to advantage in
coding.  The input data for each link need only contain pointers to the upstream node and the downstream
node for that link.  This allows AMW to be created.  In short, the upstream node and downstream node for
each link completely defines the geometry and this can be used to programming advantage.

The flow equation is:

Where:

note that AWP is formed easily from AMW by the following procedure:
First multiply AMW by {-A1/L1, -A2/L2, ... -A5/L5}-1

Then transpose the resulting matrix to give AWP.

Finally:

where ∆H* and ∆M* refer to the enthalpy and mass associated with upstream properties of the links (ie
the transported properties). Thus
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AHW '

&H1/M1 0 0 %H4/M4 0

H1/M1 &H2/M2 0 0 H4/M4

0 H2/M2 &H3/M3 0 0

0 0 H3/M3 &H4/M4 &H4/M4

(17)

AHH( '

&W1/M1 0 0 %W4/M4 0

W1/M1 &W2/M2 0 %W5/M4

0 W2/M2 &W3/M3 0 0

0 0 W3/M3 &W4/M4 &W5/M4

(18)

AHM '

&W1H1/M
2
1 0 0 W4H4/M

2
4 0

W1H1/M
2
1 &W2H2/M

2
2 0 0 W5H4/M

2
4

0 W2H2/M2 &W3H3/M
2
3 0 0

0 0 W3H3/M
2
3 &W4H4/M

2
4 &W5H4/M

2
4

(19)

∆H ( ' ILN∆H (20)

nodes Y

I LN '

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

links
\

(21)

For each link, the elements of the column are formed from the link flow, Wj and the upstream properties
(H and M).  Each link has a sink and source node.

Similarly

We wish to write the matrix equations eliminating the * parameters, ie convert ∆H* to ∆H, ∆M* to ∆M. 
To do this we introduce a transfer matrix, ILN so that

where

where ILN is formed by entering 1 for the node that is the upstream or source node for each link.  Now, we
can define:

AHH* ∆H*  =  AHH* ILN ∆H (22)

      /  AHH ∆H
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and     AHM* ∆M* = AHM* ILN ∆M (23)

    / AHM ∆M.

Thus
∆H = ∆t  {AHW (Wt + SHW ∆W) + SHH AHH ∆H - SHM AHM ∆M + BH} (24)

Substituting in the mass equation 9:

∆H = ∆t { AHW (W + SHW ∆W) + SHH AHH ∆H - ∆t SHM AHM AMW (Wt + WMW ∆W) + BH } (25)

Solving for ∆H:

    ∆H = ∆t[I - ∆t SHH AHH]-1  {AHW (Wt + SHW ∆W) - ∆t SHM AHM AMW(Wt + SMW ∆W) + BH} (26)

So now we have ∆M and ∆H in terms of ∆W.  Recalling equation 8, in matrix notation, we have:

∆P = C1 ∆M + C2 ∆H, (27)

where 

(28)C1 '

C11

C12 0

C13

0 C14

Similarly for C2.

We can back-substitute ∆M and ∆H into equation 8 and the result into the flow equation to leave a matrix
equation in ∆W only, which can be solved by traditional numeric means.  Hence,

∆P = ∆t C1 AMW (Wt + SMW ∆W) + ∆t C2 [I - ∆t SHH AHH]-1 [AHW (Wt + SHW ∆W)

- ∆t SHM AHM AMW (Wt + SMW ∆W) + BH]

    / ∆t APW1 Wt + ∆t APW2 ∆W + ∆t BP (29)

where : APW1 = C1 AMW + C2 [I - ∆t SHH AHH]-1 [AHW - ∆t SHM AHM AMW] (30)

APW2 = SMW C1 AMW + C2 [I - ∆t SHH AHH]-1 [SHW AHW -∆t SHM SMW AHM AMW] (31)

 BP = C2 [I - ∆t SHH AHH]-1 BH (32)

Thus:
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∆W = ∆t {AWP [Pt + ∆t SWP (APW1 Wt + APW2 ∆W + BP)] + AWW [Wt + 2SWW AWW ∆W] + BW } (33)

Collecting terms in ∆W:

[I - ∆t(2 SWW AWW + ∆t SWP AWP APW2)] ∆W

= ∆t {[AWW + ∆t SWP AWP APW1] Wt + BW + AWP [Pt + ∆t SWP BP]} (34)

which is of the form

A ∆W = B

which can be solved by conventional means to yield ∆W.  Then we can directly calculate ∆M, ∆H and
∆P using equations 9, 15 (or 24), and 27.  Associated changes in temperature can be obtained as for
pressure, using the appropriate equation of state coefficients.

6.4 Special Cases

To summarize, the general solution is given by the following equations:

APW1 = C1 AMW + C2 [I - ∆t SHH AHH]-1 [AHW - ∆t SHM AHM AMW] (35)

APW2 = SMW C1 AMW + C2 [I - ∆t SHH AHH]-1 [SHW AHW -∆t SHM SMW AHM AMW] (36)

BP = C2 [I - ∆t SHH AHH]-1 BH (37)

[I - ∆t(2 SWW AWW + ∆t SWP AWP APW2)] ∆W

    = ∆t { [AWW + ∆t SWP AWP APW1] Wt + BW + AWP [Pt + ∆t SWP BP] } (38)

∆M = ∆t AMW [Wt + SMW ∆W] (39)

∆H = ∆t { AHW (Wt + SHW ∆W) + SHH AHH ∆H - SHM AHM ∆M + BH } (40)

∆P = C1 ∆M + C2 ∆H (41)

Special cases of this general algorithm are as follows:

6.4.1 Fully explicit:  all S's = 0

APW1 = C1 AMW + C2 AHW (42)

APW2 = 0 (43)
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BP = C2 BH (44)

ˆ ∆W = ∆t { AWW Wt + BW + AWP Pt } (45)

∆M = ∆t AMW Wt (46)

∆H = ∆t { AHW Wt + BH } (47)

∆P = C1 ∆M + C2 ∆H, (48)

as expected.

6.4.2 Porsching's semi-implicit  (SHH = 0 and SHM = 0, all other S's = 1)

APW1 = C1 AMW + C2 AHW (49)

APW2 = C1 AMW + C2 AHW (50)

BP = C2 BH (51)

[I - ∆t(2 AWW + ∆t AWP APW2)] ∆W

= ∆t { [AWW + ∆t AWP APW1] Wt + BW + AWP [Pt + ∆t BP] } (52)

∆M = ∆t AMW [Wt + ∆W] (53)

∆H = ∆t { AHW (Wt + ∆W) + BH } (54)

∆P = C1 ∆M + C2 ∆H (55)

6.4.3 Fully Implicit:  All S’s = 1

APW1 = C1 AMW + C2 [I - ∆t AHH]-1 [AHW - ∆t AHM AMW] (56)

APW2 = C1 AMW + C2 [I - ∆t AHH]-1 [AHW - ∆t AHM AMW] (57)

BP = C2 [I - ∆t AHH]-1 BH (58)

[I - ∆t(2 AWW + ∆t AWP APW2)] ∆W

= ∆t { [AWW + ∆t AWP APW1] Wt + BW + AWP [Pt + ∆t BP] } (59)

∆M = ∆t A MW [Wt + ∆W] (60)

∆H = ∆t { AHW (Wt + ∆W) + AHH ∆H - AHM∆M + BH } (61)
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∆P = C1 ∆M + C2 ∆H (62)

6.5 Programming Notes

It should be noted that the full system geometry is contained in AMW.  All other matrices are derived from
this matrix and node/link properties.  Programming is thus very straightforward.  In addition, the
switches, S, can be varied at will to control the degree of implications of the system variables, W, M, H
and P.

The fully-implicit method is more complicated than the semi-implicit method in that it requires the
addition and multiplication of more matrices as well as a matrix inversion. The effect of these additional
operations is quite costly, especially when a large number of nodes is needed. In one case study [HOS89],
for 9 nodes and links, the cost is a 50% increase in iteration time. But this becomes a 250% increase as
one approaches the 36 node/link case. By handling the matrix operations as efficiently as possible, some
increase in speed should be attainable for both models. Using efficient assembly routines (rather than
FORTRAN) for the matrix operations yielded a 10 to 20% reduction (increasing from 9 nodes to 36
nodes) in the time per iteration for the semi-implicit method and a 15 to 25% reduction in the fully-
implicit case.

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be diagonally dominant
in nature (i.e. non-zero elements occupy one, two or three stripes through the matrix). By writing routines
specific to the nodal layout for handling the matrix operations, significant gains in speed may be possible.
However, the simulator will no longer be general in nature and the routines may have to be changed if the
nodal layout is altered.

If the multiplication of two large matrices is desired, say NxN in dimension, the time to carry out the
operation (N3 multiplications and N3 additions) can be very significant. However, it is possible to reduce
the number of individual operations without losing the generality of the method. Take, for example, the
multiplication of AWP and APW. The rows in the former term  pertain to links and the columns to nodes.
Each row will only contain two terms located in the columns corresponding to the upstream and
downstream nodes of that particular link. Thus, knowing which are the upstream and downstream nodes
for every link, it is only necessary to do two multiplications and one addition to obtain each element of
the product matrix (2N2 multiplications and N2 additions). By taking advantage of having only two
elements in each row of the former term or only two elements in each column of the latter term wherever
possible, significant savings in time may be observed.  With this improvement in the code, a cut in time
by a factor of two for 18 nodes and by a factor of three for 36 nodes, regardless of the method (semi- or
fully-implicit) was obtained. The cost of the fully-implicit method is reduced slightly to a 32% increase in
iteration time over the semi-implicit method when 9 nodes and 9 links are used. This becomes a 214%
increase as one approaches the 36 node case. 

Since the focus of this chapter is to provide a less obtuse and more general derivation of thermalhydraulic
system equations than Porsching's method, a full comparison of the performance of the fully- and semi-
implicit methods will not be made. Suffice it to say that, in general, the semi-implicit method has a
Courant limit on the maximum time step that can be taken in order to ensure stability. The fully-implicit
method does not have this limitation. As the Courant time step limit is determined by the nodal residence
time, the time step limit is dependant on the node sizes and the flows through the nodes. Practical



Thermalhydraulic Network Simulation 6-11

D:\TEACH\Thai-HTS2\Chap6.wp8   May 22, 2003   8:12

simulations have a further time step constraints such as: the tracking of movement of valves, the
maintenance of accuracy, synchronizing of report times, etc. Thus, the choice between the semi- or fully-
implicit method depends on the time per iteration multiplied by the number of iterations required to reach
the largest time step permitted by the simulation problem. For example, for a 9 node case, the semi-
implicit method required 0.10 seconds per iteration and required 2 iterations to meet the report time of 1.0
seconds. The fully-implicit method meet the report time in one iteration which took 0.14 seconds. At 36
nodes however, the semi-implicit method took 2 x 0.71 seconds while the fully-implicit method took 2.12
seconds. Clearly, one method is not superior to the other in all cases.

Pressure determination involves the use of property derivatives.  To avoid the numerical problems
associated with discontinuities, smooth functions for properties must be used, such as those derived by
[GAR88, GAR89 and GAR92].  These functions and routines permit the quick and fast evaluation of ∆P
and ∆T given ∆M and ∆H for all water phases.  Automatic adjustment is provided to prevent P and T drift
from values consistent with current M and H values.  These routines are non-iterative, essential for real-
time simulation.

6.6 Conclusion

The FIBS approach for thermalhydraulic system simulation has been compared to the classic work of
Porsching.  Porsching's algorithm is derived as a subset of the fully implicit approach.  Focusing on the
system Jacobian, as Porsching did, focuses on the perturbation of the system as a whole.  Although
general, it tends to obscure the interaction of the main players in typical thermalhydraulic systems:  flow
and pressure.  The FIBS form is shown to be more general than Porsching's method, yet less obtuse.  The
interplay of flow and pressure is clarified and coding is simplified.
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6.7 Exercises

1. Rewrite the conservation equations for the 4 node, 5 link case with various explicit / implicit
switches set for the following cases:
a. fully explicit
b. diagonally implicit
c. semi-implicit solution scheme (implicit in flow and pressure, explicit in mass and

enthalpy)
d. fully-implicit solution scheme (implicit in flow and pressure, mass and enthalpy).

2. Build a simulation code that solves the thermalhydraulic equations for a general node-link
network for the explicit case using the supplied skeleton code as a starting point.  Use the node-
link diagrams and equations as developed in chapter 3, the water property routines as developed
in chapter 4, the rate form of the equation of state as developed in chapter 5 and the explicit
solution as developed in this chapter.

3. Improve upon your solution to question 2 by implementing a diagonally implicit solution
procedure.  Is the solution more stable?  Is there a cost penalty?

4. Implement a semi-implicit solution scheme (implicit in flow and pressure, explicit in mass and
enthalpy).  Is the solution more stable?  Is there a cost penalty?

5. Implement a fully-implicit solution scheme (implicit in flow and pressure, mass and enthalpy).  Is
the solution more stable?  Is there a cost penalty?
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Figure 6.1 The four cornerstone equations for thermalhydraulic system simulation and
the flow of information between them.

Figure 6.2 The simple 4 node - 5 link example.
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Instructor’s notes:

The exercises should enforce the need for correlations.

The exercises bring together all the elements developed so far in the course.  The successful student will
walk away with a working code for at least the explicit case and have the basis for refinement later on.


