1 Concurrency Models

A computer system which models a natural system must somehow simulate concurrency. A com-
puter is by nature a sequential device. However since computers run very fast, it is possible for a
computer to seem as though it is doing many things at once. Computers achieve this by dividing
resources into small time-slices and sharing those slices across typically either multiple threads or
multiple processes. This short paper will present two programming models of concurrency and
discuss how they can be implemented under LabWindows.

Usually when one thinks of a group of cars moving down a highway, one thinks of a collection
of independent entities which share a context or space (the road in this case) but must also be

aware of each other in order to avoid collisions.

Figure 1: Traffic Congestion Model

Suppose we want to model a system of roads, where drivers choose typical destinations. Some
are going to work, some are going shopping, and some are going on holiday. If we are modeling
this system in a computer, it would be natural for each car to be represented by an autonomous
process. A process here means some sort of isolated program, which while it can be aware of
the other programs, it is not necessarily dependent on them. Processes should only communicate
explicitly when they want to.

In the case of the traffic model, suppose that each car process had a unique starting point,
and a unique destination, its own route, and could follow traffic rules then we could develop a

relatively realistic traffic congestion model. The road system might be represented by a governing



rule process which communicated with the cars, and indicated which routes were legal. This style
of simulation system has been studied extensively and is usually referred to as a discrete event
system. Typical applications include traffic models, telephone network models and factory floor

production models.

2 A Continuous Example

In our case we are interested in coupled physical systems which behave in continuous rather than
discrete steps. While it is certainly correct to think of physical models as continuous systems, for
the sake of modeling them on a computer they must be descretized. Discretization is unavoidable
because the machines representation of a floating point number has some limit to its accuracy, and

because typical numerical time integration schemes are based on finite differences.

Figure 2: Connected Wheels

Suppose we want to model a continuous physical system which represents a small group of
connected and related objects. For this example we will think of three wheels of various diameters
which are connected as shown in figure 2.

Each wheel has a pin which goes through its center, the pin of the largest wheel is connected to
a stationary post. The second largest wheel is connected to the edge of the first, and the smallest
is again connected to the edge of the second largest. The three wheels spin at different rates,
and each wheel can be started and stopped, independent of the others. The smallest wheel has a
pin connected to its edge, and for this example the problem of interest is to compute the vertical

position of this final edge pin.



Suppose we use the following three functions to model motion of pins in the edges of the wheels:

vall = 0.6 x sin(t);

val2 = 0.3 x sin(t X 3);

val3 = 0.1 x sin(tx9);

Then the position of the final edge pin will simply be the following sum:

pos = vall + val2 + val3

For the sake of exposition, we have implemented each sine function evaluation in a separate
thread of control. Although for this case the sine function evaluation is very simple, we could

imagine a much more complicated evaluation where this mathematical separation might be very
helpful.



The following figure shows the display output from the completed program:

Figure 3: Lab Windows Summation of Sines

The top three windows display output generated by the three sine functions. F3 (the highest
frequency function) requires the most frequent updates. F1 (the lowest frequency function) requires
the least frequent updates. If a function isn’t updated frequently enough then the output becomes
inaccurate and this is undesirable. The central window shows the main thread which access the
computed values from the other threads through global variables. The main thread computes the

sum of the values from the other threads.



Suppose instead of using control threads we computed the final position as:

pos = 0.6 x sin(t) + 0.3 x sin(t x 3) + 0.1 x sin(t x 9)

then it could be argued that the low frequency elements are being computed too often, and so
CPU power is being wasted. Again we should imagine that we are actually computing something
very complex, not simply a sine function.

So two principle arguments in favor of threading a continuous simulation are:
e Simplifies the problem through modularization

e Potentially reduces computational overhead

2.1 Discrete Event Programming

One way to implement the system is to use scheduled events. For this example we are only looking
at four processes, and we suppose that each thread knows how often it should be called. We also
suppose that there is some sort of global clock, that each process can access. In LabWindows this
is easily implemented with a timer that updates a global variable. An individual thread which

computes one of the sine functions might look like this:

*/
void schedule_f1() {

if (G_timer<G_timerl) return;

G_timerl1=G_timer+.2;

G_vall=.6*xsin(G_timer);

PlotStripChartPoint (panel2, PANEL_2_STRIPCHART, G_vall);
}

The variables G_timer, G_timerl, and G_vall are all global variables implemented for this pro-
cedure. When the function schedule f1() is called it compares the main timer (G_timer) with its
next scheduled event (G_timerl). If the time is right for another calculation then it first schedules
a new event .2 seconds in the future, and then computes a new global value for its sine function
(G_vall). After computing the partial sine result, it plots the data in its strip chart. If the event
isn’t ready it returns and does nothing.

We can write as many functions like this as we need. For our example we need 4 functions, one

thread of control for each sine calculation and a fourth thread for the main window.



We also need some kind of scheduler function which manages each of the threads. In this case

the manager function is implemented as a callback from the timer.

* Timer_sched

* A single timer is the life of the system. At each clock tick,
* each thread of control is executed. Threads decide if they will

* execute a given action or simply return.

*/
int CVICALLBACK Timer_sched (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT_TIMER_TICK:
G_timer+=.02;
if (G_f1==1) schedule_f1();
if (G_f2==1) schedule_f2();
if (G_f3==1) schedule_f£3();
schedule_main();
break;
}
return 0O;
}

This example includes the possibility of turning the threads on and off, the global variables G_f1, G_ {2,

G_ 13 are connected to the switches on the main panel and allow threads to be effectively blocked.

2.2 Thread Programming

Discrete event programming has several pitfalls. The most obvious is that if the function representing a
specific thread simply does not return, then all of the other threads are blocked. It is also the case that if
one of the functions is much more complex than the others perhaps it will be given an unfair amount of the
CPUs attention. The basic response is to allow the operating system to worry about thread management.

LabWindows includes a thread facility and it is worth investigating as an alternative.



LabWindows threads are created in pools. A pool defines a specific number of threads which

can be drawn from the pool. For our case we need a pool of four threads, this is created as follows:

// Create a pool of 4 Threads for this application
CmtNewThreadPool (4, &G_poolHandle);

// Create the threads
CmtScheduleThreadPoolFunction (G_poolHandle,
schedule_f1, (void *)ctrlID, NULL);
CmtScheduleThreadPoolFunction (G_poolHandle,
schedule_f2, (void *)ctrlID, NULL);
CmtScheduleThreadPoolFunction (G_poolHandle,
schedule_f3, (void *)ctrlID, NULL);
CmtScheduleThreadPoolFunction (G_poolHandle,
schedule_main, (void *)ctrlID, NULL);

Once the threads are created they become active. The thread functions no longer need to exit,

they can run in an infinite loop, so long as the application is still running. A thread function now
looks like this:

int CVICALLBACK schedule_f1(void * ctrlID)
{
while(G_running) {
if (G_timer>=G_timerl) {
G_timerl1=G_timer+.2;
G_vall=.6*xsin(G_timer);
PlotStripChartPoint (panel2,
PANEL_2_STRIPCHART,G_vall);
}
Delay(.02);

}

The LabWindows thread runs in an infinite loop so long as the global variable G _running=1.

The loop checks the global clock to see if it is time for its event. If the event condition is met,

7



it schedules a new event, computes its sine function, and plots a point on its graph as before. In
either case whether the event condition is met or not, a small delay is executed. The delay prevents
the thread from needlessly consuming the CPU resources as it checks for its event.

The delay in the thread could be avoided altogether by usage of the threads signaling facilities.
It is generally undesirable for threads to poll for events, it would be better if a central scheduler
process could signal the thread when it needed to be activated. In this case the scheduler is very

simple and only needs to update the global time:

int CVICALLBACK Timer_sched (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData2)

{
switch (event)
{
case EVENT_TIMER_TICK:
G_timer+=.02;
break;
}
return O;
}



3 Comments

This document is intended to generate some discussion on the topic of concurrency. The supplied
implementations, for both the discrete event model, and the thread programming model are based
on polling, which while probably acceptable, would be better replaced by some sort of global event
queue which could signal threads when they needed to be woken. The excessive use of global
variables for communication is unfortunate, but I think necessary.

Both problems were implemented under lab windows, and it was observed (although not mea-
sured) that the threaded system was significantly slower than the discrete event system. A event
queue might solve this problem by eliminating excessive polling in the threaded system. However
letting the operating system manage the threads will tend to be much slower than doing the thread
management locally, so it is not surprising that the threaded version was slower.

Much can be said about thread programming, concurrency and discrete event simulations. I
hesitate to recommend any of these methods, since I really believe that simplicity ought to be the
rule. Concurrency and thread programming are usually treated in upper year computer science
courses, and I think we need to choose a really simple model as our base. Adding network program-
ming to the mix will complicate this further, so its important that we choose a straightforward

easy to understand model of execution near the start.



