
Sept 2nd CELL.C, Work Report Gilbert 1

1 Cell Wrapper
The original plan for this working week was to implement a version of the point reactor kinetics
model which used actual cross section values instead of a given multiplication factor. Towards this
end the CELL.C code was re-investigated.

The idea was that the cell code should generate some of the constant terms to be used in the
point reactor kinetics model. The �rst step was to build a simple LabWindows interface for the
CELL.C code. As luck would have it, this step consumed all of the working time for the week.
The cell code requires four main input parameters, each is the name of a �le. The main purpose
of the interface is to organize this and to impose a few logical restrictions. A single item .cel �le
can be constructed by making a mixture. The Custom Mixture panel prompts the user with a list
of materials taken from the materials �le.

Figure 1: LabWindows interface to CELL.C

The custom mixture is built up one item at a time using the add button. Items can be



Sept 2nd CELL.C, Work Report Gilbert 2

removed from the mixture by double clicking on them (this function is buggy at the moment).
After a mixture design is complete, the user can click on done and a cell con�guration �le with a
single item is generated.

The main menu has several �le handling related options. Files can be viewed by double clicking
on their names which opens them inside notepad. The output �le can be appended to each time
the CELL code is run, and the output code can optionally be viewed each time the output code is
run. Notepad can be used to edit the �les and save them and then re-run the program.

2 Modi�cations to classical CELL

2.1 Functional Modi�cations
Simply put, no functionality was added. I found the cell program somewhat confusing the �rst
few times I used it, and I think some kind of built in �le manager would be helpful to anyone
trying to use this program. Somehow the idea of what the cell program is doing perhaps needs to
be changed, I didn't change the general mode of input- i.e. the �le, although ultimately �le input
style programs are really only useful in a batch mode.

The custom mixture window assists the user by enforcing a �le format, and this theme could
be worked on. The custom mixture window doesn't do any error checking, it for example does not
check to see that ratios sum up to 100%, nor does it check for sanity on the other �elds.

2.2 Stylistic Modi�cations
Many of the variables within the �le were renamed using conventions that were discussed in the
previous meeting. In particular this program uses 15 global variables, some of which are refereed
to in each function. Every function within the cell �le was renamed with the pre�x cell_, since at
1200 lines the total program has grown large enough that it ought to be split into several �les.

2.3 Bug Fixes in Original code
Several minor bugs were identi�ed in the original version of CELL.C. The LabWindows runtime
environment was quite good at pointing out miscoded pointers, which although were functionally



Sept 2nd CELL.C, Work Report Gilbert 3

legal in the original code, were incorrectly typed, and could have potentially led to problems later
on. Some �le handling errors existed, one function opens the same �le twice, and then doesn't
close another �le. All of these errors were easily corrected. The following segment of code is taken
from the top of the prep() function and is incorrect and it is not clear how it should read:

for (p=0;p<G_newnumber;p++){
if (p==G_newnumber) energy_avg = G_newgroups[p].energy / 2.0;
energy_avg = (G_newgroups[p].energy + G_newgroups[p+1].energy)/2.0;

v[p] = 220000.0*pow(energy_avg/0.025, 0.5);
fprintf (fpout,"%g ",v[p]);

}

There are two problems with this snippet:

1. Since the loop goes from 0..G_newnumber-1, p cannot equal G_newnumber, so the �rst con-
dition cannot be met, and even if the �rst condition is met- it does nothing since energy_avg
is rede�ned on the next line.

2. The array G_newgroups[] has size=G_newnumber. In C array indecies start at 0 and go
to n-1. Since the loop counts up to G_newnumber-1, and then adds one to this, an illegal
reference is always made by G_newgroups[p+1].energy when p=G_newgroups-1.

The comments do not explain what this portion of the code is doing, so I wasn't sure how to �x
it. I guessed that the following snippet might have been the original intention, although this isn't
clear.

for (p = 0; p < G_newnumber; p++) {
if (p == G_newnumber - 1) {

energy_avg = G_newgroups[p].energy / 2.0;
} else {

energy_avg =
(G_newgroups[p].energy + G_newgroups[p + 1].energy) / 2.0;

}
v[p] = 220000.0 * pow(energy_avg / 0.025, 0.5);
fprintf(fpout, "%g ", v[p]);

}



Sept 2nd CELL.C, Work Report Gilbert 4

3 Comment
Unfortunately working on the CELL.C �le was only a necessary warm up for extracting a few
meaningful constants to use in other demonstration programs. I like the idea of building wrappers
for old di�cult programs, certainly computing students today are not comfortable with command
line programs since DOS has faded from use in the last 5 years. We really need to de�ne a list of
tractable projects, since we only have a few couple of existing codes which can be repackaged like
CELL.C.

LabWindows impressed me with its error detection facilities, usually pointers which drift o�
arrays by one are not detected. I compiled CELL.C under Unix about 2 years ago, and I didn't
detect these bugs then. LabWindows however is not perhaps as easy to use as it �rst appears. I
spent a great deal of time this week looking up callback functions in the help pages, and found
myself struggling and cursing with the interface building tools. Better manuals would help, I
understand they can be purchased, but the LabWindows complier and tools are fairly complex,
and this should not be underestimated when handing this tool to new students.


