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ABSTRACT 
 

The control and safety analysis of a nuclear reactor strongly relies on numerical 
simulation of reactor dynamics, in which the neutronics computation is one of the most 
important tasks. It is necessary to utilize a full three-dimensional model of neutron 
kinetics for satisfactory results but this requires an extensive computation. The purpose of 
this research is to explore an efficient method for accurate solution of the spatial neutron 
kinetics problem. 
   

The kinetics of neutrons in a nuclear reactor of practical interest is adequately 
represented by the few-group diffusion equations with delayed neutron effects taken into 
account. For solving such a space-time equation system, finite difference methods, 
though the simplest, must work with a very fine-mesh grid, resulting in an extremely 
large algebraic system whose solution by basic numerical methods encounters 
inefficiency. Coarse-mesh methods increase computational efficiency by reducing the 
number of discretized equations. However, by adding more complexity and limitations, 
the coarse-mesh computation is still rather time-consuming. 

 
 Multigrid methods may provide an optimal solution for a large, sparse algebraic 
system arising from discretization of a partial differential equation or system but have not 
found many applications in reactor physics due to inherent difficulties. 
   

In this research, a finite difference method is used for discretization of the kinetics 
equations and a multigrid solver is developed to solve the discretized equation system. 
The Additive Correction Multigrid, the simplest and cheapest method in the multigrid 
family, is used for grid coarsening, allowing for reaching the coarsest grid without any 
difficulties. By avoiding the singularity and indefiniteness of the discretized system,   the 
Red-Black Gauss-Seidel method is suited for multigrid smoothing and favours an 
implementation of parallel computation. 

   
 Numerical experiments show that our multigrid solver is not only much faster 
than any basic iterative method but also tends to be mesh-independent or optimal for 
solving a practical kinetics problem. 



   

 iv

 ACKNOWLEDGEMENTS 
 

I would like to express my sincere appreciation to my supervisor, Dr. Bill Garland, for his 
guidance and generous support during all the course of my graduate studies resulting in 
completing of this thesis. 
 
 I also would like to thank the other members of my Supervisory Committee, Drs. 
Marilyn Lightstone and Skip Poehlman, for their interest and helpful discussions. 
  
 The financial assistance from the School of Graduate Studies and the Department 
of Engineering Physics, McMaster University, through a scholarship, bursary and 
teaching assistantship is gratefully acknowledged. 
 
 Thanks are due to Simon Day for providing and discussing some useful data of 
the McMaster Nuclear Reactor that are used in this research. 
  
 My thanks also go to my former boss, Dr. Vũ Hải Long, my friend Phú Lê, as 
well as my siblings, Hà, Chí and Dân, for their encouragement and willingness to support 
whenever I need. 
 
 Finally, I must thank my wife, Như Thủy, and sons, Linh Giang and Tuệ Giang, 
without whose encouragement, compassion, impatience, inspiration, support and love this 
thesis could not have been completed.   



   

 v

TABLE OF CONTENTS 
 

ABSTRACT iii 

ACKNOWLEDGEMENTS iv 

LIST OF FIGURES viii 

LIST OF TABLES ix 

NOMENCLATURE x 
 
1 INTRODUCTION 1 

 1.1 Thesis Overview 1 

 1.2 Related Works 3 

 1.3 Thesis Structure 5 
 
2 REACTOR PHYSICS 6 

 2.1 Transport Theory 6 

  2.1.1 The Neutron Transport Equation 6 

  2.1.2 Methods for Solution of the Neutron Transport Equation 10 

 2.2 Diffusion Theory 12 

  2.2.1 Diffusion Approximation 12 

  2.2.2 The Multigroup Diffusion Equations 17  
 
3 DIFFUSION METHODS FOR REACTOR KINETICS 22 

 3.1 Spatial Treatment of Neutron Kinetics Equations 22 

  3.1.1 The point Kinetics Model 22 

  3.1.2 The Flux Factorization Approach 25 

  3.1.3 The Modal Approach 28 

  3.1.4 Finite Difference Methods 29 

  3.1.5 Coarse Mesh Methods 33 

  3.1.6 Nodal Methods 35  

 3.2 Time Integration 44 

  3.2.1 Integration Schemes 45 

  3.2.2 Time Step Adjustment 48 



   

 vi

4 SOLUTION OF ALGEBRAIC SYSTEMS 50 

 4.1 Direct Algebraic Solvers 50 

 4.2 Iterative Solvers for Algebraic Systems 54 

  4.2.1 Stationary Iterative Methods 55 

  4.2.2 Non-Stationary Iterative Methods 61 
 
5 MULTIGRID METHODS 68 

 5.1 Error Smoothing 69 

  5.1.1 One-Dimensional Model Problem 69 

  5.1.2 Iterative Solution 70 

  5.1.3 Error Smoothing Analysis 70 

 5.2 The Two-Grid Algorithm 74 

  5.2.1 Coarse Grid Approximation 74 

  5.2.2 Two-Grid Convergence Analysis 76 

 5.3 Multigrid Methods 79 

  5.3.1 The Essential Multigrid Principle 79 

  5.3.2 The Multigrid Algorithm 80 

  5.3.3 Multigrid Components 82 

  5.3.4 Multigrid Convergence 88 
 
6 MULTIGRID APPLICATION TO REACTOR PHYSICS 91 

 6.1 Difficulties in Application of Multigrid to Reactor Physics Problems 91 

  6.1.1 Difficulty in Coarse Grid Approximation 92 

  6.1.2 Difficulty in Smoothing 94 

 6.2 Additive Correction Multigrid 100 

  6.2.1 Discretization 101 

  6.2.2 Algebraic Solution 102 

  6.2.3 Coarse Grid Approximation 104 

  6.2.4 Avoiding Indefiniteness 108 

 

 



   

 vii

7 NUMERICAL EXPERIMENTS 111 

 7.1 Mesh-Dependence of Multigrid Convergence 111 

  7.1.1 A One-dimensional One-group Example 111 

  7.1.2 Numerical Solution 113 

 7.2 The Multigroup Kinetics Problem 119 

  7.2.1 A Two-Group Problem Example 119 

  7.2.2 Numerical Solution 121 

 7.3 The Multidimensional Multigroup Problem 122 

  7.3.1 A 3D Multigroup Example 123 

  7.3.2 Numerical Solution 126 
 
8 CONCLUSIONS 132 

 8.1 Thesis Summary 132 

 8.2 Concluding Remarks 134 

 8.3 Recommendation for Future Research 136 
 
REFERENCES 139 
 
Appendix CODE LISTINGS 149 

 A1 Example of Input File for MNR Kinetics Simulation 149 

 A2 MNR Kinetics Simulation 151 

 A3 The Kinetics Module: Classes and Methods 153 
  



   

 viii

LIST OF FIGURES 
 

Figure 2.1.1 The position and velocity of a neutron 6 

Figure 3.1.1 Cell-centered and vertex-centered discretization grids 30 

Figure 3.1.2 An integration box 30 

Figure 3.1.3  Fluxes and current components at integration box interfaces 31 

Figure 3.1.4 Node-averaged flux and face-averaged currents 36 

Figure 5.1.1 Error smoothing effect of the Gauss-Seidel method 73 

Figure 5.1.2  Short-wave mode amplification factor by the Jacobi method 73 

Figure 5.1.3 Gauss-Seidel amplification factor for short wave modes  74 

Figure 5.2.1  Grid coarsening in one dimension 75 

Figure 5.2.2 Coarse grid correction 79 

Figure 5.3.1 Multigrid V-cycle and W-cycle 81 

Figure 5.3.2 Vertex-centered and cell-centered coarsening in 2D 82  

Figure 6.1.1 Jacobi relaxation amplification factor  
 for definite and indefinite problems  97 

Figure 6.1.2 Gauss-Seidel relaxation amplification factor  
 for definite and indefinite problems  97 

Figure 7.1.1 Cell-centered grid for discretization of a 1D diffusion problem 112 

Figure 7.1.2 Norm behaviour for a convergent iterative solution  115 

Figure 7.1.3 Required number of basic iterations to reduce the error norm  
 by 105 times 116 

Figure 7.1.4 Required number of ACM iterations for solution to converge 117 

Figure 7.1.5 ACM convergence with different smoothing methods 118 

Figure 7.2.1 Source iteration at different accuracies of inner solution 121 

Figure 7.2.2 Iteration number vs. accuracy of the inner solution 122 

Figure 7.3.1 MNR core: horizontal plane view 125 

Figure 7.3.2 Unigrid and multigrid convergence behaviour on grid 32×44×32 127 

Figure 7.3.3 Comparison of unigrid and multigrid solution costs 128 

Figure 7.3.4 Thermal neutron flux in the MNR core 131 
 

 



   

 ix

LIST OF TABLES 
 

Table 3.1.1  Basis solution functions X(u) and Y(u)  42 

Table 7.3.1 Unigrid (UG) and multigrid (MG) convergence rates (ε=10-5) 127 

Table 7.3.2 Solution by V and W cycles in comparison to V(1,1) 129  



   

 x

NOMENCLATURE 
 

A, [A] algebraic matrix  
a absorption cross-section index; algebraic coefficient; constant 
a~  extrapolated dimension of a slab reactor 
B boundary point; reactor buckling 
[B] vector of group sources 
b algebraic source vector; constant 
C constant  
Ci concentration of delayed neutron precursors in group i 

P
iC  node-averaged concentration of delayed neutron precursors in group i 
P
iuC  node transverse concentration of group-i delayed precursors in u-direction 

c constant  
ci weighted precursor concentration in group i 
D diffusion coefficient; dimension(s); diagonal matrix 
d delayed neutron index; dimension index  
E neutron energy; error amplification matrix; east node index 
[E] vector of group errors 
e error vector; east face of a node 
ext external source index 
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Chapter 1 
 

INTRODUCTION 
 

1.1 Thesis Overview 
 
Nuclear industry is now well into the sixth decade of nuclear power, which has emerged 
as one of the principal sources of energy in many industrially developed countries. 
However, public skepticism is still a major factor guiding the future of nuclear power 
everywhere. For the industry to survive, the nuclear community has to be devoted to 
restoring the public confidence in the integrity of the industry. At the same time, nuclear 
researchers and engineers are devoted to economical and safe operations of nuclear 
reactors, as well as to development of more advanced designs. Reactor safety analysis has 
played a crucial role in these processes and will continue to do so. 
      
 The control and safety analysis of a nuclear reactor strongly relies on the 
prediction of transient behaviour of the reactor system under both normal operating 
conditions and accident situations. The analysis of such transients has been traditionally 
based on numerical simulation of coupled neutron kinetics and thermalhydraulics. While 
most reactor transient codes (e.g. CATHENA [Hanna (1997)] or RELAP5 [RELAP5 (1995)]) 
now employ the modern thermalhydraulic models that reflect the up-to-date knowledge 
of governing phenomena (i.e. heat transfer and hydrodynamics), these codes still depend 
on simplified neutron kinetics models (e.g. point reactor or dimensionally reduced 
models) whose results tend to be not only inaccurate but also non-conservative for many 
important cases of accident analyses. The incorporation of a full three-dimensional core 
model of neutron kinetics into the system code will allow “best-estimate” simulations of 
reactor dynamics but this still requires an extensive computation [Jackson et al. (1999)]. The 
purpose of this research is to investigate an efficient method for accurate solution of the 
spatial neutron kinetics problem. 
 
 In a nuclear reactor, neutrons are used to induce fission reactions on heavy nuclei 
of fissile materials (e.g. U-235 or Pu-241), accompanied by the release of energy and 
radiation plus additional neutrons. These fission neutrons can then be utilized to induce 
still further fission reactions, thereby inducing a chain of fission events. The neutron, 
hence, plays the role of the chain carrier while the fission reactions supply the desired 
energy. It is important that one be able to determine the neutron distribution through out 
the reactor core at all times in order to monitor and control the rates at which various 
neutron-nuclear reactions occur within the reactor. 
 
 The fundamental and most exact description of neutron behaviour in a nuclear 
reactor is provided by the neutron transport equation [Duderstadt & Hamilton (1976)]. For 
practical nuclear reactors, modeling of neutron kinetics in the framework of the transport 
theory is, however, prohibitively costly and is, therefore, usually simplified to be more 
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manageable. It is commonly agreed that the kinetics of neutrons in a nuclear reactor is 
adequately represented by the group diffusion theory [Henry (1975)]. As a result, we have a 
system of parabolic partial differential equations to solve for the neutron energy group 
fluxes and delayed precursor group concentrations in space and time. 
 
 Typically, finite difference methods are the simplest and most straightforward 
approach to the numerical solution of space-time problems. The great advantage of the 
finite difference method is that it gives the most accurate solution for sufficiently fine 
grid spacing and small time steps. The disadvantage, however, is that, for the neutron 
diffusion problem, the finite difference method must work with a very fine grid to obtain 
acceptable accuracy [Wachspress (1966)]. This requirement will result in an extremely large 
number of algebraic equations to be solved at each time step. If an implicit scheme is 
used to avoid instability and inconsistency of numerical solution, the equations in the 
discretized system are coupled in both space (between grid points) and energy (between 
energy groups). Basic numerical methods are quite inefficient for inverting such a large 
algebraic system as it takes so many steps (iterations) to propagate the error through all 
the grid points [Saad & Vorst (2000)]. Although one can utilize parallel computation on a 
multiprocessor computer system to reduce computing time at each iteration step, the total 
number of such iteration steps required for the solution to converge would remain 
unchanged and one also is likely to face the problem of false convergence. 
 
 The inefficiency of the finite difference methods has led to the development of 
various coarse mesh methods for dealing with the space problem of reactor kinetics, of 
which the nodal methods have received the greatest acceptance within the reactor physics 
community [Lawrence (1986)]. The nodal methods allow for spatial discretization of the 
neutron diffusion equations by using large grid spacing without losing accuracy. In fact, 
the nodal methods increase the computational efficiency by reducing the number of 
equations in the discretized system. However, in addition to the great complexity in 
derivation and difficulty in error analysis for nodal methods, it is difficult to accelerate 
the convergence for solution of the nodal discretized system. Consequently, the nodal 
kinetics computation is still rather time-consuming.   
 
 Fortunately, there is a class of multigrid methods which use a series of grids of 
different scales and inter-grid communication to propagate the error over the whole grid 
just in a single step [Wesseling (1992)]. The multigrid is among the fastest iterative methods 
known today for solving a large, sparse algebraic system arising from the discretization 
of partial differential equations. Unlike the basic iterative methods, the multigrid exhibits 
a convergence rate that is independent of the number of equations in the discretized 
system. It is, therefore, an optimal method. This great property of the multigrid suggests 
that we should consider its application to the solution of spatial kinetics equations. 
However, applications of the multigrid to neutronics computation have reported to 
encounter a number of difficulties.   
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 The primary goal of our research is to develop a multigrid solver for space-energy 
neutron kinetics equations that, as a kinetics module, can be incorporated into a reactor 
dynamics simulation code. The simulation of neutron kinetics is, perhaps, the most 
important and demanding task because it provides the necessary input for computation of 
other processes and usually requires the largest portion of CPU time. It is expected that, 
an optimal multigrid solver (i.e. its convergence rate is independent of the grid size) 
would easily handle the “deep” problem (i.e. the convergence) of the spatial reactor 
kinetics, while the parallel computation is supposed to effectively deal with the “wide” 
problem (i.e. the sweep though a large number of algebraic equations in the system).  
 
1.2 Related Works 
 
The importance of spatial treatment of neutron kinetics has long been recognized. 
Yasinsky and Henry (1965), studying the neutron kinetics behaviour in slab reactors, 
indicated that point kinetics results were very inaccurate and non-conservative when 
applied to large reactors. Even in a small tightly-coupled core, for a prompt critical 
excursion, the power peak predicted by the point kinetics was too small compared with 
the spatial kinetics solution. This discrepancy was evidently due to the slight change in 
the flux shape associated with the correct spatial solution. Dubois (1975) extended a similar 
study to a one-dimensional kinetics model and came to a conclusion that a spatially 
reduced kinetics model did not yield better results than the point kinetics. According to 
Ott and Neuhold (1985), the analyses of many safety problems actually require a solution of 
three-dimensional kinetics problems. 
 
 Sutton and Aviles (1996) gave a good overview of spatial methods that have been 
used more or less for calculations of time-dependent diffusion equations over the past 
four decades. In particular, a family of nodal methods [Finnemann et al. (1977), Shober et al. 
(1977), Gupta (1981), Brega et al. (1984), Hebert (1987), Hennart (1986, 1988), Ougouag & Rajic (1988), 
Song & Kim (1993), Noh & Cho (1994), Verdu et al. (1995), Zhang et al. (1995), Zimin & Ninokata (1996, 
1998), Koclas (1998), Penland et al. (1997), Jatuff & Gho (1999), Dahmani et al. (2001), Ikeda & Takeda 
(2001), Guessous & Akhmouch (2002), Zimin & Baturi (2002)] has demonstrated the best 
performance in both computational efficiency and physical accuracy; therefore, 
applications of many other methods (such as the finite difference methods [Alcouffe & 
Albrecht (1970), Hansen (1972), Mitchell & Griffiths (1980)], coarse mesh methods [Kang & Hansen 
(1973), Langenbuch et al. (1977), Takeda & Saji (1980), Ackroyd (1981), Schmidt & Fremd (1981), 
Kavenoky & Lautard (1986), Walters (1986), Montagnini et al. (1996), Cavdar & Ozgener (2004)], or 
modal methods [Kaplan et al. (1964), Stacey (1971), Miro et al. (2002)]) for reactor simulations 
have significantly diminished or even vanished. The ‘early’ nodal methods, developed in 
1960s and early 1970s, have been criticized for being inconsistent with the neutron 
diffusion equations. The ‘modern’ nodal methods (also known as the transverse-
integrated nodal methods) are consistent but add more complexity so that they are 
normally restricted to two energy groups only [Fu & Cho (2002)]. In addition, the error of 
nodal discretization is difficult to analyze. Finally, the unusual choice of nodal 
unknowns, the node-averaged and face-averaged quantities, makes the resulting 
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discretized system incompatible with fast iterative methods [Whitlock (1991), Moulton 
(1996)]. 
 
 Gerard (1997), in developing the MACSIM for simulation of the McMaster Nuclear 
Reactor, utilized the finite difference method for solving the 3D neutron kinetics 
equations. Although the source term is treated explicitly in time (to avoid source 
iteration) and the grid is not fine enough (to reduce the computational cost), MACSIM’s 
time performance is rather poor. The reason is that the simple Gauss-Seidel solver used in 
the code is too slow for solving the system of several thousands of algebraic equations. 
The property that the solution convergence strongly deteriorates with an increasing 
number of equations (or unknowns) in the solving algebraic system is inherent in most of 
the iterative methods known today [Young & Gregory (1973), Nukamura (1977), Hageman & 
Young (1981), Axelsson (1994), Saad (1996)].                
 
 Multigrid methods were first used by Fedorenko (1961) for solving Poisson’s 
equation on the square domain but the paper by Brandt (1977) is still considered the origin 
of the modern multigrid by many. The literature on mutigrid methods is very extensive 
[Douglas (2003)]. Unlike usual iterative methods, multigrid methods provide the 
convergence that is independent of the number of equations in the solving algebraic 
system [Bakhvalov (1966), Hackbusch (1982), Braess (1984), Greenbaum (1984), Bank & Douglas 
(1985), Thole & Trottenberg (1986), Brandt (1994), Reusken (1994), Yavneh (1995, 1996), Bramble et al. 
(1996), Kang & Kwak (1997), Zhang (1998, 2000), Stuben (2001), Wiennands & Oosterlee (2001), 
Brenner (2002), Oosterlee & Wienands (2002)].   
 
 Although the multigrid has now become a quite standard iterative method in 
science and engineering [Douglas (1997)], there have been not so many publications of 
multigrid application to reactor physics found in the literature and almost all of these 
works [Alcouffe et al. (1983), Phillips & Schmidt (1984), Finnemann et al. (1988), Zalavsky (1993, 
1995), Al-Chalabi & Turinsky (1994), Ginestar (2001)] are designated for reactor static 
(eigenvalue) calculations. Yet, there are only a few papers addressing reactor kinetics 
problems. In one of such rare papers, Scheilchl (2000) presented a parallel multigrid solver 
for the transient multigroup diffusion equations. Due to the difficulty in grid coarsening, 
only finer grids could be formed, leaving thousands of equations to solve for on the 
coarsest grid. Even with this drawback, the speedup by this solver was outstanding and 
even super-linear in some cases as reported. In fact, Scheilchl’s work is more related to 
parallel computation rather than to multigrid application. Another quite similar work was 
reported by Kaveh et al. (2000), in which any coarse grid structure is defined as far as it can 
be spatially homogenized using nodal equivalence theory [Kollas & Henry (1976), Smith 
(1986)]. Since it would be not only enormously expensive but seemingly meaningless to 
homogenize large core regions on a very coarse grid, this scheme was limited to only a 
few coarse-grid levels, leaving again not a small number of equations to solve for on the 
coarsest grid.       
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1.3 Thesis Structure 
 
The mathematical model of reactor kinetics is given in Chapter 2, with a brief 
introduction to the neutron transport theory and its diffusion approximation. In Chapter 3, 
an overview of various diffusion methods for reactor kinetics is presented. Numerical 
solution of algebraic systems is provided in Chapter 4, with a review of the basic direct 
and iterative methods. An introduction to multigrid methods for solving algebraic 
systems arising from discretization of partial differential equations is given in Chapter 5. 
In Chapter 6, the specific issues of multigrid application in reactor physics are addressed, 
and as a result, a multigrid solver for the neutron kinetics system is constructed. A 
numerical study of our multigrid solver is presented in Chapter 7, including the simplest 
cases of the one- and two-group neutronics model in a slab reactor, and a more general 
three-dimensional multigroup kinetics problem in the McMaster Nuclear Reactor core as 
well. Finally, conclusions and considerations for future research are offered in Chapter 8.          
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Chapter 2 
 

REACTOR PHYSICS 
 

The central problem of reactor physics is to determine neutron distribution in space, 
energy and time throughout a reactor core, for it is the neutron distribution that 
determines the rate at which various neutron-nuclear reactions will take place at any 
given time and location within the reactor. Transport theory provides the fundamental 
and most exact description of the neutron behaviour in a nuclear reactor, but it is 
extremely difficult to solve the neutron transport equation for any but the simplest 
modelled problems. Diffusion theory, in which the neutron motion is treated as a 
diffusion process of a gas, simplifies the transport equation to the neutron diffusion 
equation and is usually found adequate for many practical reactor applications. 
  
2.1 Transport Theory  
 
2.1.1 The Neutron Transport Equation 
 
To determine the distribution of neutrons in a nuclear reactor core requires accounting for 
their motion about the core and their interactions with medium materials within the core.  
 
 A neutron at any time is specified by its position rv  and its velocity vr  = v Ω̂  
(Fig.2.1.1); here, v = | vr | is the speed and Ω̂  is the unit vector in the direction of motion 
of the neutron. It is more frequent to use the kinetic energy of the neutron, E = ½mv2, 
instead of its speed v. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

vr

dV 
rv

z 

x 

y 

Figure 2.1.1. The position and velocity of a neutron 

Ω̂d
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The fundamental quantity that describes the neutron population is the angular 
neutron density n( ,rv E, ,Ω̂ t), which is defined in such a way that 

  
 n( ,rv E, ,Ω̂ t)dVdE Ω̂d   is  the number of neutrons at time t in volume element dV  
   surrounding the point rv  and in energy band dE about E,  
   moving in direction Ω̂  in solid angle Ω̂d .  
 
In most cases of interest, the neutron population is so large (typically, ~108 neutrons/cm3) 
that the neutrons can be treated as a continuum. At the same time, the density of neutrons 
is sufficiently low compared to the atomic density of the medium (~1022 atoms/cm3) that 
neutron-neutron interactions can be ignored.  
 
 While migrating in a reactor core, the neutrons interact with nuclei of the core 
materials until they are either absorbed or leak out. The neutron-nuclear interactions are 
often characterized by the macroscopic cross section Σα, which specifies the probability 
per unit distance of travel that a neutron will suffer a collision leading to a reaction of 
type α (‘α’ can be absorption ‘a’, fission ‘f’, scattering ‘s’, etc.). Knowing the neutron 
distribution and the macroscopic cross section, one is able to compute the reaction rate 
 
  vΣα( ,rv E)n( ,rv E, ,Ω̂ t)dVdE Ω̂d , which is the number of interactions of type α per 
  unit time with the material nuclei in dVdE Ω̂d   
  at time t that the neutrons at ( ,rv E, ,Ω̂ t) undergo. 
 
 The neutron transport equation [Duderstadt & Hamilton (1976), Henri (1980)] is 
essentially an expression of conservation for the field variable n( ,rv E, ,Ω̂ t) - the neutron 
density - within an arbitrary volume V about rv ; that is, the time rate of change of the 
neutron density equals to the net sum of all local sources and sinks of neutrons within 
volume V 
 

    
t
n
∂
∂  =  −∇⋅ vnΩ̂  −  vΣt( ,rv E)n( ,rv E, ,Ω̂ t)  

 + ∫ ∫
π

∞

Ω′′Ω→Ω′→′Σ′′Ω′
4 0

s )]t,ˆ,E,r(n)ˆˆ,EE,r()E(v[Edˆd
rr  + s( ,rv E, ,Ω̂ t) (2.1.1) 

 
where   
 
 s( ,rv E, ,Ω̂ t)  - any neutron sources, including fissions; 
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 )ˆˆ,EE,r(s Ω→Ω′→′Σ
r   - the scattering macroscopic cross-section, characterizing  

    the probability that the neutron will scatter from (E′,Ω′ˆ )  
    to (E, Ω̂ );  
 
 Σt( ,rv E)  - the total macroscopic cross-section, characterizing the probability that the  
  neutron will suffer a collision at point rv .  
 
It is customary to define the product vn( ,rv E, ,Ω̂ t) as a new quantity ϕ( ,rv E, ,Ω̂ t), referred 
to as the angular neutron flux, and equation (2.1.1) can be rewritten in term of this 
angular flux as 

 

  
tv

1
∂
ϕ∂  =  −Ω̂ ⋅∇ϕ  −  vΣt( ,rv E)ϕ( ,rv E, ,Ω̂ t)       

 + [ ]∫ ∫
π

∞

Ω′′ϕΩ→Ω′→′Σ′Ω′
4 0

s )t,ˆ,E,r()ˆˆ,EE,r(Edˆd
rr + s( ,rv E, ,Ω̂ t)   (2.1.2) 

 
 To complete the mathematical description of the neutron transport problem we 
must provide appropriate initial and boundary conditions for the angular flux. The initial 
condition is usually chosen as 
 

  ϕ( ,rv E, ,Ω̂ 0) = ϕ0( ,rv E, Ω̂ ),    for all ,rv E, Ω̂     (2.1.3) 
 
The boundary condition will depend on the particular problem of interest. The vacuum 
boundary condition is the most common in transport problems, with the assumption that 
if a neutron leaks out it cannot return into the system, i.e. 
 

  ϕ( ,rs
v E, ,Ω̂ t) = 0, if   Ω̂ ⋅ sê < 0     (2.1.4) 

 
where sr

v  denotes a point on the boundary surface S. 
 
 The source term s( ,rv E, ,Ω̂ t) can be separated into a fission source term and a term 
for any external sources. The fission source term, in turn, is composed of prompt 
neutrons (which appear almost instantaneously following the fission event) and delayed 
neutrons (which appear with an appreciable time delay from the subsequent decay of 
certain fission products - the delayed neutron precursors). If we assume that the fission 
neutrons are emitted isotropically, then 
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  s( ,rv E, ,Ω̂ t) = 
π

χ
4

)E( (1-β) )]t,ˆ,E,r()E,r()E([Edˆd
4 0

f∫ ∫
π

∞

Ω′′ϕ′Σ′ν′Ω′
rr  

   + ∑
= π

χ
λ

N

1i

d
i

ii 4
)E(

)t,r(C  + sext( ,rv E, ,Ω̂ t) (2.1.5) 

 
where  
 
 Σf( ,rv E)  - the fission macroscopic cross-section, characterizing the probability that  
  the neutron of energy E will induce a fission event at point rv ;  
 
 ν(E)  - the average number of neutrons produced by a fission event induced by a  
  neutron of energy E;  
 
 χ(E)  - the spectrum of prompt fission neutrons;  
 
 β  - the total fraction of all delayed neutrons emitted by the decay of their precursors;  
 
 Ci( ,rv t) and λi  - the concentration and decay constant of the delayed neutron   
  precursors in group i (i = 1,..,N);  
 
  )E(d

iχ - the spectrum of delayed neutrons for each precursor group.  
 
The concentration of each group of delayed precursors satisfies the equation: 
 

t∂
∂ Ci( ,rv t)  =  −λiCi( ,rv t)  +  βi [ ]∫ ∫

π

∞

Ω′′ϕ′Σ′νΩ′
4 0

f )t,ˆ,E,r()E,r()E('dEˆd
rr ,   i = 1,..,N 

(2.1.6) 
 
where βi is the fraction of the fission neutrons produced from the decay of precursors in 

group i, and β = ∑
=

β
N

1i
i .  

 
 The neutron transport equation (2.1.3) provides an exact description of the 
neutron population in a nuclear reactor, provided that appropriate cross-section data are 
supplied. Its solution would yield the angular flux ϕ( ,rv E, ,Ω̂ t) as a function of position, 
energy, direction and time. Unfortunately, even numerical solutions of this equation in its 
general form are extremely difficult for any practical problems of nuclear reactor 
analysis. Therefore, suitable approximations to the transport equation are required to 
reduce it to a more manageable form. 
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2.1.2 Methods for Solution of the Neutron Transport Equation 
 
The neutron transport equation (2.1.2) is rather simple to derive, but it is extremely 
difficult to be solved for any but the simplest modelled problems [Lewis & Miler (1993), 
Adams & Larsen (2002)]. For any realistic problems of nuclear reactor analysis, attempts to 
solve the neutron transport equation analytically are impossible and even the numerical 
solution is not easy either.            
 
 To numerically solve the neutron transport equation, one first has to convert it 
into a system of algebraic equations that can then be coded and solved by using a 
computer. This is accomplished by discretizing each of the variables in the transport 
equation, i.e. by replacing functions of continuous variables by a discrete set of values at 
a discrete set of points. The derivatives and integrals appearing in the equation must also 
be replaced by a corresponding discrete representation. 
 
 Like any integral/differential equations, the neutron transport equation can be 
discretized by using either discrete ordinates methods or function expansions [Duderstadt & 
Hamilton (1976)]. In the discrete ordinate approach, the unknown function f(x) is 
represented only by its values at a discrete set of points {xi} of the independent variable x 
as 
 

 f(x) → {f(xi)} ≡ {fi | i=1,..,N}     (2.1.7) 
 
Derivatives and integrals are approximated by finite differences and sums, respectively. 
By that way, one would arrive at an algebraic system of N discretized equations for N 
unknowns {fi}.    
 
 In the function expansion approach, the unknown function f(x) is expanded in a 
series of known functions ψi(x) - the expansion modes – as 
 

 f(x)  ≅ ∑
=

ψ
N

1i
ii )x(f        (2.1.8) 

 
That is, once again, the function f(x) is represented by a set {fi}- the expansion 
coefficients. One now can substitute the expansion (2.1.8) into the original equation and 
use one of numerous techniques to obtain a set of algebraic equations for the expansion 
coefficients {fi}.      
 
 The primary variable in the transport equation that distinguishes it from its 
approximations is the directional variable Ω̂ , which can be discretized by using either of 
the two aforementioned methods. In the discrete ordinate approach, Ω̂  is represented by 
a discrete set of directions  



Nguyen Thai Sinh PhD Thesis 
McMaster - Engineering Physics Chapter 2. Reactor Physics 

 11

  Ω̂  ≡ { nΩ̂ | n=1,..,N}  
 
and the flux is represented by only its values at each of these mesh directions  
 
  ϕ( Ω̂ ) = {ϕ( nΩ̂ )} ≡ {ϕn | n=1,..,N}.  
 
This approach reduces the transport equation to a coupled set of N equations, commonly 
referred to as the Sn equations 
 

 
tv

1 n

∂
ϕ∂  =  − nΩ̂ ⋅∇ϕn − vΣtϕn( ,rv E, t)        

 + ∑∫
=

∞

′ϕΩ→Ω→′Σ′
N

1'n 0
nn'ns )]t,E,r()ˆˆ,EE,r([Ed
rr  +  sn( ,rv E, t),  n = 1,..,N  

        (2.1.9) 
 
An alternative way to discretize the angular variable is to use the function expansion 
method. In general, the angular flux, and other angular quantities as well, is expanded in 
a finite series of spherical harmonics Yℓm( Ω̂ ) as: 
  

ϕ( ,rv E, ,Ω̂ t) = ∑ ∑
=

+

−=

Ωϕ
N

0 m
mm )ˆ(Y)t,E,r(

l

l

l
ll

r
    (2.1.10) 

 
By substituting the expansion (2.1.10) into the original equation, multiplying by modes of 
different order Yℓ′m′ ( Ω̂ ), and integrating over the angular variable, one then can use 
orthogonality to obtain a coupled set of equations for the expansion coefficients ϕℓm. This 
set of equations is known as the PN equations. If the expansion in spherical harmonics is 
truncated after two terms, i.e. N = 1, the expansion for the angular flux takes form: 
 

ϕ( ,rv E, ,Ω̂ t)  ≅ 
π4
1
ϕ0( ,rv E, t) + 

π4
3

1ϕ
r ( ,rv E, t)⋅ Ω̂    (2.1.11) 

 
We will find shortly that this P1 approximation to the angular flux is closely related to 
neutron diffusion theory. The higher order PN equations are rarely used in nuclear reactor 
analysis, rather one usually relies on SN equations if a more detailed treatment of the 
neutron directional dependence is required. 
 
 Other independent variables can be discretized in very similar techniques. 
However, the discrete ordinate approach is most common for the energy variable E, 
resulting in a set of multigroup equations. Since the multigroup derivation is the same for 
both transport and diffusion equations, we will perform it in the next section for the latter.   
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 In practice, almost all transport problem calculations are static calculations, i.e. all 
quantities in the transport equations are considered time-independent. Furthermore, the 
geometry of the transport problem is usually simplified by considering only planar or 
spherical symmetry (i.e. 1D geometry). In fact, even after a number of such 
approximations, the transport equation in a rather simplified form (i.e. steady-state, 1D 
but directionally-dependent) can still only be solved with great effort. 
           
2.2 Diffusion Theory 
 
2.2.1 Diffusion Approximation 
 
It is apparent that, for most reactor calculations, the details of the angular dependence of 
the flux are not necessary as we only need to know the angle-integrated (scalar) neutron 
flux, which is defined by 
 
  φ( ,rv E, t)  = ∫

π

ΩΩϕ
4

ˆd)t,ˆ,E,r(r       (2.2.1) 

 
since knowing the flux φ( ,rv E, t) is sufficient to calculate the rate of almost all neutron-
nuclear reactions that occur in a nuclear reactor. By integrating the transport equation 
over the solid angle Ω̂ , we can obtain an equation for the flux φ( ,rv E, t) as 
 

tv
1
∂
φ∂ = −∇⋅ J

r
 − Σt( ,rv E)φ( ,rv E, t)  + ∫

∞

′′φ→′Σ
0

s Ed)t,E,r()EE,r(
rr  +  S( ,rv E, t)     (2.2.2) 

 
where  
 
 )t,E,r(J

rr
 ≡ ∫

π

ΩΩϕΩ
4

ˆd)t,ˆ,E,r(ˆ r , which is referred to as the neutron current 

 
 )EE,r(s →′Σ

r  ≡ ∫
π

ΩΩ→Ω′→′Σ
4

s
ˆd)ˆˆ,EE,r(r  

 
 S( ,rv E, t)  ≡ ∫

π

ΩΩ
4

ˆd)t,ˆ,E,r(s r   

 
Equation (2.2.2) is known as the neutron continuity equation and it is still quite exact 
since no approximations have been introduced. Unfortunately, it contains two unknowns, 
the flux φ( ,rv E,t) and the current )t,E,r(J

rr
, which cannot be related to each other in a 

general and exact manner (although they are both expressed in terms of an angular 
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integral of the angular flux). One must resort to an approximate relationship between 
them by using the so called Fick’s law: for the neutron treated as a gas diffusing in a 
reactor core, its current density is proportional to the negative spatial gradient of its 
density (i.e. the scalar flux) 
 

  )t,E,r(J
rr

 = −D( ,rv E)∇φ( ,rv E,t)      (2.2.3) 
 
where the constant of proportionality D( ,rv E) is known as the diffusion coefficient. There 
exist various methods for finding this diffusion coefficient. In the following, the P1 
approximation [Duderstadt & Hamilton (1976), Henry (1980)] is used. 
   
First, we multiply the transport equation by Ω̂  and integrate it over the solid angle to 
arrive at 
 

  
t
J

v
1
∂
∂
r

 =  −∇⋅ ∫
π

ΩΩϕΩΩ
4

ˆd)t,ˆ,E,r(ˆˆ r  − Σt( ,rv E) J
r

( ,rv E, t)  

+ ∫
∞

′′→′Σ
0

s Ed)t,E,r(J)EE,r(
1

rrr  + 1S
r

( ,rv E, t)  (2.2.4) 

 
where 
 
 1S

r
( ,rv E, t)  ≡ ∫

π

ΩΩΩ
4

ˆdˆ)t,ˆ,E,r(s r  

 
 )EE,r(

1s →′Σ
r  ≡ ∫

π

ΩΩ⋅ΩΩ→Ω→Σ
4

s
ˆd)ˆ'ˆ)(ˆ'ˆ,E'E(  

 
Next, recall the P1-approximation (2.1.11) that treats the angular flux as linearly 
anisotropic with the zero and first moments replaced by the flux and current, respectively 
 

 ϕ( ,rv E, ,Ω̂ t)  ≅ 
π4
1
φ( ,rv E, t) + 

π4
3 J
r

( ,rv E, t)⋅ Ω̂  (2.2.5) 

 
With this approximation to the angular flux, it is easily verified that 
 

 ∫
π

ΩΩϕ
4

ˆd)t,ˆ,E,r(r  = 
π4
1
φ( ,rv E, t) ∫

π

Ω
4

ˆd  + 
π4
3 J
r

( ,rv E, t)⋅ ∫
π

ΩΩ
4

ˆdˆ    

  =  φ( ,rv E, t)   
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and 
 

 ∫
π

ΩΩΩϕ
4

ˆdˆ)t,ˆ,E,r(r  = 
π4
1
φ( ,rv E, t) ∫

π

ΩΩ
4

ˆdˆ  + 
π4
3 J
r

( ,rv E, t)⋅ ∫
π

ΩΩΩ
4

ˆdˆˆ   

  = J
r

( ,rv E, t). 
 
Also,  
 

 ∫
π

ΩΩϕΩΩ
4

ˆd)t,ˆ,E,r(ˆˆ r  = 
π4
1
φ( ,rv E,t) ∫

π

ΩΩΩ
4

ˆdˆˆ  + 
π4
3 J
r

( ,rv E, t)⋅ ∫
π

ΩΩΩΩ
4

ˆdˆˆˆ  

   = 
3
1
φ( ,rv E, t)         (2.2.6) 

 
(We note that  ∫

π

Ω
4

ˆd  = 4π,  

 

  ∫
π

ΩΩΩ
4

ˆdˆˆ  = 
3

4π ,   

 
and  
 
  ∫

π

ΩΩ
4

ˆdˆ   = ∫
π

ΩΩΩΩ
4

ˆdˆˆˆ  = 0). 

 
Further, we introduce two more approximations. The first approximation is the 
assumption that the neutron source is isotropic, which implies 
  

 1S
r

( ,rv E, t)  ≡ ∫
π

ΩΩΩ
4

ˆdˆ)t,ˆ,E,r(s r   = 
π4
1 S( ,rv E, t) ∫

π

ΩΩ
4

ˆdˆ   =  0.    

 
This approximation is usually of reasonable validity in nuclear reactor studies since it is 
the fission neutrons that mostly contribute to the neutron source. The other approximation 
is the assumption that the rate of time variation of the current is much slower than the 
collision frequency, i.e.  
 

  
t

|J|
|J|

1
∂

∂
r

r << vΣt  
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Since vΣt is typically of order 105 sec-1 or larger, only an extremely rapid time variation 
of the current would invalidate this assumption. Such rapid changes are very rarely 
encountered in reactor dynamics. Consequently, the time derivative term in equation 
(2.2.4) can be neglected in comparison with the remaining terms, that is 
  

t
J

v
1
∂
∂
r

 ≅ 0           

 
Hence we can rewrite equation (2.2.4) as 
 

 J
r

( ,rv E, t)  =  −




















→Σ

−Σ
∫
∞

)t,'E,r(J

'dE)t,'E,r(J)E'E,r(
)E,r(

3
1 0

s

t

1

r

rr

r
∇φ( ,rv E, t)  (2.2.7) 

 
Comparing (2.2.7) with the Fick’s law (2.2.3), we can find the diffusion coefficient  
 

 D( ,rv E)  =  




















→Σ

−Σ
∫
∞

)t,'E,r(J

'dE)t,'E,r(J)E'E,r(
)E,r(

3
1 0

s

t

1

r

rr

r  

 
If we neglect the anisotropic contribution to energy transfer in a scattering collision by 
setting  
 
  )EE(

1s →′Σ  = )E(
1sΣ δ(E′ − E)  

 
so that 
 

  ∫
∞

′′→′Σ
0

s Ed)t,E,r(J)EE(
1

r  =  0µ Σs(E)J( ,rv E, t),   

 
then we find a natural generalization of the diffusion coefficient: 

 

D( ,rv E)  = 
)]E,r()E,r([3

1

s0t
rr

Σµ−Σ
 = 

)E,r(3
1

tr
r

Σ
    (2.2.8) 

 
where  
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 0µ = 'ˆˆ Ω⋅Ω  ≡ θcos    - the average scattering angle cosine;  
 
 Σtr( ,rv E) ≡ Σt( ,rv E) − 0µ Σs( ,rv E)  - the macroscopic transport cross section.   
 
Combining the continuity equation (2.2.2) and the diffusion approximation (2.2.3), we 
arrive at the neutron diffusion equation for the scalar neutron flux 
 

tv
1
∂
φ∂  = ∇⋅D( ,rv E)∇φ − Σt( ,rv E)φ( ,rv E, t) + ∫

∞

′′φ→′Σ
0

s Ed)t,E,r()EE,r(
rr + S( ,rv E, t) 

(2.2.9) 
 
Often, it is convenient to write these two equations separately in a sense that equation 
(2.2.2) is an exact equation and only equation (2.2.3) is an approximation.  
 
 The appropriate initial condition for the diffusion equation can be obtained by 
integrating the transport condition over angle as 
 

φ( ,rv E, 0)  =  φ0( ,rv E)      (2.2.10) 
 
 There are several types of boundary conditions, depending on the particular 
physical problem of interest. At an interface between two regions of differing cross 
sections, by integrating the transport condition of the continuity of the angular flux, one 
obtains the continuity of the flux and the current across the interface (the interface 
boundary conditions) as 
 

φ1( ,rs
v E, t)  =  φ2( ,rs

v E, t)      (2.2.11)   
 

1J
r

( ,rs
v E, t)  = 2J

r
( ,rs
v E, t)      (2.2.12a) 

or 

D1( ,rs
v E )∇φ1( ,rs

v E, t)  =  D2( ,rs
v E )∇φ2( ,rs

v E, t)   (2.2.12b) 
 
However, the diffusion theory can only approximate the vacuum boundary condition by 
setting to zero all incoming neutrons, that is 
 

∫
−π

Ω⋅ΩΩϕ
2

s
ˆdêˆ)t,ˆ,E,r(r   ≅  

4
1
φ( ,rs
v E, t) + 

2
D

sê ⋅∇φ( ,rs
v E, t) = 0  (2.2.13) 
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It is convenient to consider this boundary condition applied to 1D geometry with the 
boundary at x = xs. If the flux is assumed to decrease linearly beyond the boundary, then 
it would vanish at some point sx~ > xs  
  

φ( sx~ ) = 0, sx~ ≡ xs + z0 = xs + 2D     (2.2.14)  
 
where sx~  is referred to as the extrapolated boundary. More advanced transport theory 
calculations of the extrapolated boundary indicate that one should choose the 
extrapolated length z0 for plane geometry equal to 
  

z0  =  
tr

7104.0
Σ

        (2.2.15) 

 
 The source term in the diffusion equation in terms of the neutron flux can be 
obtained by integrating equation (2.1.5) over the angle to get  
 

 S ( ,rv E, t)  =  χ(E)(1−β) Ed)t,E,r()E,r()E(
0

f ′′φ′Σ′ν∫
∞ rr   

+ ∑
=

χλ
N

1i

d
iii )E()t,r(C  + S0( ,rv E, t)  (2.2.16)  

 
And the precursor equations can be written in terms of the flux as well: 
 

 
t∂
∂ Ci( ,rv t)  =  −λiCi( ,rv t) + βi Ed)t,E,r()E,r()E(

0
f ′′φ′Σ′ν∫

∞ rr     (2.2.17) 

 
2.2.2 The Multigroup Diffusion Equations 
 
It is known that the neutron-nuclear cross sections present in the diffusion equation 
depend rather sensitively on the incident neutron energy which spans all over the range 
from 107eV (of the fast neutrons) down to the 10-3eV (of the thermal neutrons) [Duderstadt 
& Hamilton (1976)]. It is customary to use the discrete ordinate method for discretizing the 
energy dependence of the flux. Thus, the neutron energy range is divided into a number 
of energy intervals or groups  
 

E = {Eg | g = 0,..,G},  0 < EG < … < E0 < ∞   (2.2.18)  
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The continuous energy-dependent flux φ( ,rv E, t) is integrated over the energies of each 
group to form the multigroup fluxes, which represent the total flux of all neutrons with 
energies E in the group Eg < E < Eg-1 
 

φg( ,rv t) = ∫
−

φ
1g

g

E

E

dE)t,E,r(
r       (2.2.19)   

 
If the diffusion equation is integrated over a given group, the multigroup diffusion 
equations are obtained 
 

tv
1 g

g ∂

φ∂
 =  ∇⋅Dg( rv )∇φg( ,rv t)  − Σtg( rv )φg( ,rv t)  + ∑

=

φΣ
G

1'g
'gg'sg + Sg( ,rv t),   g = 1,..,G 

(2.2.20a) 
 
where 
 

 Sg  =  (1−β) p
gχ  ∑

=

φΣν
G

1'g
'g'fg + ∑

=

χλ
N

1i

d
g,iiiC + 0

gS ,      

 
as well as the precursor equations  

 

t∂
∂ Ci( ,rv t) = −λiCi( ,rv t) + βi∑

=

φΣν
G

1'g
'g'fg , i = 1,..,N  (2.2.20b) 

 
The group constants appearing in the multigroup equations are defined as  
 

 Σtg  ≡ 
g

1
φ ∫

−

φΣ
1g

g

E

E
t dE)t,E,r()E( r        

 

 
gv

1  ≡ 
g

1
φ ∫

−

φ
1g

g

E

E

dE)t,E,r(
)E(v

1 r        

 

 Σsg′g  ≡ 
g

1
φ

[ ]∫ ∫
− −

φ→Σ
1g

g

1'g

'g

E

E

E

E
s )t,'E,r()E'E('dEdE r ,   i.e. Σs(g′→ g)     
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 Dg  ≡ 

∫

∫
−

−

φ∇

φ∇

1g

g

1g

g

E

E

E

E

dE)t,E,r(

dE)t,E,r()E(D

r

r

        

 

 )(
g
⋅χ  ≡ ∫

−

⋅χ
1g

g

E

E

)( dE)E( , for both prompt and delayed neutron spectrums       

 

 νΣfg  ≡ 
g

1
φ ∫

−

φΣν
1g

g

E

E
f dE)t,E,r()E()E( r         

 
Sometimes, it is convenient to write the multigroup diffusion equations in matrix notation 
for the group fluxes [Φ] as 
 

[V-1]
t∂
∂ [Φ]  =  [Fp−M][Φ]  +  ∑

=

χλ
N

1i

d
iii ])[t,r(C

r
  +  [S0]   (2.2.21a) 

 

t∂
∂ Ci( ,r

r
t)  =  −λiCi( ,r

r
t)  + βi[F][Φ],   i = 1,..,N  (2.2.21b) 

 
where 
 

 [Φ] ≡ 
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  Within the diffusion approximation, the multigroup diffusion equations are still 
quite exact, but the group constants present in these equations are yet to be determined. It 
appears that these group constants depend on the group fluxes φg( ,rv t) which have yet to 
be determined. They are rigorously constants only when the energy dependence of the 
flux is separable such that 
 

φ( ,rv E, t)  =  ψ( ,rv t)η(E)      (2.2.22) 
 
However, this is generally not the case in practical reactor calculations. In fact, for an 
extremely fine group structure (G ~ 1000, for example), the cross sections and hence the 
flux tend to be smoothly varying over each group. In this case, such a separable 
approximation to the flux would be acceptable. In practical reactor calculations, one 
usually works with from 2-4 (for thermal reactors) to 15-20 groups (for fast reactors) 
[Henry (1975)]. Such few group calculations can only be effective with reasonably accurate 
estimates of the group constants. The most common approach is to actually perform two 
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multigroup calculations. In the first of these calculations, the spatial and time dependence 
is ignored (or very crudely approximated), and a very finely structured multigroup 
calculation is performed to calculate the intragroup fluxes. The group constants for this 
fine spectrum calculation are frequently to be just tabulated cross section data averaged 
over each of the fine groups. These intragroup fluxes are then used to calculate the group 
constants for a coarse group calculation. This scheme of first calculating a neutron 
spectrum and then collapsing the cross section data over this spectrum to generate few 
group constants is the most common method in use today.  
 
 Since our work is concentrated in numerical solution of the diffusion equations, 
we will not involve in a detailed description of mutigroup constant generation. Here, we 
assume that the appropriate group constants are provided initially in space but subject to 
adjustment in time for a given reactor core.  
            

* 
*       * 

 
In conclusion to this chapter, we note that although the neutron transport equation 
provides the most exact mathematical model of neutron behaviour in a nuclear reactor, its 
solution is prohibitively costly even on a modern computer. The neutron diffusion 
equation, an approximation to the neutron transport equation, is more computationally 
manageable but still provides adequately reliable results for most practical reactor 
calculations. Despite being much simpler than their transport counterpart, the multigroup 
neutron diffusion equations still require significant efforts for their solution, especially, in 
space-time reactor calculations. With this to be kept in mind, we will proceed to review 
the diffusion methods for solving the neutron kinetics problem in the next chapter.   
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Chapter 3 
 

DIFFUSION METHODS FOR REACTOR KINETICS 
  

Reactor kinetics is an area of reactor physics that deals with time behaviour of the 
neutron population in a nuclear reactor. Although neutron transport theory provides the 
most exact description of the neutron behaviour in a reactor, modeling the neutron 
kinetics in the framework of the transport theory [Chen (1989)] would be prohibitively 
expensive. The group diffusion theory, an approximation to the neutron transport process, 
has been found to be adequate for many reactor analysis problems of practical interest. 
However, solution of the multigroup diffusion equations, though simpler than the 
transport equation, is not easy either. 
 
 It is commonly agreed that the few group diffusion equations (of 2-4 energy 
groups for thermal reactors and 15-20 for fast reactors) with six precursor equations is an 
adequate model of the neutron kinetics in a nuclear reactor [Henry (1975)]. In order to solve 
for the neutron group fluxes in space and time, the system of partial differential equations 
for the group fluxes and precursor concentrations must be discretized in space and time 
by using either discrete ordinate or function expansion method (as done in derivation of 
the group diffusion equations from the transport theory in Chapter 2).           
 
 In this chapter, a review of the most popular methods used in practice for the 
numerical solution of neutron kinetics equations will be given. It is customary to treat the 
space problem of the kinetics equations first, and then the resulting set of spatially-
coupled time-dependent equations is integrated over the time domain. 
          
3.1 Spatial Treatment of Neutron Kinetics Equations 
 
3.1.1 The Point Kinetics Model 
 
The simplest model of reactor kinetics is the point kinetics, in which both energy and 
spatial effects of the neutron population are neglected during a transient [Ash (1979)]. By 
assuming a single energy group of all neutrons and a fixed shape of the flux within a 
reactor core, one can easily derive the point kinetics equations from an exact equation of 
neutron balance (either the continuity equation or even the transport equation).   
 
 The one-speed assumption reduces the neutron balance equation to: 
 

tv
1
∂
φ∂   =  −∇⋅ J

r
( ,rv t) − Σaφ( ,rv t) + (1−β)νΣfφ( ,rv t) + ∑

=

λ
N

1i
ii )t,r(C r  +  S0( ,rv t)       (3.1.1a) 

 
where Σa ≡ Σt−Σs is the absorption cross section. And the precursor equations become 
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t∂
∂ Ci  =  −λiCi( ,rv t) + βiνΣfφ( ,rv t), i = 1,..,N   (3.1.1b) 

 
The delayed neutron fractions βi in the one-speed equations are not of the physical value 
as in the energy-dependent equations but rather of the effective value (to account for the 
fact that the delayed neutrons are born with lower energies than the prompt fission 
neutrons).    
 
 Within the fixed shape assumption, the flux can be split into a purely time-
dependent amplitude function p(t) and a fixed shape function ψ( r

r
) 

 
φ( ,r
r

 t)  =  p(t)ψ( r
r

)       (3.1.2) 
 
Here, the shape ψ( rr ) is set equal to the initial flux assuming a steady state for t ≤ 0: 
 
  ψ( r

r
)  =  φ( ,r

r
0)  =  φ0( r

r
) 

 
The initial condition for the amplitude p(t) then simply is 
 
  p(0)  =  1 
 
Substituting the flux expression (3.1.2) into the one-speed equations and integrating them 
with respect to space over the whole core volume Vcore, one arrives at a set of the so 
called point kinetics equations   

 

dt
)t(dp  = 

Λ
β−ρ p(t) + ∑

=

λ
N

1i
ii )t(c  + so(t)     (3.1.3a) 

 

dt
)t(dci  =  −λici(t) + 

Λ
β i p(t), i = 1,..,N    (3.1.3b) 

 
where 

 

ρ ≡ 1 − 
∫∫∫

∫∫∫
φΣ+⋅∇

φΣν

Vcore

3
a

Vcore

3
f

rd)]t,r()t,r(J[

rd)t,r(

rrr

r

 - referred to as the reactivity 
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3
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1
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- the neutron generation time 
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 - the weighted precursor concentration in group i 

 

so(t) ≡ 

∫∫∫

∫∫∫

ψ
Vcore

3

3

Vcore
ext

rd)r(
v
1

rd)t,r(S

r

r

 - the weighted extra source of neutrons  

 
Solution of this set of (N+1) ordinary differential equations yields the neutron population 
amplitude p(t) and the weighted precursor concentrations ci(t) in the reactor.  
 

The fact that the global parameters ρ, β, and Λ are generally functions of time 
makes it difficult to solve the point kinetics equations analytically (except for only a few 
special cases, such as a step or ramp insertion of reactivity with one-group representation 
of all delayed neutrons). In practice, these point kinetics parameters are usually 
determined experimentally rather than by using the above integral expressions. As it is 
usually adequate to have only six groups (N = 6) to represent the delayed neutrons, a set 
of the seven point kinetics equations can be solved numerically at the least cost compared 
with any other spatial method [Blanchon et al. (1983), Sanchez (1989), Planchard (1991), Kinard & 
Allen (2004)]. 
 
 As a rule, the point kinetics model can only be used for small tightly-coupled 
reactors or very slow transients in a reactor near its criticality. In fact, the point kinetics 
results are not only inaccurate in important cases but also generally non-conservative [Ott 
& Neuhold (1985)]. The reason is that the neglect of the flux shape variation during a 
transient will lead to an underestimation of the value of positive reactivity insertion, 
which may cause or intensify accidents, and, on contrary, to an overestimation of the 
value of negative counteracting reactivity. The fixed flux shape assumption, which the 
point kinetics model is based on, will obviously be invalid in many cases of interest. For 
example, in case a fuel assembly is dropped into a near critical core or a control rod of 
the highest reactivity worth is ejected (as usually postulated for reactor accident analysis), 
a strong localized perturbation in the core composition would certainly cause a 
considerable deviation from the spatial shape and would invalidate the point kinetics 
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model. Furthermore power reactor cores are quite large so that the neutron behaviour in 
such cores tends to be quite loosely coupled from point to point. This means that a 
change in the flux or power at one point in the core will not be felt at other points after an 
appreciable time delay. This implies a break down in the point kinetics model that 
characterizes every point in the reactor by the same time amplitude [Duderstadt & Hamilton 
(1976)]. 
 
 The analyses of many reactor dynamics problems actually require a solution 
utilizing space-energy dependent neutron kinetics. As a general rule, the point kinetics 
model is incapable of predicting the detailed behaviour of reactor transients either 
initiated by rapid local changes in reactivity or occurring in large power reactors. In these 
instances, one must take explicit account of the space-energy dependence of the neutron 
flux [Weston & Stacey (1970), Buckner & Stewart (1976), Asahi & Okumura (2001)]. 
 
3.1.2 The Flux Factorization Approach 
 
The flux factorization approach [Ott & Meneley (1969)] is formally closest to the point 
kinetics method since it factorizes the space-time dependent flux into a purely time-
dependent amplitude p(t) and a weakly time-dependent shape [Ψ]        

 
[Φ]  =  p(t)[Ψ],  [Ψ]  ≡ {ψg( ,rr t) | g = 1,..,G}   (3.1.4.)  

 
Unlike the point kinetics, the flux factorization allows for the shape function to vary with 
time; therefore, it is formally an exact method. Since the shape function normally varies 
much more slowly with time than the amplitude, the overall computation time can be 
significantly reduced by choosing much larger time intervals between shape calculations 
than between amplitude calculations. Although the amplitude must be recomputed more 
frequently, its computation is relatively inexpensive. 
 
 To derive an equation for the amplitude p(t), an arbitrary set of time-independent 
weighting functions [W] ≡ {wg( r

r
)} is chosen and multiplied with the original kinetics 

equations before integration over space. To make the factorization unique, and to 
facilitate the derivation as well, the constraint condition for the variation of the flux shape 
is imposed such that 
 

 〈[W],[V-1][Ψ]〉  =  const      (3.1.5) 
 
Here, 〈[W],[V-1][Ψ]〉  is the inner product of two vectors [W] and [V-1][Ψ], which may 
be explicitly expressed as 
 

 〈[W],[V-1][Ψ]〉  ≡ ∑ ∫∫∫
=

ψG

1g Vcore

3

g

g
g rd

v
)t,r(

)r(w
r
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The weighting functions are often chosen to be the solution [ ∗Φ 0 ] of the static adjoint 
system of the multigroup diffusion equations corresponding to the initial steady state.  
 
 Substituting the flux expansion (3.1.4) into the original kinetics equations (2.2.21) 
and taking the inner product with the weighting vector [W], one obtains a set of ordinary 
differential equations, quite similar to the point kinetics system (3.1.3), for the flux 
amplitude 
        

dt
d p(t) = 

)t(
)t()t(

Λ
β−ρ p(t)  + ∑

=

ζλ
N

1i
ii )t(  + ξ(t)   (3.1.6a) 

 

dt
d
ζi(t) = −λiζi(t) +  

)t(
)t(i

Λ
β p(t),  i = 1,..,N   (3.1.6b) 

 
where 
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d
ii
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1
ext
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dP
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d
ii ]F][[  
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]][FF[],W[
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dP Ψ+

Ψ
 

 iβ (t) ≡ 
]][FF[],W[

]][F][[],W[

dP

d
ii

Ψ+

Ψχβ
,  β (t) ≡ ∑

=

β
N

1i
i )t(  

 
 To obtain an equation for the shape function, one simply substitutes the flux 
expansion (3.1.4) into the original flux equation (2.2.21a) and divides both sides by p(t)  
 

 [V-1]
t∂
∂ [Ψ]  +  [V-1][Ψ]

)t(p
)t(p&   =   

[Fp−M][Ψ] + 
)t(p

1 ∑
=

χλ
N

1i

d
iii ])[t,r(C

r
 + 

)t(p
1  [S0] (3.1.7) 
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 All the equations derived so far are still quite exact since no approximations have 
been introduced. A sequence of further approximations will lead to a sequence of 
approximate methods for finding the shape function. The first approximation is to replace 
the time derivative of the shape function in equation (3.1.7) with the backward difference 
 

t∂
∂ [Ψ]  ≅  

st
1
∆

{[Ψ( ,r
r

tj)] − [Ψ( ,r
r

tj-1)]}       (3.1.8) 

 
resulting in the so-called Improved Quasistatic (IQS) method. The IQS shape equation 
has the form 
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s

1

t
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∆

−
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)'t(p

1  [S0]  (3.1.9) 

 
where ∆ts = tj − tj-1 is the time step for shape calculations and t′ is the last time when the 
amplitude is computed. Since the amplitude varies rapidly, the set of amplitude equations 
(3.1.7) is solved using a much smaller time step, i.e. tj-1 << t′ < tj. However, the shape 
function [Ψ] present in the integral parameters at an intermediate time between shape 
calculations must be somewhat estimated, mostly by extrapolation. 
 
 In the next approximation, leading to the quasistatic method, the time derivative 
of the shape function is neglected (i.e. ∂[Ψ]/∂t ≅ 0) to simplify the shape equation to 
 









−− −

p
p]V[MF 1

p
&

[Ψ( ,rr t)]  =  −
)'t(p

1 ∑
=

χλ
N

1i

d
iii ])['t,r(C r  − 

)'t(p
1 [Sext] (3.1.10) 

 
The quasistatic problem is formally a static problem with cross sections depending 
parametrically on time. Further, in equation (3.1.10), if the delayed neutron source is 
approximated as a fraction of the prompt source, and if the [V-1] pp&  term is neglected, 
the specific kinetics features in the shape equation are completely eliminated, resulting in 
the adiabatic method. Finally, neglect of the time dependence of the operators [M] and 
[F] in equation (3.1.10) reduces the problem to the simple point kinetics model.  
 
 As the degree of sophistication is reduced from the IQS to the quasistatic and then 
to the adiabatic and finally to the point kinetics method, the accuracy of the solution 
diminishes. For solving problems involving feedback, the amount of complexity and 
computational effort required for all but the point kinetics method is roughly the same. 
Thus, it would seem that there is no advantage to the use of any factorization method 
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other than the IQS method for spatial kinetics calculations. The flux factorization 
approach is useful when implemented in conjunction with other spatial methods in order 
to lengthen computational time steps [Koclas et al. (1996), Ikeda & Takeda (2001)]. 
 
3.1.3 The Modal Approach 
 
The conceptual idea of the modal approach [Stacey (1969)] is to discretize the kinetics 
equations by using a function expansion technique. That is, the space and time-dependent 
group fluxes are expanded in terms of the pre-computed functions (modes) { )r(g

k
r

ψ } and 
the unknown expansion coefficients { )t(pg

k } of the form 
 

[Φ] = ∑
=

Ψ
K

1k
kk ]P][[        (3.1.11) 

 
where  [Ψk] ≡ Diag{ )r(g

k
r

ψ } and [Pk] ≡ Col{ )t(pg
k }, g = 1,..,G; k = 1,..,K. To save 

computation time, only a very few modes are employed. Moreover, these expansion 
modes can be computed with simple methods, for example, as eigenfunctions of some 
form of the multigroup diffusion functions [Wachspress (1966), Stacey (1969)] or solutions of 
static problems of normally lower dimensionality [Kaplan et al. (1964), Hetrick (1971)] (the 
latter is usually referred to as the synthesis method). It is obvious that the use of only one 
term in the above expansion (i.e. K = 1) corresponds to the point reactor model if the flux 
mode is chosen as the initial one-speed flux. 
 
 The modal equation system for the expansion coefficients can be obtained by 
using a weighted residual procedure. For this, a set of time-independent weighting 
functions {wm( rr ) | m = 1,..,M} is chosen. By substituting the flux expansion expression 
(3.1.11) into the original kinetics equations (2.2.21), pre-multiplying every equation in 
the system one-by-one with each of the weighting functions, and integrating all over the 
core volume, one obtains the following system for expansion coefficients 
  

∑
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m
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iζ  + βi∑
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m
k ][ [Pk],     (3.1.12b) 

       i = 1,..,N;  m = 1,..,M 
 
where 
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extS ] ≡ ∫∫∫
Vcore

3
extm rt)]d,r(S)[r(w rr  -  the integral weighted extra sources. 

 
Solution of these ordinary differential equations would yield the expansion coefficients 
[Pk]. The group fluxes are then constructed using expression (3.1.11). 
 
 The modal kinetics model is usually more accurate than the point kinetics model 
because it accounts for the flux variation in both space and energy during a transient. 
Modal kinetics computation is fast if compared with other spatial kinetics methods. 
However, the lack of systematic criteria for the error analysis has made the modal 
methods almost vanish from practical reactor kinetics calculations. That is, while the use 
of a greater number of mesh points in finite difference discretization will actually 
improve accuracy of the solution, the use of a greater number of expansion modes does 
not guarantee the same result. In addition, it is difficult to formulate a suitable algorithm 
for solving the modal discretized equations on a digital computer [Ott & Neuhold (1985)]. 
          
3.1.4 Finite Difference Methods 
 
Finite difference methods (FDM) are the simplest and most direct approach to the 
solution of any space-time problems. The FDM basically consists of replacing the spatial 
derivative in the neutron kinetics equations by the corresponding finite difference 
approximation. For this, the geometric domain - the reactor core volume extended to its 
boundary at an extrapolated length - is partitioned into a number of subregions. In each of 
such regions (or cells), the material properties are spatially averaged and hence are 
assumed to be uniform. For simplicity, consider the discretization in 3D Cartesian 
geometry r

r
 = {x,y,z} with the cells in form of rectangular boxes defined by a series of 

planes parallel with each of the three coordinate directions. However, it is also possible to 
use other cell forms (such as quadrilaterals, triangles, and hexagons [Abu-Shumays & 
Hageman (1975)]). Two types of discretization can be used: the cell-centred and the vertex-
centred. In the cell-centred discretization, the unknowns (group fluxes and precursor 
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concentrations) are defined at the cell centre (Fig.3.1.1), while in the vertex-centred 
discretization they are defined at each cell corner [Mitchell & Griffiths (1980)]. As a result, a 
grid of mesh points at which a set of discrete values of fluxes and concentrations is to be 
computed is formed. 
 
 
 
 
 
 
 
 
 
 
 

One now performs the integration of the kinetics equations with respect to space 
over volume Vp of the box surrounding each mesh point P (Fig.3.1.1). In the cell-centered 
discretization, the integration box is the same as the cell that contains the given mesh 
point, while in the vertex-centered case, the integration box is formed by six planes 
perpendicular to the three coordinate directions at the midpoints between point P and its 
six neighbouring points which are left (L) or right (R) of the node in each direction 
u∈(x,y,z) (Fig.3.1.2). 
  
 
 
 
 
 
 
 
 
 
 
 
 

The fluxes and precursor concentrations within each integration box are assumed 
approximately equal to their values at point P, i.e. 
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Figure 3.1.2. An integration box 
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Figure 3.1.1. Cell-centered and vertex-centered discretization grids 
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for r
r

 belongs in the box containing point P. 
 

The result of the box integration is given by 
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The components of the net current at the faces of the integration box are 
determined by a finite difference approximation to the Fick’s law expression as 
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p
gD  ≡ 

pV
1
∫∫∫

PV

3
g rd)r(D
r

 - the diffusion coefficient averaged over box volume Vp 

 
)t(p

u±φ  ≡ pu
)t,z,y,x(

±
φ - the flux defined at surfaces pu

±
 of the integration box 

 
It is possible to eliminate the surface fluxes by using the continuity conditions of 

the flux and current at the interface between two adjacent integration boxes (Fig.3.1.3): 
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Similarly, 
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Elimination of the currents from equation (3.1.13a) yields 
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where the algebraic coefficient coupling point P with its neighbour ‘nb’, i.e. the point 
either right or left of P in each direction, is given by   
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+        (3.1.16) 

 
Equation (3.1.15) derived above is for any inner point of the grid, i.e. the point not on the 
computational boundary. The flux equations for boundary points are derived directly 
from the extrapolated boundary condition, simply  
 
  )t(B

gφ  = 0,  P ≡ B on the boundary      
 
 The finite difference technique described above in deriving equation (3.1.15) is 
second order accurate [Waschpress (1966)]. By using a Taylor expansion for accuracy 
analysis, one can show that the truncation error in (3.1.14) is proportional to quadratic 
spacing, i.e. O(h2). To obtain acceptable accuracy of the approximation (3.1.14), the 
mesh spacing p

uh  must be of order of the smallest group diffusion length (which is less 
than 2cm in a light water reactor - LWR). For most reactor problems of practical interest, 
this fine mesh requirement results in the use of an extremely large number of mesh points 
and hence equations to solve for. Moreover, an implicit scheme of time integration is 
likely to be used in order to overcome the problem stiffness, giving rise to an extremely 
large number of algebraic equations that must be simultaneously solved at each time step. 
In addition to extensive computer resources required, there is a greater problem of 
inverting such a large algebraic system. 
 
    Although being the most computationally expensive, the finite difference 
methods have found a number of applications in the spatial kinetics calculation thanks to 
their many desirable features. A great advantage of the FDM is that the discretization 
error is guaranteed to vanish in the fine mesh limit. Also, the algebraic systems of finite 
difference equations are well studied by mathematicians and there exist many 
sophisticated, fast methods for solving them. As a result, the FDM is still used for 
benchmarking of other spatial methods such as coarse mesh or nodal methods. 
     
3.1.5 Coarse Mesh Methods  
 
The inefficiency of finite difference methods in dealing with the spatial kinetics problem 
has led to the development of various methods that utilize a much larger mesh size for 
spatial discretization. Coarse mesh methods take advantage of the fact that in many 
practical reactor calculations it is possible to define equivalent homogenized group 
constants that allow large regions - such as entire assemblies - to be treated as if they 
were spatially homogenized. By using relatively large mesh spacing for discretization, 
these methods increase the computational efficiency by reducing the number of 
discretized equations that must be solved. To achieve acceptable accuracy even with 
mesh spacing larger than the diffusion length, these methods must employ a higher order 
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spatial treatment within a mesh box than does the finite difference method. Although the 
computational work per mesh box is typically greater than that for the finite difference 
method, the reduction in the number of mesh boxes often results in a substantial 
reduction in computational time and storage requirements. 
 
 The flux expansion method is a coarse mesh method implemented by Langenbuch et 
al. (1977). This method divides the core volume into a number of non-overlapped mesh 
boxes Vp, such that V = ∪ pV . The group constants are assumed to be uniform 
throughout the box volume. Within a mesh box the kinetics equations can be written as 

 

gv
1

t∂
∂
φg( ,r

r
t) = p

gD ∇2φg( ,r
r

t)  − p
tgΣ φg( ,r

r
t) + Sg( ,r

r
t)   (3.1.17a) 
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t) = −λiCi( ,r

r
t) + βi∑

=

φΣν
G

1'g
'g

p
'fg )t,r(r                  (3.1.17b) 

 
The flux expansion method solves equations (3.1.17) using a symmetric weighted 
residual method with polynomial basis functions defined for each mesh box. The basis 
functions, quadratic or cubic polynomials, have points of support at the box centre and at 
the centres of six faces, and are identically zero everywhere outside the box. The shape of 
the flux within a mesh box is approximated in terms of the basis functions and the flux 
values - as expansion coefficients - at the points of support. Algebraic equations are 
obtained by substituting this approximation into the kinetics equations and using the 
weighting residual procedure. 
 
 Finite element methods (FEM) may also be considered as coarse mesh methods. 
In the FEM employed by Kang & Hansen (1973), the group flux is approximated as the sum 
of multi-dimensional polynomials that are identical zero everywhere outside the volume 
element surrounding the mesh point. Linear basis functions are usually chosen, but higher 
order functions, e.g. cubic polynomials, are also possible. Regardless of the degree of the 
polynomials used, a system of first order differential equations in time is obtained. 
 
 In general, coarse mesh methods are more accurate than the FDM for large mesh 
spacing; for example, the use of linear basis functions in FEM allows mesh spacing about 
twice that of the FDM for the same degree of accuracy. The FEM has the additional 
advantage of not limiting to a regular mesh. This allows great flexibility in adjusting the 
mesh size, allowing it to be reduced in regions that require more resolution and expanded 
in regions where the flux has little spatial variation. The disadvantage is that this would 
result in a more complicated structure of the algebraic coefficient matrix. Nevertheless, in 
terms of accuracy and efficiency, the coarse mesh methods are only slightly better than 
the FDM but cannot compete with the family of nodal methods presented in the next 
section. 
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3.1.6 Nodal Methods 
 
Very much resembling coarse-mesh methods, nodal methods [Lawrence (1986)] utilize 
relatively large mesh discretization in order to significantly reduce computational 
resources. In the nodal method, reactor volume V is partitioned into a number of 
relatively large (e.g. assembly-size) non-overlapped regions (or nodes) pV , so that 
V=∪ pV . In the Cartesian geometry formulation, the grid of nodes are formed by parallel 
planes perpendicular to each of the three coordinate directions x, y, and z. Other 
geometries (e.g. hexagonal-z geometry [Zimin & Baturin (2002)]) are also possible and easily 
accommodated. The material properties (i.e. the group constants) in each node are 
spatially averaged (i.e. homogenized), and hence are assumed to be uniform throughout 
node volume. By integrating kinetics equations with respect to space over node 
volume pV , the nodal balance equations are obtained as 
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where  
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g rd)t,r(r  - the node-averaged group flux  
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  - the node-averaged group source 
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gx )t,z,y,x(dzJdy , and similarly for )t(J p

gy± and )t(J p
gz±  

  - the node face-averaged net currents in the corresponding direction  
 
Here, pu ±  = pu  ± p

u2
1 h , u∈{x, y, z}, denote the coordinates of the right (+) and left (-) 

faces, respectively, of the node in the u-direction. Further, it is convenient to express the 
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face-averaged net currents in terms of the face-averaged partial currents )t(j p
gu
±
±  as 

(Fig.3.1.4): 
 
  )t(J p

gu±  = )t(j p
gu
+
± − )t(j p

gu
−
±  

 
 
 
 
 
 
  

 
 
 
 
 
The idea behind all nodal methods is to establish the spatial coupling relationships 

between the node face-averaged net or partial currents and the node-averaged fluxes by 
applying high-order approximations to the spatial variation of the flux within a node. 
Different nodal methods employ different procedures to derive such relationships, 
making them distinguished from each other. These coupling relationships are then used to 
eliminate the currents in the nodal equation (3.1.18a), thus yielding a first-order 
differential system of purely time-dependent nodal equations (still coupled in space and 
energy). It can be seen that, a nodal scheme would be identical to the cell-centred finite 
difference method had one assumed a linear shape of the flux within a node. Such a linear 
approximation of the flux would require very fine mesh discretization for an acceptable 
accuracy. Thus, in a nodal method, a somewhat higher order spatial treatment of the flux 
within a node is employed to reduce discretization error. 

 
Early Nodal Methods  
 
The early nodal methods, developed in 1960s, employ some sort of coupling parameters 
to relate the face-averaged partial currents to the node-averaged flux as 
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where p

gu
±α  are referred to as the coupling coefficients at the interface between node P and 

the node right (R) or left (L) of it in the u-direction. These relationships can be used to 
eliminate the currents in equation (3.1.18a), yielding the semi-discretized nodal system 
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Figure 3.1.4. Node-averaged flux and face-averaged currents 
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The coupling coefficients p

gu
±α  are usually obtained from a more accurate fine-mesh 

calculation of a steady-state diffusion or transport problem as reference. Nodal methods 
of this type may work well when the problem being analyzed is sufficiently close to the 
reference problem at which the coupling coefficients were computed; otherwise, they 
often produce disastrous results. This appears to be a particularly serious problem in 
kinetics calculations, where the flux shape within a node - and hence the nodal coupling - 
can vary considerably during the course of calculation. Despite some improvements in 
determining the coupling parameters without matching any particular reference fine-mesh 
calculation, the nodal methods of this type have not escaped the criticism of being 
inconsistent methods which rely on ‘tuned’ parameters [Moulton (1996)]. 
 
Modern Nodal Methods 
 
In searching for consistent discretization methods for solution of the nodal equations 
(3.1.18), Finnemann et al. (1977) developed a transverse integration procedure, which has 
found the greatest acceptance among the reactor physics community for reactor 
calculations. Starting from the original multigroup diffusion equations (2.2.21), the 
transverse integration procedure transforms each 3D equation in the system into three 1D 
transverse-integrated equations by integrating over two of the three directions. The 
transverse-integrated balance equations in any direction u ∈{x,y,z} are given by 
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as well as the similar expressions in y- and z-directions, denote the node 
transverse-averaged quantities of fluxes )t,u(P

guφ , net currents )t,u(J P
gu  or 

precursor concentrations )t,u(C P
iu  
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 and the similar expressions for )t,y(LP
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gz as well are the transverse 
leakages 

 
The transverse leakage )t,u(LP

gu  in equation (3.1.21) is usually approximated in some 
way. Early implementations of the transverse-integrated nodal method used a flat 
approximation in which the transverse leakage is taken constant in the longitudinal 
direction and equal to 
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It has been found, however, that this approximation does not adequately represent the 
true shape of the transverse leakage and may lead to a substantial error. To reduce the 
error, most current transverse integrated nodal methods employ a more accurate 
approximation of the transverse leakage in a quadratic polynomial expansion 
 

 )t,u(LP
gu  ≅  )t,u(L~P

gu  = )t(LP
0gu  + 







 −
P
u

p

1
P

1gu h
uuP)t(L + 







 −
P
u

p

2
P

2gu h
uuP)t(L                                     

 
where Pk(ξ) is a polynomial of order k (k = 0, 1, 2), and the expansion coefficients 

)t(Lguk  are chosen so as to preserve the average transverse leakage of the node as well as 
that of its neighbouring nodes in the u-direction [Sutton & Aviles (1996)]. 
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 In addition to the transverse leakage term, the time derivatives in the transverse 
integrated equations are also approximated such that 
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frequencies introduced, it is possible to solve (3.1.21c) for the precursor concentrations  
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Substituting (3.1.22) into (3.1.21a), one arrives at the transverse-integrated equations  
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 From this point, there are two distinct applications of the transverse-integrated 
equations (3.1.23) in constructing a nodal scheme. The first is the Nodal Expansion 
Method that expands the transverse-integrated flux in a set of polynomials. The second is 
Analytic Nodal Method that solves transverse-integrated equations analytically. 
 
The Nodal Expansion Method 
 
The Nodal Expansion Method (NEM) [Finnemann et al. (1977)] was originally developed for 
the static neutron diffusion calculation and has been easily extended to reactor kinetics 
problems [Lawrence (1986), Sutton & Aviles (1996)]. The NEM is based on a polynomial 
expansion of the transverse integrated flux 
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where a set of  polynomial functions Pk(ξ) are chosen as 
 
 P0(ξ) = 1,   
 
 P1(ξ) = ξ,   
 
 P2(ξ) = 3ξ2 − ¼, 
 
 P3(ξ) = ξ(ξ − ½)(ξ + ½),   
 
 P4(ξ) = (ξ2− 20

1 )(ξ − ½)(ξ + ½),  etc. 
 
In NEM, the expansions of degree lower than 2 are not considered, and more than 4 are 
also unlikely due to great complexity in finding the expansion coefficients )t(a p

guk . Using 
the given set of polynomials, the low order expansion coefficients can be found in terms 
of the partial currents and the node-averaged flux as 
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The higher order (k ≥ 3) expansion coefficients may be obtained by using a weighting 
residual procedure. For this, the transverse-integrated equation (3.1.21a), with the 
substitution of flux expansion (3.1.24), is multiplied by an arbitrary weighting function, 
each per coefficient being determined, and then integrated from pu −  to pu + , resulting the 
desired relationships. 
 
 Once all expansion coefficients are found in terms of the nodal quantities, the flux 
expansion (3.1.24) is substituted into the transverse-integrated Fick’s law equation 
(3.1.21b) as 
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It is possible to express the outgoing partial currents in terms of the incoming partial 
currents and the node-averaged flux as 
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±α  are the algebraic coefficients that depend only on the ratio )t(DP

g / P
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These relationships are now used to eliminate the outgoing partial currents from the nodal 
equation (3.1.18), yielding the semi-discretized nodal equation of the form  
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In equation (3.1.25), spatial coupling between node P and its neighbouring nodes is via 
the incoming partial currents since 
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The Analytic Nodal Method  
 
Analytic transverse-integrated nodal methods (ANM) [Fu & Cho (2002)] are characterized 
by the use of the analytic solution of the transverse-integrated diffusion equation in 
constructing the nodal scheme. The ANM begins with combining the transverse-
integrated equations (3.1.23) and (3.1.21b), written in matrix notation as  

 

− 2

2

du
d [φ(u)] + [A][φ(u)]  =  [ℓ(u)]     (3.1.26) 

 
where  

 
[φ(u)]  =  Col{ )u(p

guφ } - the vector of the unknown fluxes  
 
[ℓ(u)]  =  Col{ p

g
p
gu D/)u(L } - the vector of the approximate leakage shapes  

 
[A]  -  the G×G buckling matrix.    
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Although all quantities in (3.1.26) are time-dependent, this equation can be considered as 
purely one-dimensional in space, so the time-dependence variable is omitted for 
simplicity. The analytic solution of this inhomogeneous equation consists of the 
homogenous solution and one particular solution of the inhomogeneous equation. The 
homogeneous solution is dictated by the eigenvalues { p

gλ } and eigenvectors { p
gr } of the 

matrix [A]. For each eigenvalue p
gλ  and its corresponding eigenvector p

gr , there are two 
fundamental solutions  
 
  p

gr cosh ( )up
gλ    and  p

gr sinh ( )up
gλ .   

 
The homogenous solution is the linear combination of these 2G fundamental solutions. 
For general multigroup problem, it is possible that the eigenvalue is complex. Thus the 
nodal formulation may involve complex arithmetic, which is undesirable as long as the 
efficiency is considered. That is why ANM are usually restricted to no more than two 
neutron energy groups only (i.e. G ≤ 2). 
 

Table 3.1.1. Basis solution functions X(u) and Y(u) [Fu (2002)] 
 

X(u) Y(u) Eigenvalue 
cosh ( )uλ  sinh ( )uλ  λ > 0 
1 u λ = 0 
cos ( )u|| λ   sin ( )u|| λ  λ < 0 
cosh2(αu)cos2(βu) 
+ sinh2(αu) sin2(βu)  

sinh2(αu) cos2(βu) 
+ cosh2(αu) sin2(βu) λ = α + iβ 

   
Let [ )u(partφ ] be one inhomogeneous particular solution of equation (3.1.26), then its 
general analytic solution is given by 
 

 [ )u(φ ] = [R]{[X(u)][c1] + [Y(u)][c2]}  +  [ )u(partφ ]   (3.1.27) 
 
where [R] is a column of eigenvectors; [c1], [c2] are two unknown constant vectors; and 
[X(u)], [Y(u)] are two block diagonal matrixes of the functions depending on whether the 
eigenvalue is positive, zero, negative or complex (see Table 3.1.1). 
 
 The particular solution [ )u(partφ ] can be determined by substituting (3.1.27) into 
equation (3.1.26) and solving for the unknown functions [c1(u)] and [c2(u)]. The two 
unknown constant vectors [c1] and [c2] are subject to the boundary conditions. If the 
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analytic solution (3.1.27) is integrated over p
uh , the odd constants [c1] can be determined 

in terms of the node-averaged fluxes [ φ ] = Col{ p
gφ }  

 
  [c1] = {[R][ ]X }-1{[ φ ] − [ partφ ]}     (3.1.28) 

 
where [ ]X  and [ partφ ] are the averages of [X(u)] and [ )u(partφ ] over the nodal width.      
The even constants [c2] can be determined in terms of the averaged fluxes and currents at 
node interfaces 

 
[ ±φ ]  ≡  [ )u( p

±φ ]  =  [R]{[ ±X ][c1] + [ ±Y ][c2]} + [ part
±φ ]  (3.1.29) 

 

[ ±J ]  =  −[D]
du
d [ pu

)u(
±

φ ]  =  −[D] {[ ±X& ][c1] + [ ±Y& ][c2]} + [ partJ ± ]  (3.1.30) 

 
Inserting (3.1.28) into (3.1.29) and (3.1.30) and eliminating [c2] in favour of the currents 
result in 

 
    [ ±φ ]  = m [Γ]{[ ±J ] −[ ±Ĵ ]} + [ ±φ̂ ]      (3.1.31) 

where 
 

[Γ]  =  [R]{[ ±Y ][ ±Y& ]}-1[R]-1[D]-1 
 
[ ±Ĵ ]  = m [D][R]{[ ±X ][ ±X& ]}-1[R]-1{[ φ ] − [ partφ ]} ± [ partJ ± ] 
 
[ ±φ̂ ]  =  [R]{[ ±X ][ ±X& ]}-1[R]-1{[ φ ] − [ partφ ]} ± [ part

±φ ] 
 
The relationships between the face-averaged quantities and node-averaged flux are thus 
established. For two-group calculations, the 2×2 matrix eigenvalue problem can be 
solved without any difficulty, but for G > 2, its solution requires a sophisticated similarity 
transformation. 
 
 Compared to other methods for dealing with the spatial kinetics problem, the 
nodal methods described above have demonstrated the best performance in terms of 
discretization accuracy and computational efficiency. As a consequence, applications of 
other spatial methods for reactor kinetics calculations have significantly diminished, 
except for very special cases. However, the nodal methods are not free of difficulties and 
criticisms. As mentioned above, the early nodal methods are inconsistent, while the 
modern consistent nodal methods add more complexity and limitations. Also, lack of the 
mathematical foundation for nodal methods has made them rarely be applied beyond the 
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neutronics calculation. It is generally very difficult to analyze the nodal discretization 
error, and hence the benchmarking of nodal codes still relies on a finite difference 
counterpart. Also, the unusual choice of the nodal unknowns (i.e. node-averaged fluxes 
and faced-averaged currents) results in a complex nodal algebraic system that is 
incompatible with modern sophisticated, fast algebraic solvers. It is usually very difficult 
to accelerate the convergence of solution of a nodal discretized system of tens of 
thousands of equations (though this number is much smaller than that in a finite 
difference system for the same reactor problem). In addition, unlike the finite difference 
solution in which the detailed flux and hence reaction rate distributions in space are 
readily obtained, the direct nodal solution is actually for homogenized (node-averaged) 
quantities which require dehomogenization to obtain the reaction rate distribution within 
the node. In fact, the homogenization and dehomogenization procedures always rely on 
the use of fine mesh discretization [Sutton & Aviles (1996)]. 
 
3.2 Time Integration 
 
After spatial treatment, the original kinetics system of space-time partial differential 
equations is reduced to a set of coupled ordinary differential equations of the only time 
dependence 
     

dt
d [y]  =  [L][y], for t > 0     (3.2.1a) 

 
with the initial condition 
 

 [y(t = 0)]  =  [y0]        (3.2.1b) 
 
where [y] is the vector of the time-dependent unknowns - the values of group fluxes and 
delayed precursor concentrations at a discrete set of grid points in space, as well as of 
group partial or net currents at the faces of each node surrounding such a grid point if a 
nodal discretization technique is used; [L] is the matrix consisting of algebraic 
coefficients which depend only on the material and geometric properties of the grid (i.e. 
the group constants and the mesh size). Except for the point kinetics model, the 
unknowns in vector [y] are coupled in both space and energy, giving rise to a rather 
complicated structure of the matrix [L].  
 
 Since the group constants are generally functions of the neutron flux (through 
various feedback mechanisms), the matrix coefficients are also time-dependent and the 
system (3.2.1) is generally nonlinear. Analytical solution of such a system is impossible 
for any practical reactor problems. Even numerical solution is not easy either due to the 
stiffness of the neutron kinetics problem. Thus, the time constants characterizing the 
nuclear processes represented by the equations in the kinetics system range all the way 
from the lifetime of the neutrons in the fastest energy group (i.e. on order of their inverse 
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speed, ~10-8 sec) to the lifetime of the longest lived precursor (i.e. ~80 sec). Many 
standard numerical schemes are quite inefficient for integrating such a strongly stiff 
system since the time step size allowed for acceptable accuracy and numerical stability of 
the solution is determined by the smallest time constant [Devooght & Mund (1985)]. 
 
3.2.1 Integration Schemes     
 
There exist many numerical schemes for integrating (3.2.1) over the time domain to 
obtain the spatial group fluxes [Sutton & Aviles (1996)]. Finite difference methods are the 
straightforward approach to temporal discretization of the time-dependent equations in 
the kinetics system (3.2.1) (or, indeed, of any parabolic differential equations). The most 
popular time integration schemes are the explicit (forward finite difference), implicit 
(backward finite difference), and Crank-Nicholson (central finite difference) schemes, 
which can be expressed in the following general form 
 

t
)]t(y[)]tt(y[

∆
−∆+   =  θ[L(t+∆t)][y(t+∆t)] + [1 − θ][L(t)][y(t)] + O(∆tn) (3.2.2) 

 
where ∆t is the time step size; [y] and [L] are assumed known at time t but unknown at 
t+∆t; O(∆tn) is the discretization error and n is order of accuracy of the scheme. The 
explicit, Crank-Nicholson and the fully implicit schemes are obtained by setting the value 
of θ equal to 0, ½, and 1, respectively [Bru et al. (2002)]. 
 
 In the explicit scheme (θ = 0), since the right hand side of (3.2.2) is completely 
known at time t, the advance to the next time step is straightforward 

 
[y(t+∆t)]  =  [1 + θ∆tL(t)][y(t)]     (3.2.3) 

 
Unfortunately, this explicit scheme requires too restrictive time step size (∆t < 10-8 sec) to 
avoid numerical instability of the solution. The explicit scheme, though simple, is not 
only inefficient (a great number of time steps must be used) but also eventually 
inaccurate (due to the large error accumulated after so many computing steps). 
 
 If an implicit scheme (θ = ½ or 1) is used, the matrix inversion is required to 
advance to the next time step 

 
[y(t+∆t)]  = {[I] − θ∆t[L(t+∆t)]}-1{[I] + θ∆t[L(t)]}[y(t)]  (3.2.4)   

 
Although more computational effort per time step is spent on solving the implicit system 
(3.2.4), the implicit schemes are preferred for solving complex stiff parabolic equations 
since they are usually unconditionally stable for any time step size. In such an implicit 
scheme the time step size is restricted only by accuracy of the solution. It can be 
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mathematically proved that the explicit and fully implicit schemes are both first order 
accurate (n = 1), while the Crank-Nicholson scheme is second order (n = 2).  
 
 Generally, it is difficult to solve the non-linear system (3.2.4) for reactor kinetics 
because the group constants (i.e. the matrix [L(t+∆t)]) is indirectly dependent on the 
group fluxes (i.e. the unknown [y(t+∆t)]) that has yet to be solved, moreover, in coupling 
with other dynamics processes (e.g. thermalhydraulics) whose solution is also of 
somewhat the same computational effort. In practice, the coupled neutron kinetics and 
thermahydraulics problem can be solved during each of a sequence of small time 
intervals by a thermalhydraulics computation, for which the input is the local neutron 
fluxes at the beginning of the interval, followed by a neutron kinetics computation, for 
which the group constants are evaluated based on local temperatures and densities 
obtained from the just-completed thermalhydraulics calculation. In this case, the kinetics 
system (3.2.4) becomes linear, i.e. [L] is assumed constant over the interval [t, t+∆t].               
 
 Applying the implicit scheme (3.2.4) to the spatially-discretized kinetics system 
of finite difference equation (3.1.15) and equation (3.1.13b), one can first compute the 
precursor concentrations at point P  

 

p
iC   =  

[ ]

t1

tt)1(Ct)1(1

i

G

1'g

p
'g

p
'fgi

G

1'g

t,p
'g

p
'fgi

t,p
ii

∆θλ+

φΣνβ∆θ+φΣνβ∆θ−+∆λθ−+ ∑∑
==   (3.2.5) 

         i = 1,..,N 
where 

 
P
iC ≡ )tt(CP

i ∆+   and  P
gφ ≡ )tt(P

g ∆+φ    
 

t,p
iC ≡ )t(Cp

i  and  t,P
gφ ≡ )t(P

gφ  
 
Then, utilizing the expression (3.2.5), one obtains the group fluxes at point P, given in 
matrix notation, as 

 
 [AP][ΦP]  = ∑

⊂

Φ
Pnb

nbnb ]][A[   +  [Bp]     (3.2.6) 

 
where the vectors and matrixes are given by (cf. 3.1.15, 3.1.16) 
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[Φp] = 
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 (P is an inner grid point), 
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with the algebraic coefficients 
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d
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ii

i

i C
t1

t)1(
)1(  +  (1−θ) t,P

g0S  + θ P
g0S   

 
The initial and boundary conditions are 
 
 0t,P

g
=φ  = P

g0φ , ∀g, P;   
 
 BP

g
=φ  = 0, ∀g, t > 0; 

 

 0t,p
iC =  = ∑

=

φΣν
λ
β G

1'g

p
'g0

p
'fg

i

i , ∀g, i      (3.2.7) 
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3.2.2 Time Step Adjustment 
 
If the implicit scheme is used for time integration of the kinetics equations, the time step 
size is restricted only to accuracy of the numerical solution. In reactor dynamic 
simulation, the constant time step size would be desirable but not necessary. In fact, one 
always tries to lengthen the time step size as long as the accuracy of the solution is 
acceptable in order to save computation time. Time step adjustment should not be based 
on the rate of change of the flux but rather on its temporal truncation error 

 
Err = max| )t(ˆ p

gφ  − )t(p
gφ |      (3.2.8) 

 
where )t(ˆ p

gφ  is the exact solution of (3.1.15) and )t(p
gφ  is the solution of the algebraic 

system (3.2.6), excluding the spatial discretization error [Crouzet & Turinsky (1996)]. The 
problem is that the exact solution is not known (and never known) so the truncation error 
can only be estimated. 
 
 The step-doubling adaptive time step technique by Taiwo et al. (1993) is a 
straightforward algorithm in which the solution at the end of the time step is computed 
twice; once with a step size ∆t and once with two half steps ½∆t. The temporal truncation 
error is estimated by 

 
Err = max| 2/t∆φ  − t∆φ |      (3.2.9) 

 
If this error is small enough, for example, less than some specified tolerance ε, then the 
solution in the current time step is acceptable and the next time step size is estimated as 

 
∆tnext ≤ ∆tnext(ε/Err)1/n ,  n - accuracy order   (3.2.10)  

 
Otherwise, the current step solution is rejected and the time step is repeated with the step 
size computed from (3.2.10). The step-doubling technique requires 300% as much 
computational effort per time step as a constant time step method. 
 
 If the accuracy order of the time integration scheme is known (or can be estimated 
by some way), then the more exact solution may be extracted from the above step-
doubling procedure. Assume that the truncation error is proportional, with some constant 
C, to the time step size power of accuracy order as 
 
  φexact − φ∆t ≈ C∆tn 
 
  φexact − φ∆t/2 ≈ 2C(∆t/2)n 
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Eliminating the constant C, one computes the ‘exact’ solution as   
 

 φexact  ≈  φ∆t − (φ∆t − φ∆t/2)2n-1∆tn     (3.2.11) 
 
* 

*     * 
 
No matter what method we use for reactor kinetics calculations, it is the problem space 
that will require most of our effort for the treatment. Although nodal methods have been 
preferred by many (thanks to their ability to reduce the number of discretized equations to 
be solved), applications of nodal methods give rise to such complexity and limitation that 
any other methods, simpler in derivation but less (or just comparable) in computation 
cost, would be worthwhile to investigate. The research direction that we are focusing on 
in this thesis is to employ a finite difference method for simplicity plus a fast algebraic 
solver for efficiency. But before proceeding to the development of such an efficient 
solver, we will first, in the following chapter, study usual numerical methods for solving 
algebraic systems that would arise from discretization of the neutron kinetics equations 
with any one of the spatial methods described above.            
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Chapter 4 
 

SOLUTION OF ALGEBRAIC SYSTEMS 
 

During the process of numerical solution of the space-time neutron group diffusion 
equations - or indeed of any partial differential equations in general - sooner or later one 
will encounter a coupled set of algebraic equations arising from discretization of the 
original equation system. Such an algebraic system must be solved simultaneously for 
either discrete values of the unknown functions (i.e. the neutron flux and delayed neutron 
precursor distributions) or their expansion coefficients, depending on whether a discrete 
ordinate or function expansion technique is used for the discretization. 
           
 In this chapter, we are concerned with the utilization of numerical methods for 
solving linear algebraic systems. Non-linear systems can always be linearized so that 
solving non-linear systems is reduced to a succession of solving linear systems. There are 
two general schemes for solving an algebraic system: direct and iterative methods [Young 
& Gregory (1973), Hageman & Young (1981), Axelsson (1994), Saad (1996)]. The direct methods are 
often preferred for low to medium sized systems (usually hundreds of equations or less). 
For large systems, iterative methods are almost always used. This switch is required from 
accuracy considerations (related to round-off errors), from memory limitations for 
storage of the algebraic coefficients and other computing values, and from overall 
efficiency concerns. 
     
4.1 Direct Algebraic Solvers           
 
Consider a system of N linear algebraic equations in N unknowns in a general form 
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N
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1

b
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  or  Ax = b   (4.1.1) 

 
where A is the N×N matrix of algebraic coefficients {aij | i = 1,..,N; j = 1,..,N}; x and b 
are two N-size vectors of unknowns {xi | i = 1,..,N} and constants {bi | i = 1,..,N }, 
respectively. For such a system to have a unique solution, it is necessary and sufficient 
that the matrix A be nonsingular, i.e. it has nonzero determinant, det(A) ≠ 0, or, 
equivalently, there exists the matrix A-1 (the inverse matrix of A) so that the product A-1A 
is the identity matrix I (the identity matrix I has all coefficients equal zero except those on 
the main diagonal equal 1). Then, the solution of the system is formally given by 
     

x  = A-1b       (4.1.2) 
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 Solution (4.1.2) is algebraically equivalent to the one that is provided by 
Cramer’s rule, as a ratio of two N×N determinants 

 

ix  =  
)Adet(
)Adet( i ,  i = 1,..,N    (4.1.3) 

 
where Ai is the same as A except its i-th column being replaced by the vector b. 
However, computation of matrix determinants is almost impossible in practice because it 
generally involves more than 2(N+1)! arithmetic operations [Young & Gregory (1973)]. Such 
an excessive number of operations are too costly to be executed even on modern 
computers. In fact, with just only N = 4, any method based on determinant computation 
can no longer compete with the elimination method discussed in the following.                  
 
 The simplest of all direct methods, from the computational point of view, for 
solving a general system of linear algebraic equations is the Gaussian elimination 
method, which systematically applies to row operations to transform the original system 
(4.1.1) into a form that is easier to solve. The Gaussian elimination scheme consists of 
two stages: a forward elimination and a backward substitution.  
 
 In the first stage of this scheme, the forward elimination replaces the original 
system by a series of successive equivalent systems (i.e. those with the same solution): 
 
 Ax  =  b  or  [A | b]  ≡ [A(1) | b(1)]  
  
 ∴  [A(2) | b(2)]   

 …   

 ∴ [A(N-1) | b(N-1)]   
 
 ∴ [A(N) | b(N)] 
 
where 
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At the end of the forward stage, one obtains 
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    (4.1.4) 

 
The matrix and vector coefficients are computed as 

 
)1(

ija = ija  and )1(
ib = ib  
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, for  k ≥ 1 

        i = k,.., N; j = i,.., N 
 
In the next stage of the Gaussian elimination scheme, the backward substitution solves 
the triangular system (4.1.4) from the last equation to the first for xi as 

 

Nx  = )N(
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a
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 The above described Gaussian elimination method belongs in a more general 
family of methods that are based on factorization of the matrix A into a product of a 
lower L and upper U triangular matrix 

 
A = LU        (4.1.5) 

 
First, a forward elimination sweep is performed to construct and invert L 
 
  Ux = L-1b = y 
 
Then, a backward substitution is performed to invert U and solve for x 
 
  x = U-1L-1b = U-1y 
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It should be noted here that, the Gaussian elimination scheme would fail at some step in 
the forward elimination if the coefficient )k(

kka  (called the pivot) is zero. However, as it is 
always possible to find at least one row in the rest (say, j > k) that has the nonzero k-th 
coefficient (i.e. )k(

k,ja ≠ 0), one can simply replace these two rows by each other and 
proceed with the elimination procedure. Moreover, to minimize the round-off error, 
which may be large as a result from dividing by a small number, it is desirable that one 
find the pivotal row with the largest (in absolute value) coefficient for pivot. 
 
 In practice, except for tridiagonal matrix systems, the direct methods are not used 
for solving large algebraic systems (of a hundred or more equations) due to several 
reasons. First, the direct method requires a rather large number of arithmetic operations 
compared with iterative methods. Second, the coefficient matrix A, usually of sparse and 
banded structure, is not preserved during the process, and, hence large computer memory 
is required to store all algebraic coefficients. Next, it is difficult to program such a 
successive procedure in parallel. Finally, the most serious limitation of the direct methods 
is associated with the round-off error accumulation when a large number of arithmetic 
operations are executed consecutively.              
 
 However, most of the limitations of the direct algebraic solvers are not 
encountered when applied to algebraic systems that have tridiagonal matrix structure. The 
matrix of such a system, often arising from 3-point discretization of a 1D problem 
[Duderstad & Hamilton (1976)], has three diagonals as shown below 
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The tridiagonal matrix algorithm (TDMA), a special case of the Gaussian elimination 
scheme, also consists of a forward elimination and a backward substitution. The forward 
elimination sweep reduces the original tridiagonal matrix (4.1.6) to a form that has only 
two diagonals 
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where 
 
α11 = 11a ;   α12 = 12a ;  β1 = b1 
 

αii = iia −
1i,1i

i,1i
1i,ia

−−

−
− α

α
; αi,i+1 = 1i,ia + ;  βi = bi − 

1i,1i

1i
1i,ia

−−

−
− α

β ,  i ≥ 2 

 
The backward substitution solves for x as 

 

Nx  = 
N,N

N

α
β

 

 

ix  = 
i,i

1i1i,ii x
α

α−β ++ , i = N-1,..,1 

 
 In the TDMA, the number of arithmetic operations is only 8N and the storage is 
minimal (since there is no need for storing the bands of zero coefficients). It is also the 
easiest to program. Because it is very efficient, the TDMA is always preferred for solving 
3-point difference equation systems. Moreover, the TDMA frequently appears as an 
integral part of the iterative methods used in 2D and 3D problems (i.e. 5-point and 7-
point difference equation systems, respectively) when all equations in one row (or 
column) is inverted simultaneously. 
 
4.2 Iterative Solvers for Algebraic Systems 
 
The practical use of direct methods is only possible for solving algebraic systems of small 
size (less than 100 equations). For large and complex algebraic systems, iterative 
methods are almost always used. An iterative method is any one of a wide range of 
techniques that use successive approximations to obtain more accurate solutions to a 
linear system at each step [Saad & Vorst (2000)]. There are two types of iterative methods in 
use: stationary and non-stationary. Stationary or basic iterative methods (e.g. Jacobi, 
Gauss-Seidel or Successive Over-Relaxation (SOR) methods) perform in each iteration 
the same operations on the current iteration vectors [Hageman & Young (1981), Saad (1996)]. 
They are simple to understand and implement, but usually not as efficient as non-
stationary iterative methods (e.g. Conjugate Gradient or Krylov subspace methods [Vorst 
(2000), Xu (2001)]) which are based on the idea of sequences of orthogonal vectors or 
polynomials. 
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4.2.1 Stationary Iterative Methods 
 
The stationary iterative methods considered here for solving a linear algebraic system 
(4.1.1) can be expressed in the simple form [Hageman & Young (1981)] 

 
x(m+1)  =  Gx(m)  +  k       (4.2.1) 

 
where G is the real N×N iteration matrix for the method and k is an associated known 
vector. Neither G nor k depends on the iteration count m. The iterative scheme (4.2.1) is 
derived from (4.1.1) so that the solution to the system 

 
(I−G)x  =  k       (4.2.2) 

 
is also the unique solution to (4.1.1). In this case, an iterative method (4.2.1) is said to be 
completely consistent. 
 
 A basic iterative method (such as the Jacobi, Gauss-Seidel or SOR method) 
begins with some arbitrary initial guess x(0) and improves the current iteration vector x(m) 
until it converges. The method (4.2.1) is said to be convergent if for any x(0) the sequence 
x(1), x(2), … defined by (4.2.1) converges to the solution (4.1.2). To analyze the 
convergence property of an iterative method, one defines the error vector e(m) 

 
e(m)  =  x  − x(m)       (4.2.3) 

 
It is clear that, if the iterative scheme (4.2.1) converges, then the error e(m) approaches 
zero as m → ∞. Substituting (4.2.3) into (4.2.1) and utilizing (4.2.2), one has 

 
e(m)  =  Ge(m-1)  =  …  =  Gme(0)      (4.2.4) 

 
It follows that 

 
||e(m)||  ≤  ||Gm||⋅||e(0)||        (4.2.5) 

 
where ||⋅|| is some norm of a vector or matrix. Thus, the matrix norm ||Gm|| gives a 
measure by which the norm of the error has been reduced after m iterations. Convergence 
of the iterative scheme (4.2.1) is guaranteed if and only if the largest eigenvalue of the 
iteration matrix is less that unity 
 
  m/1m

m
||G||lim

∞→
  =  ρ(G)  ≡  spectral radius of G   

= ||max kN,...,1k
λ

=
 < 1     (4.2.6) 
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The spectral radius ρ can be used as a measure of the rapidity of convergence of an 
iterative scheme. If ρ << 1, the iterative scheme will converge rapidly. If ρ ≈ 1 but less 
than 1, the scheme will be slowly converging. The iterative scheme will diverge if ρ > 1. 
 
 The matrix eigenvalue/eigenvector concept and convergence of an iterative 
method are closely related as described in the following. For some algebraic matrix such 
as G, any vector v = {v1,..,vN} that satisfies 
 
  Gv  =  λv 
 
is called the eigenvector of matrix G. The number λ corresponding to an eigenvector v is 
called an eigenvalue, which may be real or complex. In general, an N by N matrix has N 
eigenvectors vk = { )k(

1v ,.., )k(
Nv }, k=1,..,N, and N corresponding eigenvalues λk, k=1,..,N. 

Since a set of all the eigenvectors of an algebraic matrix is complete, any arbitrary vector 
such as the initial error vector e(0) can be expressed by a linear combination of these 
eigenvectors as 
 

  e(0)  =  ∑
=

N

1k
kk vc  

 
where {ck} is a set of constants. If we repeatedly apply G on vector e(0), we get 
 

 e(1) = Ge(0) = ∑
=

N

1k
kkGvc = ∑

=

λ
N

1k
kkk vc ,  

 … 

 e(m) = Gme(0) = ∑
=

λ
N

1k
k

m
kk vc  

 
It follows that e(m) → 0 as m → ∞ if and only if all eigenvalues in absolute value are less 
than unity, i.e. |λk| < 1. In addition, the smaller the eigenvalue |λk| is, the faster the term 

k
m
kk vc λ  diminishes. Therefore, it is the largest eigenvalue ||max kN,...,1k

λ
=

 which determines 

the overall rate at which the iterative method converges. Different iterative schemes for 
an algebraic system (4.1.1) distinguish between each other by different ways to construct 
the iteration matrix G with different spectral radius ρ(G) ≡ ||max kN,...,1k

λ
=

.  

 
Although the eigenvalue/eigenvector concept is quite important for understanding 

the performance of an iterative method, we hardly attempt to compute eigenvalues for a 
general matrix G, except when we have to do so, since this would be as costly as the 
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solution of the algebraic system itself. However, certain structures of algebraic matrices 
have been studied and identified as applicable to a convergent iterative scheme. A class 
of such matrices is branded as symmetric positive definite (SPD), which typically arises 
from finite difference discretization of partial differential equations. The eigenvalues of a 
SPD matrix are all positive and evenly distributed between 0 and 1.         
 
 In practice, the convergence is tested during the iteration process by using some 
criterion for judging solution accuracy. When this criterion is satisfied, the iteration 
process is terminated and the current iteration vector is accepted as the solution. The ideal 
criterion to terminate the iteration process would be when the error norm ||e(m)|| is within 
some desired accuracy ε, i.e. 

 
||e(m)||  ≤  ε        (4.2.7)  

 
However, it is hard to estimate the error e(m) directly since the exact solution x  is not 
known. Instead, one may compute the relative change from one iteration to the next and 
compare its norm with some desired tolerance, such that  

 
||x(m) − x(m-1)||  ≤  ε       (4.2.8) 

 
The problem associated with the use of this stopping criterion is that, if an iterative 
scheme is very slowly converging, one may encounter the so called false convergence, 
for which the condition (4.2.7) is actually not satisfied. 
 
 Another approach to bound the error e(m) is to define the residual vector r(m) 

 
r(m)  ≡  b − Ax(m)  =  Ae(m)      (4.2.9) 

 
which implies 
 
  ||e(m)||  ≤  ||A-1||⋅||r(m)|| 
 
Therefore, the stopping criterion 

 
||r(m)||  ≤  δ        (4.2.10) 

 
also yields the upper bound on the error as  
 

||e(m)|| ≤ δ||A-1|| = ε.  
 
This latter approach is more preferred in practice. 
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The Jacobi Method 
 
Perhaps the simplest iterative method is the Jacobi method. In order that the method can 
be formally applied, it is required that no diagonal element of A should vanish, i.e. aii ≠ 0. 
The Jacobi method is defined by 

 

)1m(
ix +  = 

ii

N

ik

)m(
kiki

a

xab ∑
≠

−
,  i = 1,..,N    (4.2.11) 

 
or in matrix notation of (4.2.1) with  

 
GJ ≡ −D-1(L+U) = D-1A − I 
 
kJ ≡ D-1b 

 
where L, U and D are respectively the lower triangular, upper triangular and diagonal 
matrices constituting A such that 
 
  A = L + D + U 
 
It can be shown that if matrix A has weak diagonal dominance, i.e. 
 

  |aii| ≥ ∑
≠

N

ik
ik |a|  

 
then ρ(G) < 1 or the Jacobi method is convergent [Young & Gregory (1973)]. 
 
 A rigorous analysis of the convergence of the Jacobi method shows that the 
spectral radius of the method is 
 
  ρJ = 1 − O(1/N2) 
 
Therefore, if N is large, ρ ≈ 1, so the Jacobi scheme converges very slowly. 
 
 In addition to slow convergence, the Jacobi iterative scheme requires the storage 
of two vectors x(m+1) and x(m) at each iteration. The only feature of the Jacobi scheme 
which is most favourable for parallel computation is that the order in which the values of 
the current iteration vector are evaluated is irrelevant, that is, they could be updated 
simultaneously. 
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The Gauss-Seidel Method 
 
The Gauss-Seidel method is very similar to the Jacobi method except that it uses the 
updated values of the iteration vector as soon as they are available. Thus, for this iterative 
scheme, only one iteration vector needs to be stored. The Gauss-Seidel method is defined 
by 

 

)1m(
ix +  = 

ii

1i

1k

)1m(
kik

N

1ik

)m(
kiki

a

xaxab ∑∑
−

=

+

+=

−−
,  i = 1,..,N  (4.2.12a)   

 
or in matrix notation  

 
x(m+1)  =  −D-1Lx(m+1)  − D-1Ux(m) + D-1b    (4.2.12b) 

 
Using the form (4.2.1), one finds the Gauss-Seidel iteration matrix as   

 
GS = −(L+D)-1U = −(I + D-1L)-1(D-1U) 
 
kS = (L+D)-1D-1b 

 
The convergence of the Gauss-Seidel method is assured if the matrix A is strictly 
diagonally dominant, i.e. 
 

  |aii|  > ∑
≠

N

ik
ik |a|  

 
The spectral radius for the Gauss-Seidel method, as of the Jacobi method, is found to be  
 
  ρS = 1 − O(1/N2) 
 
but the Gauss-Seidel method converges twice faster than the Jacobi method. Unlike the 
Jacobi method, the order in which the values of the iteration vector are updated may 
sensitively influence on the convergence rate of the Gauss-Seidel scheme. Nevertheless, 
it is possible to re-order the equations in the system, resulting in several schemes (for 
example, the Red-Black Gauss-Seidel scheme) that are also suited for the parallel 
computation. 
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The Successive Over-Relaxation Method 
 
The successive over-relaxation (SOR) method is only a slight modification of the Gauss-
Seidel method but it may converge faster than the latter by an order of magnitude. The 
SOR method is defined by 

 

)1m(
ix +  = ω

ii

1i

1k

)1m(
kik

N

1ik

)m(
kiki

a

xaxab ∑∑
−

=

+

+=

−−
 + (1−ω) )m(

ix , i = 1,..,N (4.2.13) 

 
where ω is a real number known as the relaxation factor. If ω = 1, the SOR simplifies to 
the Gauss-Seidel method. SOR fails to converge if ω is outside the interval (0, 2). The 
choice of ω < 1 would result in under-relaxation, and hence it is of little interest. To 
accelerate the convergence, the value of ω should be between 1 and 2. In matrix notation 
of the form (4.2.1), the SOR iteration matrix is found as 

 
Gω = −(I+ωD-1L)-1[ωD-1U − (1−ω)I] 
 
kω = (I+ωD-1L)-1ωD-1b          

 
Theoretically, it is possible to choose an optimum value for ω so that the SOR converges 
the most rapidly. In principle, such an optimum value for ω may be given by [Hageman & 
Young (1981)] 

 

ωb = 
2
J11

2

ρ−+
       (4.2.14) 

 
where ρJ is the spectral radius of the Jacobi iteration matrix. This is, however, seldom 
done, since calculating the spectral radius of the Jacobi matrix requires an impractical 
amount of computation. Frequently, ωb is estimated during the iteration process. The 
corresponding spectral radius for the SOR method with optimum relaxation can be found 
as 
 
  ρω = ωb −1 = 1 − O(1/N) 
 
The Alternating Direction Implicit Method 
 
The alternating direction implicit (ADI) method is a very powerful method, especially 
for solving algebraic systems arising from discretization of differential equations on 
rectangular domain [Hageman & Young (1981)]. Generally, ADI methods are based on 
decomposing the coefficient matrix into a small number of matrices of simpler structure 
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and the problem of solving the original algebraic system is reduced to a succession of 
solving these resulting simpler algebraic systems. By using an ADI method, an extremely 
rapid convergence can be achieved for certain modelled problems. However, the ADI 
methods still suffer greatly from lack of generality. In fact, slow convergence and 
difficulty in producing effective iteration parameters become increasingly more 
detrimental as deviation from model conditions increases. 
 
 One of the first ADI methods is the Peaceman-Rachford method that splits the 
matrix A into 
 
  A = H + V  
 
The method is defined by 

 
(H + τhI)x(m+½)  =  b − (V − τhI)x(m)     (4.2.15) 

   
(V + τvI)x(m+1)  =  b − (H − τvI)x(m+½) 

 
Here it is assumed that for any positive numbers τh and τv (the iteration parameters) the 
first system can be solved easily for x(m+½), given x(m), and the second can be solved 
easily for x(m+1), given x(m+½). In a typical case involving a linear system arising from an 
elliptic differential equation on a rectangular domain, H and V are tridiagonal matrices: H 
is the matrix corresponding to horizontal differences and V is the matrix corresponding to 
vertical differences. It is known that, for tridiagonal matrix systems, the TDMA has been 
proved to be a very simple and fast solver.  
 
 Extension of the ADI method to a 3D problem is not straightforward as it might 
seem to be since the resulting equation system similar to (4.2.15) will involve much more 
than three equations and many iteration parameters to compute [Dai & Nasaar (1998)]. 
Moreover, in spite of many attempts to analyze the ADI method, a solid mathematical 
foundation still does not exist. 
  
4.2.2 Non-Stationary Iterative Methods 
 
Non-stationary methods differ from stationary methods in that the computations involve 
the iteration parameters that change at each iteration. Typically, non-stationary methods 
are faster than the basic iterative methods but add more complexity and computational 
efforts. 
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The Conjugate Gradient Method 
 
The Conjugate Gradient (CG) method is an effective method for solving linear algebraic 
systems of form (4.1.1), whose coefficient matrix A is symmetric and positive definite, 
i.e. 
 

A  =  AT  and  〈v, Av〉 > 0  ∀v≠0 
 
where 〈x, y〉 denotes an inner (scalar) product of two N-size vectors {xk} and {yk} 

 

〈x, y〉  ≡ ∑
=

N

1k
kk yx          (4.2.16) 

  
The CG method can be regarded as a modification of the method of steepest descent (SD) 
[Hageman & Young (1981)]. To derive the SD method, consider the quadratic function 

 
F(x)  =  ½〈x, Ax〉  −  〈b, x〉     (4.2.17) 

 
It is known from calculus that, if F(x) has a minimum at some point x, then all partial 
derivatives of F must be zero at that point. Calculating the partial derivatives of F with 
respect to each xi, and setting each partial derivative to zero results in the linear system 
 
  b − Ax = 0 or  Ax  =  b 
 
That is, solving Ax = b is equivalent to minimizing F(x). From (4.2.17), the gradient of F 
is given by  

 
∇F(x)  =  b − Ax      (4.2.18) 

 
The direction of the vector ∇F(x) is the direction for which the function F(x) at the point 
x has the greatest instantaneous rate of change. If x(m) is some approximation to x , then 
in the SD method one obtains an improved approximation x(m+1) by moving in the 
direction of ∇F(x(m)) to a point where F(u(m+1)) is minimal, i.e. 

 
x(m+1)  =  x(m) + αm∇F(x(m))  =  x(m) + αmr (m)    (4.2.19) 

 
since ∇F(u(m)) = b − Ax(m) ≡ r(m). The scalar constant αm is an iteration parameter chosen 
to minimize F(x(m+1)), i.e. ∇F(x(m+1)) = 0. Utilizing (4.2.18) and (4.2.19), and taking an 
inner product of the gradient vector ∇F(x(m+1)) with the residual vector r(m), one can 
compute αm by 
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αm = 
)m()m(

)m()m(

Ar,r

r,r
         (4.2.20) 

 
 The SD method is easy to program, but it often converges very slowly. The main 
reason for its slow convergence is that the method may spend time minimizing F along 
parallel search directions. However, by choosing the direction vectors differently, one 
obtains the CG method, which gives the solution in at most N iterations in the absence of 
rounding errors. Let x(0) be arbitrary and let successive approximations to the solution x  
be given by 

 
x(m+1) = x(m) + αmp(m)       (4.2.21) 

 
where p(m) is a direction vector given by  
 
  p(0) = r(0) 

 
p(m) = r(m) + βmp(m−1),  for m ≥ 1     (4.2.22) 

 
The scalar constant βm is chosen so that p(m) is A-conjugate to p(m-1), i.e. 
 
  〈p(m), Ap(m-1)〉 = 0 
 
Evidently, 

 

βm = −
)1m()1m(

)1m()m(

Ap,p

Ap,r
−−

−

         (4.2.23) 

 
As in SD method, choosing αm to minimize F(x(m+1)), one obtains 

 

αm = 
)m()m(

)m()m(

Ap,p

r,p
       (4.2.24) 

 
It can be shown that the residual vectors r(0), r(1), … are mutually orthogonal, i.e.  

 
〈r(m), r(n)〉 = 0  for m ≠ n 

 
It follows that r(k) = 0 for some k ≤ N. Thus, the CG method converges, in the absence of 
rounding errors, in at most N iterations. 
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The vector sequences in the CG method correspond to a factorization of a 
tridiagonal matrix similar to the coefficient matrix. Therefore, a breakdown of the 
algorithm can occur corresponding to a zero pivot if the matrix is indefinite. Furthermore, 
for indefinite matrices the minimization property of the CG method is no longer well-
defined. Various schemes based on CG method have been developed for solving more 
general algebraic systems where non-symmetric indefinite matrices may take place. 

        
The Chebyshev Acceleration Method  
 
The Cherbyshev acceleration method is based on a general procedure for accelerating the 
rates of convergence of basic iterative methods. This acceleration procedure involves the 
formation of a new vector sequence from linear combinations of the iterates obtained 
from the basic method. Suppose the completely consistent basic method (4.2.1) is used to 
obtain approximations for the solution of the nonsingular matrix problem (4.1.1). Let 
sequence of iterates generated by the basic method be given by { )m(x~ }, i.e. given )0(x~ , 
the sequence { )m(x~ } is formed by 
 

)m(x~   =  G )1m(x~ −  + k       (4.2.25) 
 
The corresponding error vector defined by )m(e~ ≡ x  − )m(x~ satisfies 

 
)m(e~   =  Gm )0(e~         (4.2.26) 

 
As a means to enhance the convergence of )m(x~ , one considers a new vector sequence 
{x(m)} determined by the linear combination 

 

x(m)  = ∑
=

α
m

0

)(
,m x~

l

l
l ,  m = 1, 2,…     (4.2.27) 

 
In order to ensure that x(m)

 = x  whenever )0(x~ = x , the only restriction imposed on the 
real numbers αm,ℓ is that 

 

∑
=

α
m

0
,m

l
l = 1        (4.2.28) 

 
The error vector e(m) ≡ x −x(m) can also be expressed in terms of )0(e~ as 
 

  e(m)  =  − ∑
=

α
m

0

)(
,m x~

l

l
l   =  ∑

=

α
m

0

)m(
,m e~

l
l  =  
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l
l

)0(e~  
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It follows that  e(0) = )0(e~  and 
 

e(m)  =  Qm(G)e(0)       (4.2.29) 
 
where Qm(G) is the matrix polynomial given by 

 
Qm(G)  ≡  αm,0I + αm,1G + … + αm,mGm       (4.2.30) 

 
One now defines an associated algebraic polynomial as 

 
Qm(ξ)  =  αm,0 + αm,1ξ + … + αm,mξm     (4.2.31) 

 
From (4.2.29), it follows that 

 
||e(m)||  ≤  ||Qm(G)||⋅||e(0)||  =  ρ(Qm(G))||e(0)||    (4.2.32) 

 
The Chebyshev acceleration procedure reduces the error norm ||e(m)|| by picking the 
polynomials {Qm(ξ)} such that the spectral radius ρ(Qm(G)) is small. More precisely, if 
{λk | k = 1,..,N} is a set of eigenvalues for G, then {Qm(λk)} is the set of eigenvalues for 
Qm(G). Thus, 

 
ρ(Qm(G)) = |)(Q|max kmN,...,1k

λ
=

      (4.2.33) 

 
Since the complete eigenvalue spectrum of G is seldom known, it is more convenient to 
consider the virtual spectral radius ))G(Q( mρ instead of ρ(Qm(G)) as 

 
ρ(Qm(G))  ≤  ρ (Qm(G)) = |)(Q|max m

maxmin

ξ
λ≤ξ≤λ

    (4.2.34) 

 
The polynomials {Qm(ξ)} are chosen such that ρ (Qm(G)) is minimized. The above 
described procedure is called a polynomial acceleration procedure applied to a basic 
iterative method. The high arithmetic cost and the large amount of storage required in 
using (4.2.27) to obtain x(m) make it necessary to seek alternative, less costly way to 
compute x(m). A simpler computation form for x(m) is possible whenever the polynomials 
{Qm(ξ)} satisfy the following recurrence relation 

 
Q0(ξ) = 1; Q1(ξ) = γ1ξ − γ1 + 1      (4.2.35) 

 
 Qm+1(ξ) = δm+1(γm+1ξ − γm+1 + 1)Qm(ξ) + (1 − δm+1)Qm-1(ξ),  for m ≥ 1 
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where γm and δm are real numbers. In this case, the iterates x(m) of (4.2.27) may be 
obtained as 
 
 x(1) =  γ1(Gx(0) + k)  + (1−γ1)x(0) 

 
x(m+1) = δm+1[γm+1(Gx(m) + k) + (1−γm+1)x(m)] + (1 − δm+1)x(m-1)   (4.2.36) 

 
The matrix polynomial Qm(G) which minimizes ρ (Qm(G)) is unique and can be defined 
in term of Chebyshev polynomials. The Chebyshev polynomials are given by 

 
T0(z) = 1, T1(z) = z,      (4.2.37) 

   
Tm+1(z) = 2zTm(z) − Tm(z)   

 
One then defines the polynomials {Qm(ξ)} as 

 

Qm(ξ) = 









λ−λ
λ−λ−









λ−λ
λ−λ−ξ

||||
||||2

T

||||
||||2

T

minmax

minmax
m

minmax

minmax
m

      (4.2.38) 

 
It is obvious that {Qm(ξ)}satisfy three-term recurrence relation (4.2.35), with 

 

γm+1 = γ  = 
||||2

2

minmax λ−λ−
, 

 

δm+1 = 2z(1)
))1(z(T

))1(z(T

1m

m

+

,  

 

z(ξ) = 
||||

||||2

minmax

minmax

λ−λ
λ−λ−ξ

.  

 
This iterative scheme is referred to as the optimal Chebyshev acceleration procedure for 
the basic iterative method (4.2.1). The convergence rate of this iterative scheme is 
estimated by the virtual spectral radius of Qm(G) as 
 
  ρ (Qm(G)) = [T(z(1))]-1 = 1 − O(1/N) 
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The Chebyshev acceleration procedure described above avoids the computation of inner 
products as required in CG method. For parallel computation, these inner products may 
be a bottleneck with respect to efficiency. The price one pays for avoiding inner products 
is that the method requires enough knowledge about the spectrum of the coefficient 
matrix. Since it is impractical to obtain the eigenvalue spectrum of the iteration matrix, 
the largest and smallest eigenvalues are only estimated, leading to non-optimal 
acceleration procedures.  
 

* 
*     * 

 
Iterative methods are almost always used for solving large or complex algebraic systems, 
such as the ones which typically arise from discretization of the reactor kinetics 
equations. Unfortunately, convergence of a basic iterative method sensitively deteriorates 
with an increasing number of equations in the solving algebraic system. The simpler the 
method is, the stronger its convergence depends on the size of the solving algebraic 
system. Even the fastest, and the most complicated, too, methods would require at least 
the number of iterations as same as the number of equations for solution. 
 Fortunately, there is a class of iterative methods whose convergence is 
independent of the size of a solving algebraic system and which we will discuss in the 
rest of this thesis.     
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Chapter 5 
 

MULTIGRID METHODS 
 

Discretization of the spatial neutron kinetics equations - or, indeed, of any 
multidimensional partial differential equations in general - results in a large, sparse set of 
coupled algebraic equations. It is not practical or even possible to use direct methods for 
inverting such a large system due to both excessive cost and inaccuracy in computation. 
In such cases, iterative methods can always be used but they are not so efficient if the size 
of algebraic systems is very large, from a few thousand to a few million. The reason is 
that the convergence rate of most basic iterative methods deteriorates with an increasing 
size of the algebraic system. Implementation of parallel computation on modern high-
speed multiprocessor computer systems can, in principle, reduce the ‘wide’ problem 
(associated with memory storage and computation work as an algebraic system swept 
through) but it does nothing with the ‘deep’ problem (associated with the total number of 
such sweeps required for the solution to converge, i.e. the convergence rate). 
  
 It is obvious that, the overall efficiency of numerical solution of a partial 
differential equation is mostly affected by solution of its discretized system. Currently in 
reactor calculations, a traditional approach to increase efficiency of neutronics 
computation is to use a coarse-mesh discretization technique, such as a nodal method, to 
reduce the number of discretized equations that must be solved. Although being much 
smaller in size than the difference equation system (which results from fine-mesh 
discretization of the same problem with a finite difference technique), the nodal 
discretized system is still relatively large (typically, of tens of thousands of equations) 
and not easy to solve for, from the viewpoint of numerical analysis. Due to its complex 
and nonlinear nature, an algebraic system of nodal discretized equations usually requires 
expensive preconditioning (involving multiplication of matrices to transform an original 
system to its approximation that is easier to solve for) in order for its iterative solution to 
converge. Moreover, because nodal discretized systems appear to be incompatible with 
sophisticated iterative schemes, it is difficult to accelerate convergence of the iterative 
solution [Moulton (1996)].     
 
 Another quite different approach that we wish to introduce in this work is to 
increase efficiency of solution of finite difference discretized systems, though very large 
but rather simple, by accelerating convergence of the iterative solution. In this approach, 
optimal iterative methods (that have the convergence rate independent of the size of the 
algebraic system) are sought and multigrid methods - the fastest iterative methods known 
today - are among them. With an optimal multigrid, the ‘deep’ problem of solving large 
algebraic systems can be resolved.        
 
            Multigrid methods have been developed only recently but become quite a 
standard iterative method finding more and more applications in many fields of science 
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and engineering [Douglas (1997)]. The first multigrid algorithm was formulated by 
Fedorenko (1961) for solving the Poisson equation descretized with the standard 5-point 
finite difference technique on a square domain. This work was then generalized to the 
central difference discretization of the general linear elliptic partial differential equation 
on a square domain by Bachvalov (1966). However, the first practical results were reported 
by Brant (1977), clearly outlining principles and the practical utility of the multigrid, which 
drew wide attention and marked the beginning of rapid development.  
 
 In this chapter, the essential principle of the multigrid will be given and analyzed. 
 
5.1 Error Smoothing 
  
5.1.1 One-Dimensional Model Problem 
 
The essential principle of the multigrid methods for PDE will be explained by studying a 
1D model problem. Although 1D problems do not require application of iterative 
methods, since direct solution is efficient for solving tridiagonal matrix systems resulting 
from their discretization, but in one dimension the iterative methods, including the 
multigrid, can be analyzed by elementary methods, and their essential principle is easily 
demonstrated.  
 
 Consider the following model diffusion problem in one space dimension x 

 

)x(
dx
d

2

2

φ−  =  s(x),  x ∈ [0, 1],  φ(0) = φ(1) = 0  (5.1.1) 

 
A computational grid Ω is defined by 
 
  Ω  = {xj = jh; j = 0,1,..,N; h = 1/N}  
 
Equation (5.1.1) is discretized with either vertex-centered or cell-centered finite 
differences [Wesseling (1992)], resulting in the following 3-point difference equation 
system 
 
  2φ1 − φ2  =  h2s1 = b1 

 
−φj-1 + 2φj − φj+1 =  h2sj  =  bj,  j = 2,..,N-2   (5.1.2a) 

   
φN-2 − 2φN-1  =  h2sN-1  =  bN-1 

 
or, in matrix notation, 

 



Nguyen Thai Sinh PhD Thesis 
McMaster - Engineering Physics Chapter 5. Multigrid Methods 

 70

Aφ  =  b        (5.1.2b) 
 
where s(x) is the given source function that is represented by a discrete set of the values 

)x(ss jj ≡ ; φj is intended to approximate the unknown function φ(xj); A is a tridiagonal 
matrix and b is a column vector. 
  
5.1.2 Iterative Solution 
 
Of course, the tridiagonal system (5.1.2) can be solved efficiently by using a direct 
method such as the TDMA (see in Chapter 4). However, for large algebraic systems 
arising from discretization of multidimensional problems, direct solvers are no longer 
either efficient or accurate; therefore, iterative methods are used instead. When system 
(5.1.2) is solved by using a basic iterative method with an arbitrary initial guess φ(0), the 
m-th iterate vector φ(m) is given by  

 
)m(

jφ  =  
2
ω [ )m(

1j
κ−

−φ + )1m(
1j
−

+φ  + bj] + (1−ω) )1m(
j

−φ    (5.1.3) 

 
where κ = 1 for the Jacobi scheme and κ = 0 for the Gauss-Seidel scheme. Both schemes 
can be used without relaxation (ω = 1) or with relaxation ω ≠ 1. Note that the SOR 
scheme is a case of the Gauss-Seidel scheme with an over-relaxation, 1 < ω < 2.  
 
5.1.3 Error Smoothing Analysis 
 
If φ  is the exact solution of (5.1.2), then the error e(m) ≡ φ  − )m(φ  satisfies 

 
)m(

je  =  
2
ω [ )m(

1je κ−
− + )1m(

1je −
+ ] + (1 − ω) )1m(

je −     (5.1.4) 

 
Such a grid error function can be represented by the following Fourier series [Wesseling 
(1992)] 
 

  )m(
je  =  ∑

−

=

θα
1N

1k

ij)m(
k

ke ,     i = 1− ,  θk = 
N
kπ   

 
Equation (5.1.4) can be rewritten in terms of the Fourier modes as  
 

 ∑
−

=

θα
1N

1k

ij)m(
k

ke = 
2
ω




α∑

−

=

θ−κ−
1N

1k

)1j(i)m(
k

ke + 



α∑

−

=

θ+−
1N

1k

)1j(i)1m(
k

ke + (1 − ω)∑
−

=

θ−α
1N

1k

ij)1m(
k

ke  
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From the orthogonality of { kije θ }, i.e. 
 

 ∑
−

=

θ−θ
1N

1j

ijij ee k l  =  




≠
=

=∑
−

=

θ−θ

l

l
l

kif0
kifN

e
1N

1j

)(ij k    

 
it follows that, for any mode k,  
 

 )m(
kα  = 

2
ω [ ki)m(

k e θ−κ−α + ki)1m(
k e θ−α ] + (1 − ω) )1m(

k
−α   

 
The growth or decay of a Fourier mode of the error during iteration is measured by the 
amplification factor, defined by 

 

g(θk)  =  )1m(
k

)m(
k
−α

α        (5.1.5) 

 
The amplification factor in the Jacobi scheme can be computed as  

 
 gJ(θk)  =  |1 − ω(1 − cosθk)|      (5.1.5a) 

 
and, in the Gauss-Seidel scheme, as   

 

gS(θk)  = 2
k

2
k

2

cos44
cos)1(4)1(4
ω+θω−

ω+θω−ω+ω−    (5.1.5b) 

 
For any iterative scheme to converge, it is necessary and sufficient that  
 
 g(θk) < 1  for all k = 1,..,N-1 
 
which means that all Fourier modes of the error must decay with iteration. However, 
different Fourier modes decay at different rates, since g(θk) is varying with the wave 
number k. For example, the Gauss-Seidel scheme without relaxation (ω = 1) has 
 

 gS(θk)  = 
kcos45

1
θ−

< 1 for all k 

 
Hence, the Gauss-Seidel scheme is convergent. Moreover, since 
 
 gS(θk) → 1  if  k → 0   
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and 
 
 gS(θk) → 1/3  if  k → N, 
 
the long-wave modes (with small k) decay very slowly while the short-wave modes (with 
large k) decay more rapidly. It is the largest amplification factor, max{g(θk)}, which 
determines the overall convergence of the iterative scheme. We recall from Chapter 4 that 
the convergence rate of an iterative scheme is bounded by the spectral radius of the 
iterative matrix ρ(G). Thus, the convergence rate of the Gauss-Seidel method for solving 
(5.1.2) is given by 
 

 ρS  ≡ max{g(θk)} = g(θ1) =

N
cos45

1
π

−
 ≈ 1 − 2N

10  

 
corresponding to the rate at which the largest wavelength mode (k = 1) decays. It is 
obvious that convergence of the Gauss-Seidel scheme strongly depends on the size of the 
algebraic system, or the number of the mesh points used for discretization of the original 
PDE. The total number of Gauss-Seidel iterations required for the solution of (5.1.2) to 
converge to within a given accuracy is proportional to the square of the system size. 
Although the Gauss-Seidel is not an efficient iterative method for solving large systems 
because g(θ1) is very close to 1, it is rather effective for damping down the short-wave 
modes with N > k ≥ N/2, whose half-wavelengths are equal or less than doubled mesh 
spacing (≤ 2h).  
 
 Iterative methods which are capable of damping down the short-wave Fourier 
modes more rapidly than the long-wave modes are called smoothers. A good smoother 
should have the short-mode damping factor to be small and independent of the system 
size. For N > k ≥ N/2, the damping factor of the Gauss-Seidel scheme is bounded by 
 
 gS(θk=N/2) = 51  =  0.4472    
 
Hence, the Gauss-Seidel method is a good smoother. As an illustration of a smoother, we 
use the Gauss-Seidel method to solve the system (5.1.2). We set b = 0 so that to solve 
Aφ=0. The exact solution of the system is φ  = 0. Let φ(0) be an initial guess, consisting of 
the following three modes with different wave numbers k = 1, k = N/4 and k = N/2 
 
 )0(

jφ  =  sin(jh) + sin(¼Njh) + sin(½Njh) 
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The error e(m) will be the same as φ(m) but of the opposite sign, i.e. it also consists of those 
three modes. The total error and its Fourier modes decay during the iteration process as 
shown in Fig.5.1.1. 
 
      

 
 
From Fig.5.1.1 it is seen that, after only several Gauss-Seidel sweeps, the short mode 
with k = N/2 has been effectively eliminated, but the longer modes still remain there. In 
fact, for N = 20, it would require as much as 96 iterations for the longest mode (k = 1) to 
decrease by just an order of magnitude, i.e. ||e(96)|/||e(0)|| ≈ 0.1. If N doubles to 40, this 
number of iterations will quadruple to about 380.    
 
 The Jacobi method without relaxation (ω = 1), though convergent, is not a 
smoother, because gJ(θk)→1 as k→N. However, if the relaxation parameter ω is chosen 
less than 1, it may become a smoother, and it best reduces the short-wave modes at ω=2/3 
(see in Fig.5.1.2). With ω > 1, the method is divergent because the amplification factors 
for some long-wave modes are more than 1.  
 

 

k→N 

k=N/2 
ω 

g(θk) 

Figure 5.1.2. Short-wave mode amplification factor by the Jacobi method   
2/3 

 
k=N/2 

 
k=N/4 

 
k=1 

 
Total 
error 

  Initial - e(0) After 5 iterations - e(5) 

Figure 5.1.1. Error smoothing effect of the Gauss-Seidel method 
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 It is interesting to note that, while the SOR - a Gauss-Seidel method with over-
relaxation (1 < ω < 2) - is generally much faster than the Gauss-Seidel method in solving 
an algebraic system, it is not as a good smoother as the Gauss-Seidel method and, 
therefore, usually not used as a smoother. However, the Gauss-Seidel method with little 
under-relaxation may become a slightly better smoother. That is, at ω = 0.8285 the short-
wave damping factor is minimal and equal 0.4142 (cf. 0.4472 at ω = 1) (Fig.5.1.3). 
 
5.2 The Two-Grid Algorithm 
 
As seen in the preceding section, a basic iterative method such as the Gauss-Seidel is 
capable of smoothing the error by removing its non-smooth part (i.e. the short-wave 
Fourier modes) in a fixed, small number of iterations, but leaving the smooth part little 
changed on a given computational grid. We immediately realize that if the long-wave 
modes can be eliminated in some ways before iteration, then we can solve the algebraic 
system efficiently by using a simple smoothing method. In order to eliminate the long-
wave Fourier modes of the error, we transfer them to a coarser grid and solve for them 
there. This procedure is referred to as the two-grid algorithm. 
 
5.2.1 Coarse Grid Approximation 
 
Consider the algebraic system (5.1.2) resulting from discretization of the model problem 
(5.1.1) on grid Ωh (or, simply, Ω) with the mesh size h. Grid Ω is further referred to as 
the fine grid. The coarse grid ΩH is formed by either doubling the mesh-size of the fine 
grid Ω, i.e. H = 2h, as in vertex-centered coarsening, or by agglomerating every two 
inner consecutive mesh intervals on Ω, as in cell-centered coarsening (Fig.5.2.1).                

ω 

k→N 

k=N/2 

g(θk) 

Figure 5.1.3. Gauss-Seidel amplification factor for short wave modes  
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Let φ~  be an approximation to the solution of (5.1.2) on the fine grid. It is obvious 

that solving the original system 
 
 Aφ  =  b 
 
for φ with the initial guess φ~  by using an iterative method is equivalent to solving the 
residual system  
 
 Ae  =  r  ≡  b − A φ

~  
 
for the error e ≡ φ− φ~  and then correcting the solution φ as 
 
 φ  ← φ~  + e   
 
In this context, the solution to the error e is regarded as the correction which we wish to 
approximate on the coarse grid by solving the coarse grid equation system 
 

 AHφH  =  bH        (5.2.1) 
 
We define a prolongation operator P: ΩH → Ωh which takes the solution φH on the coarse 
grid as the correction on the fine grid, as 

 
 e = PφH        (5.2.2) 

 
A restriction operator R: Ωh → ΩH is defined to send the residual on the fine grid to the 
coarse grid, as 

 
 bH = Rr        (5.2.3) 

 
The coarse grid system (5.2.1) must be an approximation to the fine grid system (5.1.2). 
Like the fine grid matrix A, the coarse grid matrix AH may be obtained by discretizing the 
original PDE on the coarse grid ΩH. This is called discretization coarse grid 

 vertex-centered coarsening    cell-centered coarsening 

Figure 5.2.1. Grid coarsening in one dimension 

Ω 

ΩH
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approximation (DCA). An alternative way to obtain AH is to apply the restriction to the 
residual system 
 
 RAe  =  Rr  ∝ RAPφH  =  bH   
 
From (5.2.1), it follows that   

 
 AH  =  RAP        (5.2.4) 

 
This is called Galerkin coarse grid approximation (GCA) or RAP. 
 
 Now, with R, P and AH provided, the two-grid algorithm for linear problems is 
defined as 
 

 
 
In the two-grid algorithm, S(φ*,A,b,m) denotes m smoothing iterations with a basic 
iterative method (e.g. the Gauss-Seidel method) applied to Aφ = b, starting with φ*. The 
first application of S is called pre-smoothing (with m1 iterations), the second is post-
smoothing (with m2 iterations). The indexes 3

1  and 3
2  denote the values of an iterate 

vector just before and after the coarse grid correction, respectively. 
   
5.2.2 Two-Grid Convergence Analysis 
 
We now analyze the convergence of the two-grid algorithm for the model problem. 
Consider the case of vertex-centered coarsening with N = 2NH, in which each coarse grid 
point j coincides with the fine grid point 2j (vertex-centered coarsening simply removes 
the odd points on the fine grid to form the coarse grid). The prolongation operator is 
chosen such that 
 

The Two-Grid Algorithm 

 Guess φ(0) 

 Smooth m1 times on Ω:   φ(1/3) = S(φ(0), A, b, m1) 

 Compute the residual:   r = b − Aφ(1/3)    

 Restrict the residual to ΩH:  bH = Rr 

 Solve the coarse grid equation: φH = 1
HA− bH 

 Correct the solution on Ω:   φ(2/3) = φ(1/3) + PφH 

 Smooth m2 times on Ω:   φ(1) = S(φ(2/3), A, b, m2) 
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 P: e2j  = H
jφ   

 
e2j+1 =  ½ H

jφ + ½ H
1j+φ    j = 0,1,..,NH    

 
This is called linear interpolation. The restriction operator is  
 
 R: H

jb  = r2j-1 + 2r2j + r2j+1                    
 
In this particular model problem, either DCA or GCA will give the coarse grid equations 
of the same form as the fine grid equations, as 
 
 2 H

1φ − H
2φ  = H

1b  
 
 − H

1j−φ  + 2 H
jφ − H

1j+φ  = H
jb ,  j = 2,..,NH-2 

 
 − H

2NH −
φ  + 2 H

1NH −
φ  = H

1NHb
−

 
 
Suppose that we do not apply the pre-smoothing, i.e. m1 = 0, so φ(1/3) ≡ φ(0) and e(1/3) ≡ e(0). 
After coarse grid correction, the error is 

 
 e(2/3)  ≡ φ  − φ(2/3)  =  φ  − [φ(0) + PφH]  =  e(0) − P 1

HA− RAe(0)  =  Ee(0)   (5.2.5) 
 
where E ≡ [I − P 1

HA− RA] is called an error amplification matrix.  
 

For the given model problem, e(2/3) can be explicitly expressed in terms of e(0). 
Because the solution φH on the coarse grid is exact and it corresponds to the exact 
correction of the even points on the fine grid, it follows that 
 
 )3/2(

j2e  = )0(
j2e  + H

jφ  = 0   
 
∴  )0(

j2e  = − H
jφ  

 
 )3/2(

1j2e + = )0(
1j2e + + ½ H

jφ + ½ H
1j+φ  =  −½ )0(

j2e  + )0(
1j2e +  − ½ )0(

2j2e +  
 
Since coarse grid correction is to reduce the error, it follows that  

 
 ||e(2/3)||  ≤  ||e(0)||       (5.2.6) 
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The equality may hold if restriction of the residual is identically zero, i.e. Rr = bH = 0. It 
is obvious that, when Rr = 0, coarse grid correction is not necessary.  
 
 Consider the effect of post-smoothing by one Gauss-Seidel iteration (m2=1). From 
(5.1.4), we have 
 
 )1(

1e  =  ½ )3/2(
2e  =  0 

  

)1(
j2e  =  ½ )1(

1j2e −  + ½ )3/2(
1j2e +   =  

2
e )3/2(

1j2 +  + 
8

e )3/2(
1j2 −  + 

32
e )3/2(

3j2 −  +…   

  
)1(

1j2e +  =  ½ )1(
j2e  

 
By induction, we find that 

 
 ||e(1)||∞  < 3

2 ||e(2/3)||∞  ≤  3
2 ||e(0)||∞ (where, ||⋅||∞ = max|⋅|)   (5.2.7) 

 
We see that the Gauss-Seidel method reduces the maximum norm of the error by a factor 
bounded by 3

2 . It shows that the rate of convergence of the two-grid method is 
independent of the mesh size h. It is also noted that, equation (5.2.3) when applied to the 
model problem will be 
 
  RAe(2/3)  =  0  =  )3/2(

1j2r −  + 2 )3/2(
j2r  + )3/2(

1j2r +  
 
The zero of the sum of local weighted residuals with positive weighting factors implies 
that the residual r(2/3) has many sign changes, and therefore, is non-smooth (or rough), so 
is the error after coarse grid correction. The smoother is efficient in removing this rough 
part further, which explains the h-independent rate of convergence of the Gauss-Seidel 
method.    
 
 For a numerical illustration of two-grid application, we solve (5.1.2) by using the 
two-grid algorithm with vertex-centered coarsening. Again, let b = 0 and the initial guess 
φ(0) consist of three modes with k = N/2, N/4 and 1, as in section (5.1.3). Without pre-
smoothing, the short-wave mode (k = N/2) of the error remains unchanged after the 
coarse grid correction. The smooth part (k > N/2) is effectively removed by exact solving 
the coarse grid system (Fig.5.2.2). 
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However, the prolongation has introduced some sort of error, fortunately, of short 

waves. As a result, the error after coarse grid correction contains mostly short Fourier 
modes that can be efficiently damped out by applying the smoother. That is, applying 
only three Gauss-Seidel iterations will reduce the error norm to below 0.1, and eight 
iterations will reduce it to below 0.01. Moreover, these iteration numbers are fixed, i.e. 
independent of N. To compare with the Gauss-Seidel iteration on a single fine grid, for N 
= 20, it would take, respectively, 71 and 164 iterations to reduce the error norm to the 
similar levels. If N now doubles, these numbers will quadruple. 

 
It is seen that, the Fourier modes with the half wavelength less than or equal to H 

cannot be represented on the coarse grid and hence coarse grid correction has no effect on 
them. That is why the coarse grid should have the mesh size H ≤ 2h, otherwise all the 
modes with half wavelengths between 2h and H, though regarded as smooth on the fine 
grid, will be left unchanged after coarse grid correction. 

                
5.3 Multigrid Methods 
 
5.3.1 The Essential Multigrid Principle 
  
As seen in the two-grid algorithm, the coarse grid has fewer mesh points than that on the 
fine grid and, hence, there are fewer algebraic equations to be solved on the coarse grid. 
Thus, two-grid application may somewhat reduce computation work for solving the 
original algebraic system. The extra work required for forming of the coarse grid system 
and transferring operations between the grids, is easily offset by solving much fewer 
coarse grid equations, roughly 1/2d (d is the number of dimensions) the number of 
equations on the  fine grid. However, exact solution of a multidimensional coarse grid 
system still suffers inefficiency if the coarse grid still has many mesh points. This can be 
easily remedied by recursive applying the same two-grid algorithm to the coarse grid 
equation system until the coarsest grid is reached. The coarsest grid should have only a 

  Initial guess: e(0)    After coarse grid correction: e(2/3)

Figure 5.2.2. Coarse grid correction 

k=N/2 
 

k=N/4 
 

k=1 
 

Total 
error 
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very few mesh points (it is possible to have only one non-trivial mesh point on that the 
coarsest grid) and, hence, the algebraic system on it is small enough to be solved exactly 
at a negligible cost. As a result, an efficient algorithm - the multigrid - for solving large 
algebraic systems is formulated. 
  
 At first glance, multigrid application reduces computational work thanks to 
solving fewer and fewer equations on coarser and coarser grids. But this is not the only 
reason for the multigrid to be used as a PDE solver. The principal motivation behind the 
multigrid is that long-wave modes of the error on one grid can be viewed as short waves 
on a coarser related grid and, therefore, can be damped down effectively there by a cheap, 
simple smoother. That is, the essential principle of multgrid is to approximate the smooth 
(long wave) part of the error on coarser grids.  
 
 As an iterative method, the multigrid can be regarded as a technique to accelerate 
the convergence of basic iterative methods which are the smoothers in the multigrid 
context. But while the convergence of usual iterative methods strongly deteriorates with 
increasing number of algebraic equations in the discretized system, the convergence rate 
of the multigrid method is independent of it. 
     
5.3.2 The Multigrid Algorithm 
 
Let {Ωℓ | ℓ=1,..,L} be a set of coarse grids formed from the original fine grid Ω0 ≡ Ω, on 
which the original PDE is discretized to result in an algebraic system  
 

 Aφ  =  b on  Ω      (5.3.1) 
 
The coarse grids will be labelled with an increasing index ℓ, i.e. Ωℓ+1 is a coarser grid 
next to Ωℓ. The coarsest grid ΩL must have at least one non-trivial mesh point (which 
does not belong to the boundary). Let an algebraic equation system on grid Ωℓ be 
 

 Aℓφℓ = bℓ on Ωℓ      (5.3.2) 
 
Given restriction and prolongation operators R and P, and a smoothing method 
S(φ,A,b,m) as in the two-grid algorithm, the multigrid algorithm for linear algebraic 
systems is defined as 
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The only parameter that is new in the above multigrid algorithm is the cycling strategy 
number mc which may be mc = 1 or mc = 2, corresponding to two frequently used 
multigrid schemes: V-cycle (mc = 1) and W-cycle (mc = 2) (Fig.5.3.1). A scheme with 
mc≥3 is so cumbersome that it is practically never used. 
 

          

ℓ=0 
ℓ=1 

ℓ=L 

V-cycle W-cycle 

\ – restriction   / – prolongation  • –  smoothing 

Figure 5.3.1. Multigrid V-cycle and W-cycle  

The Multigrid Algorithm 
 

 Guess φ(0) 

 Iterate until φ(m) converges:  φ(m+1) = MG(ℓ=0, φ(m), m1, m2, mc) 

 Accept φ(m+1) as the solution to Aφ = b 
 

Multigrid Solver 
 

MG(ℓ, *
lφ , m1, m2, mc)       

{ 
if (ℓ = L){  
 Solve φL = 1

LA− bL 
 }     
else{ 
 Smooth m1 times )3/1(

lφ  = S( *
lφ , Aℓ, bℓ, m1) 

 Restrict the residual bℓ+1 = R(bℓ − Aℓ
)3/1(

lφ ) 

 Call mc times  1+φl  = MG(ℓ+1, *
1+φl =0, m1, m2, mc) 

 Correct the solution )3/2(
lφ = )3/1(

lφ  + P 1+φl   

 Smooth m2 times )1(
lφ  = S( )3/2(

lφ , Aℓ, bℓ, m2) 
 } 
return )1(

lφ  
} 
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It is also possible to slightly modify the above ‘fixed’ MG cycles (i.e. they have 
the fixed numbers of pre- and post-smoothing steps, m1 and m2, on every grid) by setting 
a certain condition on smoother’s performance to obtain the so-called ‘flexible’ MG 
cycles [Lightstone (2002)]. That is, instead of doing a fixed number of smoothing steps, one 
keeps sweeping on any grid level until either the smoother stalls (e.g. when the iteration 
contraction number of the residual norm increases considerably, say, by 0.1), or the 
solution converges, which ever comes first. If the smoother is stalls, one goes down to a 
next coarser grid. If the solution converges, one goes up to a finer grid. The price to pay 
is one always has to compute the residual when entering any grid level plus as many 
times as the number of smoothing steps on that grid (in a fixed cycle one only computes 
the residual once when exiting any grid level).            
 
5.3.3 Multigrid Components 
 
Grids 
 
The fine grid Ω in which the PDE is to be solved is assumed to be the d-dimensional unit 
cube. This greatly simplifies the construction of coarse grids and transfer operators 
between grids. In practice, multigrid for finite discretization can in principle be applied to 
more general geometry, but the description of the method would become complicated 
[Wesseling (1992)]. This is not a serious limitation because the current main trend in grid 
generation consists of decomposition of the physical domain in subdomains, each of 
which is mapped onto a cubic computational domain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3.2. Vertex-centered and cell-centered coarsening in 2D 
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In the case of vertex-centered discretization, the fine grid Ω is the union of a set 
of regular cells, whose vertices are the grid points u∈Ω defined by 
 

Ω  = {u = jh; j = (j1,..,jd); h = (h1,..,hd); jα = 0,1,..,Nα; hα = 1/Nα; α = 1,..,d}     (5.3.3a) 
 
In the case of cell-centered discretization, the fine grid Ω is also divided in cells as in the 
vertex-centered case, but now the grid points are the centres of the cells. The 
computational cell-centered grid is defined by  

 
Ω = {u = (j-½)h; j = (j1,..,jd); h = (h1,..,hd); jα = 1,..,Nα; hα = 1/Nα; α = 1,..,d}   (5.3.3b) 

 
 A coarse grid Ωℓ+1 is derived from Ωℓ, where Ω0≡Ω and ℓ=1,..,L-1, by either 
vertex-centered or cell-centered coarsening, depending on whether Ω is the vertex-
centered or cell-centered grid. It is also possible to apply cell-centered coarsening to 
vertex-centered grids, and vice versa, but this will not be considered here because new 
methods or insights are not obtained. Vertex-centered coarsening consists of deleting 
every other vertex in each direction. Cell-centered coarsening consists of taking union of 
fine grid cells to obtain coarse grid cells (Fig.5.3.2) [Khalil & Wesseling (1991)].    
 

It is assumed that Nα is even in the vertex-centered grid. This is to facilitate 
vertex-centered coarsening. Cell-centered coarsening can be with any Nα, even or odd. 
Since the coarsest grid must have at least one non-trivial grid point, the maximum level 
Lmax that the coarsest grid can be, i.e. L ≤ Lmax, is 
 
 Lmax = [log2Nα] − 1  for vertex-centered coarsening 
 
and  
 
 Lmax = [log2(Nα-1)] + 1  for cell-centered coarsening 
 
Restriction and Prolongation 
 
The transfer operators are denoted by P for prolongation and R for restriction 
 
 P:  Ωℓ+1 → Ωℓ   
 
 R:  Ωℓ → Ωℓ+1 
 
Normally, prolongation P is based on linear interpolation and restriction R may be simply 
taken as [Wessenling (1992)] 

 
 R  =  cPT       (5.3.4)   
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where PT is the transpose of P and c is a suitable scaling factor. But this property is not 
essential. Although R and P can be chosen rather arbitrarily, they should satisfy certain 
conditions in order for the multigrid method to have a mesh-size independent rate of 
convergence. Hackbusch (1985) gave the following simple condition and Hemker (1990) 
proved its necessity 

 
 nP + nR > nE       (5.3.5) 

 
Here orders nP, nR of operators P and R are defined as the highest degree plus one of 
polynomials that are interpolated exactly by P or RT, respectively, and nE is the order of 
the partial differential equation (PDE) to be solved. Since higher order prolongations and 
restrictions require more work on transferring operations, the transfer operators R and P 
are chosen as simple as possible but must satisfy condition (5.3.5). The linear 
prolongation and restriction given in section (5.2) for the second order diffusion problem 
(nE = 2) have mP = mR = 2, so (5.3.5) is satisfied.              
 
 It is convenient to write the transfer operators R and P in stencil notation. For 
example, the stencils of vertex-centered prolongation and restriction based on linear 
interpolation in 1D and 2D are given as 

 

In 1D:  P = [½  1  ½]  R = 2PT = 
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    (5.3.6a) 

 

In 2D:  P = 
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   (5.3.6b) 

 
The use of a stencil consists of moving it across the first grid to generate elements on the 
second grid so as the stencil centre is mapped with each point of the coarser grid. The 
prolongation stencil P will operate on each coarse grid point as follows: A fraction of the 
value held at the coarse grid point is transferred to the fine grid points that enclose the 
coarse grid point. The effect is cumulative so at any fine grid point there is a sum of 
fractional parts from nearby coarse grid point values. The restriction stencil R sums up 
the weighted values held at the fine grid points that surround the coarse grid point and 
assign the sum to the coarse grid value. The weighting factors are elements of the stencil.  
 
 The simplest cell-centered prolongation and restriction are based on piecewise 
constant interpolation: 
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 In 1D:  eℓ = Pφℓ+1  )(
i2e l  = )(

1i2e l
+ = )1(
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  (5.3.7a) 

 

In 2D:  R = P  = 
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       (5.3.7b) 

 
This gives mP = mR = 1. The higher order cell-centered prolongation and restriction are 
based on linear interpolation and have the following stencils 

 
In 1D:  P = [ 4

1   4
3   4

3   4
1 ]   R = PT   (5.3.8a) 

 

In 2D:  R = P = 
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      (5.3.8b) 

  
It is noted that, in case the coefficients in PDE are discontinuous across interfaces 

between subdomains (or cells) of different physical properties, linear interpolation across 
discontinuities is inaccurate and operator-dependent prolongation has to be used instead 
[Alcouffe et al. (1981), Behie & Forsyth (1983)]. It is required only in vertex-centered multigrid, 
but not in cell-centered multigrid. 

  
Coarse Grid Equations 
 
There are basically two ways to form the coarse grid matrix Aℓ, as already mentioned in 
section (5.2):  
 

(i) discretization coarse grid approximation (DCA), in which Aℓ is obtained by 
discretization of the original PDE on grid Ωℓ; and  

 
(ii) Galerkin coarse grid approximation (GCA) or RAP, in which Aℓ is derived from 

the finer grid matrix Aℓ-1 by  
     

Aℓ = RAℓ-1P       (5.3.9) 
 
 Although DCA seems more straightforward, it may be unreliable if the 
coefficients are variable on very coarse grids, because these coefficients are sampled in 
very few points. Multigrid may fail because of this effect. For this reason, GCA is to be 
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used for interface problems (discontinuous coefficients) [Dendy (1987), Ersland & Teigland 
(1993), Engquist & Luo (1997), Schaffer S. (1998), Chan & Wan (2000)]. Another advantage of 
GCA is that it is purely algebraic in nature; that is, we can solve a general set of 
algebraic equations without knowing the original PDE or its geometry. However, when 
geometric multigrid is possible, it is simpler and faster than algebraic multigrid applied to 
the same problem. Further more, since the GCA involves matrix multiplication, it may 
become quite expensive if the fine grid matrix has a complicated structure. In addition, 
matrix structure of the fine grid problem may not preserve on coarse grids as a result of 
GCA.  
 
 The problems associated with using GCA can be remedied by applying the so 
called additive correction multigrid (ACM) [Hutchison & Raithby (1986), Hutchison et al. 
(1988)]. In fact, the ACM is equivalent to GCA, with piecewise constant prolongation and 
restriction (5.3.7), applied to a difference equation system in cell-centered discretization 
[Gjesdal (1996), Elias et al. (1997), Teigland (1998)]. We will demonstrate the ACM procedure 
for generating coarse grid equations in 1D.          
 
 In one dimension, an algebraic system of three-point difference equations on a 
cell-centered grid Ω can generally given by 
 

 pia iφ  = wia 1i−φ  + eia 1i+φ  + ib ,  i = 1,..,N-1   (5.3.10) 
 
  0φ  = Nφ  = 0  
 
The corresponding residual equation system is 
 

 pia ie  = wia 1ie −  + eia 1ie +  + ir , i = 1,..,N-1   (5.3.11) 
 
  0e  = Ne  ≡ 0  
 
where ie is the error (or the correction, in the mutigrid context) and ir  is the residual. The 
coarse grid Ω1 is formed by cell-centered coarsening. The coarse grid points are labelled 
with index j = 1,.., 1N , which are related to fine grid points by 
 

j = [(i+1)/2]   1N = [(N+1)/2]    (5.3.12) 
 
That is, each coarse grid point j is formed by the union of two fine grid points, i = 2j-1 
and i+1=2j. If the number of fine grid points is odd, then the last coarse grid point j = 1N  
is formed by only the last fine grid point i = N. Summing up the residual equations 
(5.3.11) of the fine grid points i and i+1 that form the coarse grid point j, we have 
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( pia − 1wia + ) ie + ( 1pia + − eia ) 1ie +  = wia 1ie −  + 1eia + 2ie +  + ir + 1ir +    (5.3.13)  

 
We now have to approximate the correction e on the coarse grid. If we assume that  
 

ie  ≈ 1ie +  = )1(
jφ   

 
where φ(1) is intended to be an approximate correction on the coarse grid, then we have 
the coarse grid equation as 

 
)1(

pja )1(
jφ  = )1(

wja )1(
1j−φ  + )1(

eja )1(
1j+φ  + )1(

jb       (5.3.14)  
 
where 
   

)1(
pja  = ( pia + 1pia + − eia − 1wia + ),   )1(

wja  = wia , )1(
eja  = 1eia + , )1(

jb = ir + 1ir +  
 
The coarse grid equation (5.3.14) is exactly the same as the fine grid equation (5.3.10) in 
form, i.e. the original matrix structure is preserved. Although not explicitly involved, 
restriction and prolongation in the ACM are equivalent to the piecewise constant 
operators (5.3.6a). Similarly, we can easily form equations on coarse grid Ω2 based on Ω1 
which now plays a role of the fine grid, and so on, until the coarsest grid ΩL is reached. 
 
  For 2D or 3D problems, the above 1D ACM procedure is applied to each 
direction separately to generate the coarse grid equations. It is proved to be very flexible 
since we may not want to coarsen a grid direction that has only a few points. 
 
Smoothers 
 
A smoother used in multigrid can be any of iterative methods that have smoothing 
property, i.e. it is capable of damping down rough part (long-wave Fourier modes) of the 
error in a fixed, small number of iterations [Thole & Trottenberg (1986), Adams et al. (2003)]. 
The point Jacobi with under-relaxation and point Gauss-Seidel methods are the cheapest 
smoothers. The Jacobi scheme is suitable for parallel computation but it requires storage 
of two iterate vectors at the same time. The Gauss-Seidel scheme needs only one iterate 
vector and some of its modifications, such as the Red-Black Gauss-Seidel scheme, is also 
favourable for parallel computation [Kuo & Levy (1989), Yavneh (1995,1996)]. ADI methods 
can also be used for smoothing in 2D multigrid applications [Phillips (1987)]. Recently, 
CG-typed methods (as known as Krylov subspace methods) have also been used as 
multigrid smoothers [Scheilchl (2000), Elman et al. (2001)] despite these methods are actually 
the rougher, i.e. they reduce the long-wave Fourier modes faster than the short-wave 
modes. In fact, these methods are only used when a simple point relaxation method (e.g. 
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the Jacobi or Gauss-Seidel method) fails to smooth for certain types of algebraic systems 
such as of a non-symmetric non-positive definite matrix structure.                   
 
 In 2D problems, the line Jacobi or line Gauss-Seidel methods can be used as 
smoothers if the matrix structure is regular. The line relaxation method utilizes the 
TDMA to invert a whole line at a time and is usually faster than the point methods 
[Alcouffe et al. (1981)]. However, when applied to 3D problems, an equivalent plane 
relaxation method is not easy to implement. In general, point relaxation methods appear 
to be the first choice for multgrid smoothing since the point methods are the simplest and 
cheapest. Therefore, multigrid methods are sometimes constructed so as to favour 
smoothing with a point relaxation method. 
 
5.3.4 Multigrid Convergence 
 
It suffices to use two-grid method for analysis of multigrid convergence. The purpose of 
two-grid analysis is to show that the rate of convergence of the two-grid method is 
independent of mesh size of the computational grid. For a simple 1D model problem, a 
convergence analysis of two-grid method with linear interpolation and a Gauss-Seidel 
smoother has been given in section (5.2). Here we will examine the multigrid 
components in more general. The two-grid algorithm is a special case of the multigrid 
algorithm, with L = 1.  
 
 Let the smoothing method S(φ,A,b,m) in the two-grid algorithm with m = 1 be 
defined such that 
 

φ = Sφ + k        (5.3.15) 
 
The normal notation G of an iterative scheme as given in Chapter 4 is replaced with S to 
emphasize that the iterative method used here is a smoother. Applying pre-smoothing m1 
times, we will have the error as 
 

e(1/3) = 1mS e(0)               (5.3.16)    
 
After coarse grid correction, the error becomes 

 
e(2/3) =  [I − P 1

HA− RA]e(1/3)  =  Ee(1/3)     (5.3.17) 
 
where E ≡ [I − P 1

HA− RA] is the coarse grid correction matrix. Further applying post-
smoothing m2 times, we will have the error after one two-grid iteration as  

 
e(1) = 2mS e(2/3)  =  Qe(0), Q  ≡ 2mS E 1mS     (5.3.18) 
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The convergence of two-grid method is governed by its contraction number ||Q|| (||⋅|| is 
some matrix norm). Assuming m2 = 0 for simplicity, we may write 

 
Q  =  [A-1 − P 1

HA− R][A 1mS ]      (5.3.19) 
 
So that 

 
||Q|| ≤ ||A-1 − P 1

HA− R|| ||A 1mS ||     (5.3.20) 
 
The separate study of the two factors present in (5.3.20) leads to the following definitions 
[Hachbusch (1985)]: 
 
 Smoothing property: S has the smoothing property if there is exist constant KS and a 

function η(m) independent of h such that 
 

||ASm||  ≤  KS
Enh − η(m) η(m)→0 for m→0  (5.3.21) 

 
where nE is the order of the PDE to be solved. 
 

 Approximation property: The approximation property holds if there exists a constant 
KA independent of h such that 

 
||A-1 − P 1

HA− R||  ≤  KA
Enh       (5.3.22) 

 
Now, let the smoothing property and the approximation property hold. Then there exists a 
number µ independent of h such that 

 
||Q||  ≤  KSKAη(m)  < 1 ∀m > µ �   (5.3.23) 

 
 The smoothing property implies that the smoothing method is a convergent 
iteration method 

 
||Sm||  ≤  ||A-1||⋅||ASm||  ≤  ||A-1|| KS

Enh − η(m) → 0 as  m→ ∞ (5.3.24) 
 
In general the rate of convergence of the smoothing method depends on h. The 
approximation property implies that that P and R satisfy (5.3.5) and that A and AH are 
sufficiently accurate discretizations. 
 
 From the two-grid algorithm, it follows that if AH = RAP (by using GCA), then 
Rr(2/3)=0. Since restriction R is weighted average of neighbouring grid function values 
with positive weights, this implies that r(2/3) has many sign changes. In other words r(2/3) is 
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non-smooth, or rough, therefore, it can be further reduced effectively by smoothing.  
Every grid function can be decomposed into smooth and rough part. Let the error before 
coarse grid correction be split as  
  

r(1/3) =  )3/1(
sr  + )3/1(

rr   
 
where the residuals with subscripts ‘s’ and ‘r’ stand for smooth part and rough part, 
respectively. Using (5.3.17), we can write 
 
 
 r(2/3) = Ae(2/3) = Ê r(1/3),  with Ê  ≡ AEA-1.  

 
)3/2(

sr  = 0   )3/2(
rr  = )3/1(

rr  + Ê )3/1(
sr     (5.3.25) 

 
It is seen once more that coarse grid correction reduces the smooth part of the residual, 
but there is also possibility that the rough part is amplified. If this amplification is too 
great, multigrid will not work properly. To avoid this, P and R must satisfy condition 
(5.3.5). 
 

* 
*     * 

 
For many problems in science and engineering, the multigrid has been shown to be an 
efficient way to handle big problems, using a principle “divide and conquer”: different 
error modes are sieved through and eliminated on different grids. The greatest property of 
the multigrid that it tends to be an optimal method for algebraic solution suggests that we 
should try the multigrid to deal with the space problem in reactor physics, and this will be 
the topic of our discussion in the next chapter. 



Nguyen Thai Sinh PhD Thesis 
McMaster - Engineering Physics A Multigrid Method Applied to Reactor Kinetics  
 

91 

Chapter 6 
 

MULTIGRID APPLICATION TO REACTOR PHYSICS 
 

Having described how multgrid methods work in general for solving partial differential 
equations, we now explore the possibility of using these methods to deal with reactor 
physics problems. At first glance, it seems that the multigrid could be straightforwardly 
applied for solving the neutron kinetics equations as for any partial differential equations. 
However, we will see shortly that it is not easy to render both principal properties of the 
multigrid - coarse grid approximation and smoothing - in an application to reactor 
physics. Perhaps, this is the main reason why we have not found many multigrid 
applications to reactor physics in the literature. On the contrary, a quite different picture 
is observed in many areas of computation in science and engineering [Douglas (1997, 
2003)]; for example, in computational fluid dynamics and heat transfer the multigrid 
methods have flourished with success over the past two decades [Wesseling (1992), 
Wesseling & Oosterlee (2001)]. 
                
 In this chapter, we first try to identify the particular traits of reactor physics 
problems that make it difficult to apply the multigrid to their numerical solution, and then 
to find the way to overcome these difficulties. 
  
6.1 Difficulties in Application of Multigrid to Reactor Physics Problems 
 
As mentioned in Chapter 2, the primary objective of reactor physics is to determine the 
neutron flux distribution throughout a nuclear reactor core at any time. In practical 
reactor calculations, it is sufficient to solve the group diffusion theory equations - a set of 
elliptic partial differential equations - for the neutron group fluxes in space. In case of 
reactor kinetics, we need to solve the system of parabolic partial differential equations 
for these group fluxes both in space and time. In Chapter 3, we have seen that the most 
popular reactor static methods can be extended to spatial reactor kinetics. As a result, a 
reactor kinetics problem is solved at each time step as a boundary value problem. 
 
 Discretization of the neutron diffusion equations or, indeed, of any partial 
differential equations, leads to algebraic equation systems that we have to solve using 
computers. Among the spatial discretization methods used in nuclear reactor calculations, 
the family of nodal methods is currently predominant because these nodal methods allow 
a considerable reduction in the number of discretized equations to be solved (compared to 
an extremely larger number of difference equations if a finite difference method is used 
instead). However, due to structure complexity and non-linearity, the nodal discretized 
systems not only are not easy to solve but also appear incompatible with modern fast 
numerical methods, including the multigrid [Moulton (1996)].              
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 Finite difference discretization of the neutron diffusion equations results in linear 
algebraic systems that, though extremely large in size, are most favourable to multigrid 
handling. In principle, the basic iterative methods as those given in Chapter 4 can be used 
to solve such large finite-difference systems but they are too slow to converge. Multigrid 
algorithms, as shown in Chapter 5, may help to accelerate the convergence of such 
iterative methods to an optimal level. 
 
 In a multigrid application, besides the given fine grid (on which we wish to obtain 
the discrete values of an unknown function), a set of coarse grids with fewer and fewer 
mesh points is created and an iterative method is used to eliminate the error components 
of different wave-lengths on different grids. These two main tasks of multigrid - coarse 
grid approximation (or grid coarsening) and smoothing - face difficulties when applied to 
reactor problems. 
 
 We will restrict ourselves to the spatial multigrid, as opposed to the temporal 
multigrid; that is, only geometric grids of spatial mesh points are considered in our 
multigrid application. For certain parabolic problems such as of low dimension, it is 
possible to coarsen grids of both spatial and temporal mesh points [Hackbusch (1984), Horton 
(1995), Larsson et al. (1995)], but this possibility should be excluded from reactor kinetics 
computations. The reason is that reactor neutron kinetics (neutronics) is usually coupled 
with other reactor dynamics processes such as thermalhydraulics. If a multiple time-step 
method for neutron kinetics were used for temporal grid to be coarsened, one would have 
to perform more or less expensive themalhydraulic calculations during the neutronics 
iteration process. This would not only require much larger memory storage but also 
deteriorate the convergence rate of either process solution.            
 
6.1.1 Difficulty in Coarse Grid Approximation 
 
As for coarse grid approximation, we first generate a set of coarse grids {Ωℓ | ℓ=1,..,L} 
from a given fine grid Ω, and, then, approximate the fine grid equation system 
 

Aφ = b          (6.1.1) 
 
on each of these coarse grids 

 
Aℓφℓ = bℓ , ℓ = 1,..,L      (6.1.2) 

 
Coarse grids Ωℓ will have fewer mesh points with an increasing index ℓ. ΩL is the 
coarsest grid that should have only a very few (usually one) non-trivial mesh points.  
 
 The fine grid equation system (6.1.1) is obtained simply by discretizing the 
neutron diffusion equations on the fine grid Ω of mesh size h = (hx,hy,hz). The coarse grid 
equation system (6.1.2), as mentioned in Chapter 5, can be obtained either 
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i) by discretizing the original diffusion equations with the coarse grid mesh size 

hℓ (as known as discretization coarse grid approximation - DCA), or  
 
ii) as a matrix product RAP (where R and P are, respectively, the restriction and 

prolongation operator matrices).  
 
The first approach is commonly referred to as the geometric multigrid as we must know 
the detailed properties not only of the fine grid but also of every coarse grid as well. In 
the second approach, referred to as the algebraic multigrid, we do not need to know the 
coarse grid properties since we only use the coarse grid indexes for storing the coarse 
grid equation coefficients and unknowns. In reactor physics, neither of these approaches 
is easy.               
 
 As for the geometric multigrid, a coarse grid Ωℓ is formed from its finer-related 
grid Ωℓ-1 simply by increasing the grid mesh size hℓ = σhℓ-1 (typically, σ is about 2 or 
less). In practical reactor calculations, the material properties of a heterogeneous core (i.e. 
the diffusion coefficients and the neutron-nuclear macroscopic cross sections - the group 
constants) are usually averaged (or homogenized) over volume of a core region (e.g. a 
fuel assembly or subassembly). Thus, the coefficients present in the neutron diffusion 
equations are piece-wise constant in each core region but discontinuous across the 
interface between the regions. The computational grid (which is the fine grid in our 
multigrid application) is usually chosen such that each integration box (or node) is 
completely bounded within such a homogenized core region and, therefore, has its group 
constants already defined. If a grid is so coarse that a grid node overlaps two or more 
different homogenized regions, we have to re-homogenize the group constants over this 
coarse node volume. Homogenization of a very large core region is costly and may 
introduce considerable errors (since it depends on the flux distribution which has yet to 
be computed). For this reason, Scheichl (2000) could not coarsen the grid but rather refined 
it, as did Kaveh et al. (2000). However, Kaveh et al. (2000) did coarsen the grids but could 
attain one or two coarse grids only, leaving so many grid points on the coarsest grid. It is 
suggested that the coarsest grid should have only a few grid points (possibly, only one 
non-trivial grid point) so that the algebraic system there would be small enough in size 
and hence could be solved exactly at negligible cost (this would get rid of all remaining 
error components) [Hacbucsh (1985)]. Apparently, it is not necessary to coarsen the grids to 
a very small size because there should exist a size (about ten points per grid dimension) 
of the computational grid at which both multigrid and single-grid solution costs are 
comparable. But a multigrid solver with hundred or more grid points remaining on the 
coarsest grid would be obviously not an efficient one.             
 
 Another issue arising in geometric multigrid is the validity of the multigrid 
convergence proof (5.3.23) as given in Chapter 5. We have seen that this proof is based 
on the relation (5.2.4), 
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  AH  =  RAP  
 
which is essentially the other method of grid coarsening. While AH in geometric 
multigrid is formed simply by discretization on the coarse grid H, only a few specific 
choices of R and P that can make the geometric coarse grid matrix AH approximate to the 
product RAP. Therefore, it is doubtful that the convergence of a general geometric 
multigrid method is mesh-independent.      
 
 To avoid the need for determining the coarse grid group constants, the algebraic 
multigrid may be used for grid coarsening. In algebraic multigrid, a set of coarse-grid 
points is a subset of the fine-grid points. Formally, the coarse grid equation system is 
determined from its finer grid system by matrix multiplication 
 

Aℓ = RAℓ-1P        (6.1.3)    
 
Except for some special cases when R, P and A are very simple, it is quite costly to 
compute (6.1.3). Also, as a result of algebraic coarsening (6.1.3), the coarse grid matrix 
may have a structure other than the fine grid matrix, e.g. it may become non-symmetric 
or even no longer diagonal-dominant. Consequently, basic iterative methods may fail to 
converge on coarse grids. Although algebraic multigrid methods appear to have great 
potential for practical applications, so far there have been no rigorous theoretical 
justifications of these methods and more investigations in this approach are still required 
[Xu (2001)]. 
 
6.1.2 Difficulty in Smoothing    
 
Even when grid coarsening of reactor physics problems is possible (e.g. when one is able 
to homogenize the group constants over any arbitrary core volume, or alternatively 
employs an algebraic multigrid method), we may find it difficult to smooth the error on 
coarse grids, i.e. to use an iterative method for reducing the error components of different 
wavelengths on different grids. As for smoothers in multigrid application, one tends to 
use basic relaxation methods, such as the point Jacobi or Gauss-Seidel method. These 
point relaxation methods are simple and cheap but, unfortunately, they do not always 
work in solving the algebraic system of discretized neutron diffusion equations.  
 
 To see the limitation of the point relaxation methods in solving the neutron 
diffusion equation, let us consider the one-group one-dimensional equation with constant 
coefficients: 
 

tv
1
∂
φ∂   =  D 2

2

x∂
φ∂  − Σaφ(x,t) + νΣfφ(x,t) x ⊂ [0, a~ ], t ≥ 0  (6.1.4) 
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with the initial condition:    φ(x,0) = φ0(x) 
 
and the Dirichlet boundary condition: φ(0,t) = φ( a~ ,t) = 0 

 
In equation (6.1.4), we neglect any source of delayed or independent neutrons since their 
inclusion does not change much the degree of difficulty in solving this equation.  
 
 Discretization of equation (6.1.4) with finite differences and a fully implicit time 
scheme gives the following algebraic system 
  









∆

+
Σ−Σν

−
tDv

h
D

h2
2

af2 φj  =  φj-1 + φj+1 + t
j

2

tDv
h

φ
∆

,   (6.1.5) 

       j = 1,..,N-1, h = a~ /N 
 
  φ0 = φN = 0 
 
Although we can solve the tridiagonal system (6.1.5) directly (e.g. by using the Gaussian 
elimination method), we will use the point Jacobi and Gauss-Seidel methods to examine 
the behaviour of the error components of different wavelengths on a given grid during the 
iteration process. In case of multidimensional problems, the discretized systems have to 
be solved by iterations and the point relaxation method will affect the error components 
invariantly in each dimensional direction.     
 
 It is seen that, if Σa ≥ νΣf as in the case of neutron diffusion in an absorbing 
medium, the above system is strongly diagonal-dominant and there always exists a unique 
solution. The point Jacobi or Gauss-Seidel method is perfectly suited for smoothing the 
error as demonstrated in Chapter 5 for a pure diffusion problem. Let us consider the case 
when Σa < νΣf as of neutron diffusion in a multiplying medium of a reactor core. The term 

D
af Σ−Σν

 is now positive and it may cause the system matrix to lose its diagonal-

dominant structure. It is customary to denote this term as the reactor material buckling  
 

B2 = 
D

af Σ−Σν
      (6.1.6)  

 

For simplicity of analysis, suppose 
tDv

h 2

∆
 is negligible in comparison with other terms in 

the brackets. Then the system (6.1.5) becomes 
 

(2 − h2B2)φj  =  φj-1 + φj+1 + bj     (6.1.7)       
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In order for the algebraic coefficients in the left hand side of (6.1.7) to be positive (so that 
the solution cannot be negative to be physically meaningful), we must set  
 
 hB < 2   
 
More restrictive conditions have been suggested to avoid instability of the numerical 
solution of (6.1.7), for example, 
 
 hB < 1   [Alcouffe et al. (1981)] 
 

 hB ≤ 
5
π   [Elman et al. (2001)] 

 
These conditions are actually the particular cases of a more general condition that we will 
derive shortly for the point relaxation solution of (6.1.7) to converge.    
 
 Similarly as in Chapter 5, the iterative solution of (6.1.7) with the point Jacobi or 
Gauss-Seidel relaxation method is given by 
 

)m(
jφ  = 22Bh2 −

ω [ )m(
1j
κ−

−φ  + )1m(
1j
−

+φ + bj] + (1−ω) )1m(
j

−φ , 0 < ω < 2 (6.1.8) 

 
where κ = 1 for the Jacobi method, and κ = 0 for the Gauss-Seidel method. Again, by 
using the Fourier mode analysis, we can obtain the amplification factor for each error 
mode, with the Jacobi relaxation, 
 

 gJ(θk)  = 







−
θ

−ω− 22
k

Bh2
cos2

11 ,  θk = 
a~
hkπ = 

N
kπ ,  k = 1,..,N-1 

 
and with the Gauss-Seidel relaxation, 
 

 gGS(θk)  = 2
k

22222

2
k

22222

cos)Bh2(2)Bh2(
cos)Bh2)(1(2)]Bh2)(1[(
ω+θ−ω−−

ω+θ−ω−ω+−ω−  

 
 It can be seen from Fig. 6.1.1 and Fig. 6.1.2 that, both Jacobi and Gauss-Seidel 
relaxation methods are capable of smoothing the error, i.e. they reduce the Fourier modes 
of short wavelengths (k ≥ N/2). But while the Gauss-Seidel method smoothes the error 
with any relaxation parameter ω between 0 and 2, only the underrelaxation or “damped” 
Jacobi method with an appropriately chosen relaxation parameter can do so. This proper 
parameter ω for the damped Jacobi method depends on both mesh size and material 
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buckling B but we can always choose ω ≤ ω0 = 2/3 to ensure that the damped Jacobi 
method remains as a smoother (see in Fig.6.1.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 A serious problem actually arises with the smooth part of Fourier modes (k<N/2), 
because both damped Jacobi and Gauss-Seidel methods may amplify some long-wave 
error modes under certain circumstances. As for the longest Fourier mode (k = 1), if h is 
small enough (or N is large) we can approximate 
 

 cosθ1 = 1 − 2
a~2
hsin 2 π  ≈ 1 − 

2
Bh 2

g
2

,  

 

where   2
gB  = 

2

a~






 π  is called the geometric buckling. The Jacobi amplification factor for 

the longest Fourier mode is 

Figure 6.1.2. Amplification factor, gGS, for the Gauss-Seidel relaxation method  
 applied to definite and indefinite problems 

ω 

g 

k→N

k=N/2 

k=1 B < Bg 

B > Bg 

Figure 6.1.1. Amplification factor, gJ, for the Jacobi relaxation method 
 applied to definite and indefinite problems  

g 

k=1 
B > Bg 

B < Bg 

k=N/2 
k→N

ω 
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 gJ  = 1 + ω 22
1

22

Bh2
cos22Bh

−
θ−−  ≈ 1 + ω 22

2
g

22

Bh2
)BB(h

−

−
    

 
and the plain Gauss-Seidel (ω = 1) amplification factor is  
 

 gGS  ≈ 
)BB(h)Bh2(1

1
22

g
222 −−+

.   

 
Obviously, these point relaxation methods amplify (i.e. g > 1) the longest Fourier mode 
when the material buckling is larger than the geometric buckling as in case of a 
supercritical reactor 
 

B > Bg         (6.1.9) 
 
We recall from reactor analysis that 2

gB  is the smallest eigenvalue of the steady-state one-
group neutron diffusion equation for a bare homogenous reactor [Duderstadt & Hamilton 
(1976)]. It is known that when B2 = 2

gB , the reactor is critical, and system (6.1.7) is 

singular and has an indefinite number of solutions - the eigenvectors. When B2 > 2
gB , 

system (6.1.7) becomes indefinite [Elman et al. (2001)]. It is this indefiniteness of the 
Helmholtz equation that makes the point relaxation methods fail to converge. But even 
when we can solve the indefinite system (6.1.7) by some way, its solution is not 
everywhere non-negative and thus contradicts the physical meaning of the neutron flux. 
 
 On a very coarse grid where h is large, we have a slightly stricter condition than 
(6.1.9) as  
 

   hBg  >  2
2

sin 1θ   >  hB 

 

For N = 2,  hB < 2
4

sin π  = 2  or  B < 0.90Bg  

 

For N = 3,  hB < 2
6

sin π  = 1  or  B < 0.95Bg 

 

For N = 5,  hB < 2
10

sin π < 
5
π   or B < 0.98Bg 
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 In solving multidimensional diffusion equations, the point relaxation methods 
work well only when the problem is isotropic. In case of anisotropic problems, they only 
smooth the error in the direction of strong coupling. The semi-coarsening strategy 
[Schaffer (1998)], i.e. when grids are coarsened only in one direction, is one way to achieve 
the fast convergence of the multigrid algorithm but is applicable only to very specific 
problems such as fluid flows in a narrow channel. Another way is to use block relaxation 
methods instead of point relaxation for smoothing. Line relaxation has been proven to be 
very efficient in two dimensions [Alcouffe et al. (1981)] but plane relaxation, which is 
equivalent to line relaxation in three dimensions, become very complicated to implement 
[Stuben (2001)].    
 
 When the algebraic multigrid method is applied for grid coarsening, the coarse 
grid equation systems may become no longer symmetric positive definite. In such cases, 
the basic iterative methods are not suitable for use as smoothers. Zalavsky (1993, 1995) 
employed the so called Kaczmarz iteration to smooth the error components on every grid. 
The Kaczmarz iteration is the Gauss-Seidel iteration applied to the following equivalent 
symmetric system 
 

ATAφ = ATb       (6.1.10) 
 
The Kazmacz iteration has an advantage of not amplifying any modes but it is very slow 
at reducing the short modes and hence is not a good smoother [Elman et al. (2001)]. 
 
 Recently, a class of Krylov subspace methods [Vorst (2000)] has been tried for 
smoothing in a number of multigrid applications, especially when the algebraic systems 
are not symmetric positive definite. In these methods, a general linear system (6.1.1) is 
solved by constructing the best approximate solution in the Krylov subspace of 
dimension m 
  

Km(A,r(0))  =  span{ r(0), Ar(0), A2r(0),…, Am-1r(0)}   (6.1.11) 
 
where r(0) ≡ b − Ax(0) is the initial residual vector. The idea is to keep all approximants 
computed so far in the iteration process and to recombine them to a better solution. Since 
the Krylov subspace is of dimension N (N is the number of equations in the linear 
system), after N-1 steps, the iteration process must terminate with an exact solution. 
 
 The simplest of the Krylov subspace methods is the Conjugate Gradient method, 
given in Chapter 4, but it can only be used for symmetric positive definite problems. For 
problems when the matrix is not symmetric positive definite, the General Minimal 
Residual (GMRES) method [Saad & Schultz (1986), Kwak (1997)] is used instead. In the 
GMRES, one has to store all basis vectors for the Krylov subspace, which means the 
more iterations the more basis vectors to be stored. Also, the work per iteration increases 
linearly with the iteration number. Krylov subspace methods are much more expensive 
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than any basic iterative method and are also largely problem-dependent. In general, a 
Krylov subspace method requires preconditioning to achieve the efficient performance, 
and, sometimes, even the convergence. The preconditioning transforms the original linear 
system into a new one 
  

K-1Ax = K-1b        (6.1.12) 
 
where K is the preconditioner which approximates the matrix A in some way but its 
inversion is easy. There is no general approach to construct an appropriate 
preconditioner. Moreover, it is still unclear how a Krylov subspace method smoothes the 
error when applied as a multigrid smoother. The Krylov subspace methods could 
converge after a number of iterations but they do not necessarily reduce the short-wave 
error modes in several first iterations as we must require for smoothers in multigrid. 
 
 The difficulties described above are just for the solution of the one-group neutron 
diffusion equation in which only spatial coupling is taking place. For multigroup 
problems, in addition to the spatial coupling between the neutron fluxes of the same 
energy group, there is also the energy coupling between the group fluxes at a grid point. 
It is the group coupling of the fluxes that makes the structure of the algebraic coefficient 
matrix A complicated and non-symmetric. To avoid this complexity, it is most common 
to use the source iteration technique [Waschpress (1966)] consisting of an outer loop to 
update the source term and an inner loop to solve for spatial distribution of the group 
fluxes at a fixed source. With this source iteration procedure, the multigrid could only be 
applied to the inner iteration to accelerate the solution of the fluxes in space at a given 
source. However, this approach appears not very efficient because there is no need to 
compute exactly the spatial fluxes per inner iteration while the source is still roughly 
approximated. Also, except for several first outer iterations where the multigrid is really 
effective at eliminating the error modes of all wavelengths, the use of multigrid is wasted 
when the source is close to convergence because at this stage of the iteration process only 
a couple of inner iterations on a single fine grid is quite enough. 
 
6.2 Additive Correction Multigrid 
 
Multigrid methods are intended to reduce the computational work of solving large linear 
algebraic systems to such an extent that solution cost will be linearly proportional to the 
number of equations in the system. But the proportional factor also depends on 
performance of multigrid operations, i.e. grid coarsening, smoothing and intergrid 
transferring. If these multigrid operations are expensive, the proportional factor is so 
large that efficiency of the multigrid method may not be proven. It is the more usual 
practice to minimize the multigrid work by losing some of the proportional linearity in 
return for reducing the proportional factor. Therefore, in our development of a multigrid 
solver for the spatial neutron kinetics problem, we always try to keep the grid operations 
as cheap as possible. 
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 As already mentioned, both geometric and algebraic methods described above for 
grid coarsening in solving the neutron diffusion equations are quite expensive, and also 
may lead to coarse grid equation systems that are difficult to solve. It is desirable that 
grid coarsening is simple but still produces an easy coarse grid system to be solved. The 
Additive Correction Multigrid (ACM) method is the one which, in our opinion, satisfies 
the above mentioned requirements. The ACM was first introduced by Hutchison & Raithby 
(1986) to a heat diffusion problem, and was implemented in computational fluid dynamics 
as well [Hutchison et al. (1988)]. Gjesdal (1996) pointed out that the ACM can be regarded as a 
basic algebraic multigrid method where restriction and prolongation are based on 
piecewise constant interpolation. The only concern was that a multigrid method with 
these lowest order restriction and prolongation might not provide a solution that is 
linearly proportional to the grid size for the second order differential equations. But it is 
the simplicity of the method that reduces the proportional factor to a minimum. 
   
6.2.1 Discretization 
 
As for the ACM, the cell-centered grid is the most suitable and a finite volume 
discretization technique [Patankar (1980)] is particularly useful. Thus, the reactor core with 
the boundary extended to include the extrapolated length is divided into a number of 
control volumes in rectangular form. Each control volume or cell is bounded entirely 
within a homogenized core region with the average material properties initially defined. 
The balance equations of neutron fluxes, and of delayed neutron precursors as well in 
case of reactor kinetics calculations, are then integrated over the control volume with 
respect to the spatial variable [Waschpress (1966)]. In fact, the common discretization 
techniques in reactor physics, including finite difference, finite element and nodal 
methods, all utilize this control volume integration method. These reactor physics 
methods differ only in the way the neutron flux shape is defined within the control 
volume for computing the neutron current at faces of this control volume. The finite 
difference method approximates a linear shape of the flux and thus requires a very small 
size of the control volume to assure an acceptable accuracy of discretization. Coarse-
mesh methods, e.g. nodal or finite element methods, utilize a higher order approximation 
of the flux shape and, consequently, can have a quite larger control volume but still 
provide the same accuracy. In term of computational performance, the finite difference 
method has an advantage over the other coarse-mesh methods of producing a symmetric, 
usually positive definite, linear system of finite difference equations whose numerical 
solution is well studied by mathematicians [Sutton & Aviles (1996)]. That is, by analyzing 
the matrix of algebraic coefficients, we, in many cases, can predict the convergence 
behaviour and computational work of an iterative scheme applied to the system. 
 
 As for time discretization, the reactor kinetics equations are temporally integrated 
over a rather short time interval ∆t, during which the material properties (i.e. the group 
constants) are assumed to be unchanged (see in section 3.2.1).    
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 In Chapter 3, we have obtained the algebraic system for group fluxes by using the 
cell-centered finite difference discretization in a 3D Cartesian regular grid and with a 
general implicit scheme of time integration as 
 

p
ga p

gφ   = ∑
⊂

φ
Pnb

nb
g

nb
ga  + ∑

=

φ
G

1'g

p
'g

p
g'ga + p

gb ,  g = 1,..,G   (6.2.1) 

 
  B

gφ = 0  (for boundary nodes) 
 
where g denotes the energy group of neutrons; ‘nb’ denotes a neighbouring node, left or 
right in any of three directions x, y, or z, of an inner node P (which is not on the grid 
boundary). The algebraic coefficients present in (6.2.1) are given in Chapter 3. 
  
6.2.2 Algebraic Solution 
 
For multidimensional reactor kinetics problems, we have to resort to an iterative solution 
of the discretized system (6.2.1). As already mentioned, this discretized kinetics system 
can be solved by using the source iteration technique, which consists of an outer loop of 
source iteration and an inner loop of flux iteration. In general, at the m-th outer iteration, 
the source term is approximated (guessed) as 
 

)m(p
gS  =  ∑

=

φ
G

1'g

)m(p
'g

p
g'ga + P

gb       (6.2.2) 

 
and the group-coupled system (6.2.1) is transformed into G purely spatially-coupled 
systems of the form 
 

p
ga p

gφ   = ∑
⊂

φ
Pnb

nb
g

nb
ga  + )m(p

gS ,   g = 1,..,G   (6.2.3) 

 
In the inner iteration, these G uncoupled systems (6.2.3) are now solved by using the 
Gauss-Seidel or SOR method. Since each of systems (6.2.3) is symmetric and positive 
definite, the Gauss-Seidel relaxation is guaranteed to converge. The solution by such an 
inner iteration is then used to update the source term as in (6.2.2). This outer-inner 
iteration process is repeated until the solution converges to within a given accuracy. In 
order to accelerate convergence of the source term, it is common to use the Chebyshev 
acceleration technique [Duderstad & Hamilton (1976)]. However, utilization of the Chebyshev 
method requires sufficient knowledge about the eigenvalues of the multigroup equation 
system (6.2.1) which are difficult to estimate in practice. Within this source iteration 
approach, multigrid methods can be easily applied to systems (6.2.3) to accelerate 
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convergence of the inner iteration. But the multigrid apparently is not very efficient if 
implemented this way because it is unnecessary to solve systems (6.2.3) exactly while 
their source terms are still not exact.  
 
 It appears that we can combine the above inner and outer iterations in such a way 
that multigrid application for solving the multigroup diffusion equations becomes more 
efficient. Such an iteration procedure is to iterate (6.2.1) from grid point to grid point by 
using a block Gauss-Seidel method. For this purpose, let us rewrite system (6.2.1) in 
matrix notation as 
 

[Ap][Φp]  = ∑
⊂Pnb

nb ]A[ [Φnb] + [Bp],     (6.2.4) 

 
where all vectors and matrices are given by 
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; [Anb] = 
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a
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.   

 
The price to pay is we have to invert the matrix [Ap] at each grid point for determining 
the group fluxes as 
 

[Φp](m+1) = [Ap]-1{ ∑
⊂Pnb

nb ]A[ [Φnb] + [Bp]}    (6.2.5) 

 
where the values of [Φnb] are the most recent available. In terms of computational cost on 
a single grid this iteration procedure does not much differ from the source iteration 
procedure (we only change the order of iteration from a group-then-point order as in the 
source iteration with a point-then-group order) but it much better accommodates the 
multigrid implementation. Also, since the number of neutron groups G is usually 
relatively small (up to 4 groups for thermal reactor calculations and 20 groups for fast 
reactor calculations), it is possible to solve (6.2.5) with a direct elimination method at low 
cost.   
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 In practice, we can check the convergence of the relaxation method by examining 
any of the following residual norms 
 

||r(m)||∞ = |}r{|max )m(p
gg,p

      (6.2.6a) 

 

||r(m)||1 = ∑∑
=p

G

1'g

)m(p
g |r|        (6.2.6b) 

 

||r(m)||2 = 
2/1

p

2
G

1'g

)m(p
g |r| 








∑∑

=

      (6.2.6c) 

 
where )m(p

gr  is the residual after m iterations computed as 
 

)m(p
gr = ∑

⊂

φ
Pnb

)m(nb
g

nb
ga  + ∑

=

φ
G

1'g

)m(p
'g

p
g'ga + p

gb  − p
ga )m(p

gφ     (6.2.7a)  

 
or 

 
[Rp](m)  ≡  Col{ )m(p

gr | g=1,..,G}  =  [Anb][Φnb](m) + [Bp] − [Ap][ Φp](m) (6.2.7b) 
 
The iteration process is stopped when the residual norm is reduced to a desirable extent 
as 
  

||R(m)|| / ||R(0)|| ≤ ε       (6.2.8) 
 
where ε is a given positive number. 
 
6.2.3 Coarse Grid Approximation   
 
The ACM does not require the coarse grids to be geometrically created because only the 
indexes of coarse grid points are needed to store the coarse grid equation coefficients and 
unknowns. But for a better view, we will form a set of coarse grids as if they were 
geometric ones [Nguyen & Garland (2004)].  
 
 Let I, J, K be the inner sizes, i.e. excluding the boundary points, of the fine grid Ω 
where the algebraic system (6.2.1) is obtained from discretization of the original partial 
differential equations. The cell-centered grid Ω is composed of a total of I×J×K non-
overlapped nodes of rectangular form. Each grid node contains a grid point in its centre 
and is denoted by a three-integer index (i,j,k), 
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 i = 1,..,I; j = 1,..,J; k = 1,..,K.  
 
The boundary nodes that contain the points on the grid boundary are chosen such that 
they all have a zero width in the direction to its nearby inner node. It is often that a 
boundary condition is absorbed into a nearby inner node equation; therefore, practically 
we only deal with the inner nodes of the grid.           
 
 We now form the coarse grid Ω1 by agglomerating successively two (or one if it 
is the last one) layers (or planes) of fine grid nodes in one direction, say, the i-direction, 
into one layer of coarse grid nodes. Then, the process is repeated in the second, and, 
finally, in the third direction. As a result, one coarse grid node is formed from a block of 
8 fine grid nodes or less, namely, 4, 2 or 1. The index of coarse grid nodes is denoted by 
(i,j,k)1,  
 
 i1 = 1,..,I1; j1 = 1,..,J1; k1 = 1,..,K1.  
 
Similarly, each of coarser grids Ωℓ, ℓ = 2,..,L, is formed from grid Ωℓ-1 in the same way 
until the coarsest grid ΩL that has only one inner grid node (IL = JL = KL = 1) is reached. It 
is convenient to assign index ℓ = 0 to the fine grid so that we have the following set of 
grids 
 
 Ω0 (or Ω) I0 = I; J0 = J; K0 = K 
 
 Ωℓ (ℓ ≥ 1) Iℓ = [(Iℓ-1+1)/2]; Jℓ = [(Jℓ-1+1)/2];  Kℓ = [(Kℓ-1+1)/2] 
 
 ΩL  IL = JL = KL = 1 
 
with grid node indexes (i,j,k)ℓ,  
 
  iℓ = 1,..,Iℓ; jℓ = 1,..,Jℓ; kℓ = 1,..,Kℓ;  ℓ = 0,1,..,L. 
 
 Although system (6.2.1) or (6.2.5) can be solved by iterations on the fine grid, it is 
costly to do so. The reason, as we have learned in Chapter 5, is that the basic iterative 
method only smoothes the error, i.e. while the rough part of the error (the short-wave 
Fourier modes) is effectively damped down by this iteration, the smooth part (the long-
wave modes) is little affected. The idea of the multigrid is that we send the long-wave 
modes left on a given grid to coarser grids and eliminate them there. The long-wave 
Fourier modes on one grid turn out to be short waves on a coarser related grid and hence 
can be damped down effectively there. 
 
 Suppose that after a number of iterations applied to the system (6.2.5) on the fine 
grid, the exact solution can be calculated by 
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[Φijk]  =  [Φijk](m) + [Eijk] i = 1,..,I; j = 1,..,J; k = 1,..,K  (6.2.9) 

 
where [Eijk] = Col{ ijk

ge | g=1,..,G} is the vector of errors at a node P ≡ (i,j,k) and m is the 
number of iterations. It is obvious that if the solution converges then [Eijk]→0. 
Substituting (6.2.9) into (6.2.5), we will obtain the so called residual equation 
 
 [ ijk

PA ][Eijk]  =  [ ijk
WA ][Ei-1,j,k] + [ ijk

EA ][Ei+1,j,k] + [ ijk
SA ][Ei,j-1,k] + [ ijk

NA ][Ei,j+1,k]  
  + [ ijk

UA ][Ei,j,k-1] + [ ijk
LA ][Ei,j,k+1] + [Rijk]  (6.2.10) 

 
Here we have explicitly written down the indexes of the nodes in neighbourhood of the 
(i,j,k)-node. The algebraic coefficients with a subscript W, E, S, N, U or L are for coupling 
between the node (i,j,k) with the node west, east, south, north, upper and lower of it, 
respectively. It can be also noted that, solving the original system (6.2.5) for [Φijk] is 
equivalent to solving the residual system (6.2.10) for the error [Eijk] and then using 
(6.2.9) to correct the solution. Multigrid coarse correction is an algorithm that transfers 
the residual system (6.2.10) to a coarser-related grid and solves for the correction [Eijk] 
there. In the ACM, the algebraic equation for a given coarse grid node is obtained by 
summing up all residual equations in the block of fine grid nodes that forms the coarse 
grid node, assuming all the fine nodes to have the same error. Let a coarse grid node 
(i,j,k)1 be formed by a block of 8 fine grid nodes {(i,i+1),(j,j+1),(k,k+1)}. Also, we 
denote 
  

[ 1
ijkΦ ]  =  [Ei+a,j+b,k+c]    ∀a,b,c;   a = 0,1;   b = 0,1;   c = 0,1  (6.2.11)  

 
Adding all residual equations in the block and rearranging the resulting equation with 
(6.2.11) taken into account, we get   
 
 [ 1)ijk(

PA ][ 1
ijkΦ ]  =  [ 1)ijk(

WA ][ 1
k,j,1i−Φ ] + [ 1)ijk(

EA ][ 1
k,j,1i+Φ ]  

   + [ 1)ijk(
SA ][ 1

k,1j,i −Φ ] + [ 1)ijk(
NA ][ 1

k,1j,i +Φ ]  

  + [ 1)ijk(
UA ][ 1

1k,j,i −Φ ] + [ 1)ijk(
LA ][ 1

1k,j,i +Φ ] + [ 1
ijkB ]  (6.2.12a) 

 
or, in a short form, 

 
[ 1)ijk(

PA ][ 1
ijkΦ ]  = ∑

⊂ 1

1

)ijk(nb

)ijk(
nb ]A[ [ 1

nbΦ ] + [ 1
ijkB ]    (6.2.12b) 

 
where 
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 [ 1
ijkB ]  = ∑

=
+++

1

0abc

)m(
ck,bj,ai ]R[ ≡ the sum of all residuals in the block 

 

 [ 1)ijk(
WA ]  = ∑

=

++−
1

0bc

ck,bj,1i
W ]A[  ≡ the sum of [AW] in the west nodes of the block, 

   and, similarly for the other [Anb], i.e.  
   ]A[ 1)ijk(

nb ≡ the sum of [Anb] in the nodes on the ‘nb’ face of the block   
 

 [ 1)ijk(
pA ] = ∑

=

+++
1

0abc

ck,bj,ai
P ]A[  − ∑

=

+++++ +
1

0bc

ck,bj,1i
E

ck,bj,i
W ]AA[   

                  −∑
=

+++++ +
1

0ac

ck,1j,ai
N

ck,j,ai
S ]AA[  −∑

=

+++++ +
1

0ab

1k,bj,ai
L

k,bj,ai
U ]AA[   

≡ the sum of all [AP] in the block minus the sum of all [Anb] in the 
nodes not on the ‘nb’ faces of the block 

 
In case a coarse grid node is formed from fewer fine grid nodes, the above expressions 
can still be used, simply by setting to zero the algebraic coefficient of the fine grid 
equation whenever any of its indexes is beyond its bound.    
 
 The great feature of the ACM is that the coarse grid equation (6.2.12) has exactly 
the same form as the fine grid equation. Therefore, it is possible to use the same 
smoothing method on the fine and coarse grid. 
 
 Since the solution of (6.2.12) on the coarse grid Ω1 is still expensive, we again 
apply coarser grid correction to its solution. This procedure is repeated in a recursive 
manner until we reach the coarsest grid, on which the algebraic system is solved exactly 
to get rid of all remaining error modes. In an analogous way we can form the coarse grid 
equation on any coarse grid, for example, Ωℓ+1, from the equation system already 
obtained on the finer-related grid Ωℓ. As a result, the coarse grid equation systems on all 
coarse grids have the same form as of the fine grid equation (6.2.5). 
 
 It is clearly seen that the formation of coarse grid equations does not require any 
knowledge about the coarse grid properties. Thus the ACM can be regarded as an 
algebraic multigrid method. But unlike the other algebraic multigrid methods, it does not 
require expensive multiplication of matrices. Moreover, it preserves the matrix structure 
of the algebraic system on all grid levels. With the formal definition of the coarse grid 
matrix Aℓ+1 = RAℓP, it has been shown that R and P are piecewise constant operators 
[Gjesdal (1996)]. In fact, the prolongation operator P takes the solution of the coarse grid 
equation φℓ+1 as the correction for the fine grid solution φℓ. The restriction operator R 
sums up the fine grid residuals of the unity weighting and transfers it to the coarse grid. 
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 Another remarkable feature of the ACM is that even when the fine grid system is 
close to singular or indefinite, the coarse grid systems may be not. For example, consider 
again the 1D problem (6.1.4), where the algebraic coefficients are obtained as   
 
- on the fine grid:  i

pa = 2 − h2B2;   i
Wa = i

Ea =1;   i = 1,..,N;   h = a~ /N 
 
- on a coarse grid:  
 
 by DCA: 1i

pa  = 2 − 22
1 Bh  = 2 − 4h2B2;   i1 = 1,..,[N/2];   h1 = 2h 

 
 by ACM: 1i

pa  = i
pa + 1i

pa + − i
Ea − 1i

Wa +  = 2 − 2h2B2 > 2 − 22
1 Bh  

 
In the case of DCA, any singularity or indefiniteness of the algebraic system on the fine 
grid is preserved on the coarse grids. But with the ACM, the diagonal dominance of the 
coarse grid equations would be regained. Consequently, when point relaxations are slow 
or even fail for DCA multigrid they still work for ACM. 
 
6.2.4 Avoiding Indefiniteness 
 
As mentioned above, the indefiniteness of the discretized system will prevent the use of a 
point relaxation method for smoothing. For the neutron diffusion equation, the 
indefiniteness of the discretized system is possible only when the material buckling is 
larger than the geometric buckling (cf. (6.1.9)). Even when we are able to solve an 
indefinite discretized system, for example, by using a direct method, part of its numerical 
solution obtained may be negative so that this solution is physically meaningless (because 
the neutron flux must be always non-negative). Therefore, it is important that the 
indefiniteness of the discretized system be avoided.  
 
 In case of reactor criticality calculations, we have either to choose a right 
composition of the reactor core or to introduce a fudging coefficient k (which turns out to 
be the effective multiplication factor of a given core composition [Duderstadt & Hamilton 
(1976)]) so that 
 

B2  =  
D

k
1

af Σ−Σν
 ≈ 2

gB        (6.2.13) 

 
If such a core composition is chosen for the reactor to be critical, then B = Bg and k = 1. 
Alternatively, k >1 if B > Bg and k < 1 if B < Bg. In either case, to avoid the 
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indefiniteness of the discretized system, one has to adjust the material buckling B or the 

fudging coefficient k such that B2 or 
D

k
1

af Σ−Σν
 approaches but is less than 2

gB .         

 
 For reactor kinetics problems, when B ≠ Bg we will expect the neutron flux to 
change with time. If B < Bg the flux decreases to the level that is determined by an extra 
source. More importantly, the discretized system in this case is definite and we do not 
have any problem with solving the algebraic system (6.1.5). Now, when B > Bg, the 
discretized system may become indefinite so that not only cannot it be solved by point 
relaxations but its algebraic solution has no physical meaning. It follows from (6.1.5) 
that, in order to avoid this indefiniteness, we must choose a time step ∆t such that 
 

 B2 − 
tDv

1
∆

< 2
gB  

 
Supposing that the reactor is critical with a fudging factor k as of (6.2.13), we have 
 

 
tDv

1
∆

 >  
D

af Σ−Σν
−

D
k
1

af Σ−Σν
  =  

k
1k −

D
fΣν ,   

 
or 

 

 ∆t < 
fv

1
Σνρ

,        (6.2.14)  

 

where ρ ≡
k

1k −  is the reactivity. Although we have used an implicit scheme for time 

integration of the time-dependent neutron diffusion equation, there is still a restriction to 
the time step as in case of the explicit scheme. But unlike the explicit time step, which is 
too small to use in practice because it depends not only on the neutron dynamic 
characteristics but, more importantly, on the squared spatial mesh size h2, the implicit 
time step (6.2.14) appears to depend only on rapidity of the neutron population growth, 
i.e. a value of positive reactivity. If this positive reactivity is small, we can use a large 
time step ∆t. But when the reactivity is large we must reduce the time step accordingly, 
and this is quite consistent because when a computed function changes rapidly we must 
require a small time step, at least, for accuracy.  
 
 We can estimate values of the time step given in (6.2.14). When ρ ~ 0.01 (this 
value of reactivity would make a reactor critical on the prompt neutrons alone), for 
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thermal neutron group (v ~ 2.2×105cm/s, νΣf ~ 0.1cm-1), ∆t ~ 5×10-3sec and for the fastest 
group (v ~ 109cm/s but νΣf ~ 0.001cm-1), ∆t ~ 10-4-10-5sec (cf. the explicit time step is 
less than 10-8sec). 
 

* 
*    * 

 
It is not easy to apply a multigrid method to reactor physics problems in general, due to 
difficulties in both grid coarsening and error smoothing, with an exception of the additive 
correction multigrid (ACM) method. The only doubt about the ACM is that its 
convergence may be mesh-dependent when used for numerical solution of the reactor 
kinetics problem. But it is the simplicity of the method that encourages us to use it in the 
hope that the ACM convergence does not too strongly depend on the size of the 
computational grid. We will investigate into this hypothesis in numerical examples in the 
next chapter.    
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Chapter 7 
 

NUMERICAL EXPERIMENTS 
 

This Chapter is intended to show how efficient the Additive Correction Multigrid (ACM) 
method would be when applied to such difficult problems of spatial reactor kinetics, 
through a number of numerical examples, from the simplest one-dimensional one-group 
problem to the most general multidimensional multigroup problem. 
 
7.1 Mesh-Dependence of Multigrid Convergence  
 
The Additive Correction Multigrid (ACM) is the simplest and, of course, cheapest 
method in the multigrid family. However, as mentioned in Chapter 5, since the ACM 
employs the lowest order prolongation and restriction based on the piecewise constant 
interpolation, its convergence for solving second order differential equations may depend 
on the mesh size of a grid used for spatial discretization of the differential equations. The 
fact that other multigrid methods based on higher order transfer operations are too 
difficult to implement for solving reactor physics problems has given us no choice but to 
use the ACM. However, we expect that its convergence would not sensitively depend on 
the grid size as well as its solution cost is small compared with usual iterative methods. 
 
7.1.1 A One-Dimensional One-Group Example   
 
The original equation 
 
In order to verify our expectation of the ACM convergence, let us consider a one-group 
time-dependent slab reactor problem, neglecting any delayed or extra neutron sources 
 

v
1

t∂
∂
φ(x,t)  = 

x∂
∂ D(x)

x∂
∂
φ(x,t) + [νΣf(x) − Σa(x)]φ(x,t),   (7.1.1) 

x ⊂ [0, a~ ],  t > 0 
 

Initial condition  φ(x, 0)  =  sin
a~
xπ  

 
Boundary conditions  φ(0, t)  =  φ( a~ , t)  =  0 

 
where a~  is the thickness of the slab reactor, including the extrapolated length. All 
notations in equation (7.1.1) are standard. Assume that the slab core consists of an array 
of fuel and moderator cells (Fig.7.1.1) each of which has their own diffusion coefficient 
and cross sections homogenized over the cell volume. That is, D, νΣf and Σa are 
piecewise constant but may vary from cell to cell. In general, numerical solution of 
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equation (7.1.1) does not pose any great difficulty, except when we have to use so many 
mesh points for discretization. We will shortly see that basic numerical methods (such as 
Jacobi, Gauss-Seidel or SOR) cannot compete with the ACM in terms of computational 
efficiency, and it is only the ACM that can handle a very large number of mesh points 
effectively. 
 
Discretization    
 
For spatial discretization of equation (7.1.1), we will use a cell-centered grid (Fig.7.1.1) 
defined as 
 

Ω  =  {xi | i = 0,1,..,N+1}       (7.1.2) 
 

where x0 = 0;  xN+1 = a~ ;  xi = xi-1 + 
2
hh 1ii −+  (i = 1,..,N);  h0 = hN+1=0.  

  
 
 
 
 
 
 
  
 

 
 
 
 
 
 
Denoting  
 
 t

iφ  ≡ φ(xi, t) - the known flux already computed at a previous time step, and  
 
 φi  ≡ tt

i
∆+φ  ≡ φ(xi, t+∆t) - the unknown flux at a current time step  

 
and by using a fully implicit scheme for time integration, we obtain the following 
algebraic system for the unknown fluxes at any time step as  
 

apiφi  =  awiφi-1 + aeiφi+1 + bi,  i = 1,..,N   (7.1.3) 

   φ0  =  φN+1 = 0,     

M F F F F M 

a 

x 
x0=0 xN+1= a~  

hi 

  xi 

M - moderator 
F - fuel 

Figure 7.1.1. Cell-centered grid for discretization of a 1D diffusion problem 
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where the algebraic coefficients are calculated as 
 

api  =  awi + aei − 





∆
−Σ−Σν

tv
1

aifi
i

2
i

D
h ;    

 

awi  =  









+ −

− i

1i

1i

i

h
h

D
D

1

2 ,  i ≥ 2;  aw1 = 2;    

 

aei  =  









+ +

+ i

1i

1i

i

h
h

D
D1

2 ,  i ≤ N-1;  aeN = 2; 

 

bi  =  
tv

1
∆ i

2
i

D
h t

iφ ,   i = 1,..,N. 

  
7.1.2 Numerical Solution 
 
The tridiagonal system (7.1.3) can be solved directly by using a direct elimination 
method such as the TriDiagonal Matrix Algorithm (TDMA, see in Chapter 4) and thus 
we, in principle, are able to obtain the exact solution to the algebraic system (7.1.3) 
(which is still not an exact solution to the original differential equation (7.1.1) but would 
approach it as h→0 and ∆t→0). It is not necessary to use iterative methods for solving a 
tridiagonal system as long as the number of algebraic equations in the system is not so 
large that computer round-off errors do not spoil the direct solution. However, the use of 
a 1D problem as an example here would be advantageous. First of all, the number of 
unknowns in a 1D discretized system is not so large (for any practical reactor, one 
dimension of the core is likely to be divided into several hundred mesh intervals) that we 
would not experience a problem with memory storage of unknowns and coefficients even 
on a single-processor computer. Moreover, the trend of error behaviour during the 
iteration process for a 1D problem can be well extended to a 3D problem since in a 
multidimensional domain the error will change invariantly in each direction. Finally, the 
1D exact solution can be found directly by using TDMA (to the computer and software 
decimal precision) so that we can evaluate the error norms for analysis. 
 
 It should be noted here that the algebraic system (7.1.3) may be singular or 
indefinite depending on values of the algebraic coefficients. To avoid singularity and 
indefiniteness of the system, the time step ∆t should be chosen properly as addressed in 
Chapter 6. Since we will use a basic iterative method to solve this system, it is desirable 
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that the algebraic system to be solved is diagonal dominant. For this to hold, we must 
require 
  

api  ≥  awi + aei,  (7.1.4a)  

or 

v∆t  ≤  







Σ−Σν= ),0max(

1min
aifi

N..1i
 (7.1.4b) 

 
The time step calculated by using (7.1.4b) is still restricted but only by the material 
properties and it is mesh independent. 
  
The measure of convergence 
 
Since we are able to obtain the exact solution to this model problem by using the TDMA 
as aforementioned, we can compute one of the following error norms ||e||q (q is ∞, 1 or 2): 
  

||e(m)||∞ = { })m(
iN..1i

emax
=

       (7.1.5a) 

 

||e(m)||1 = ∑
=

N

1i

)m(
ie

N
1        (7.1.5b) 

 

||e(m)||2 = [ ]∑
=

N

1i

2)m(
ie

N
1       (7.1.5c) 

 
where )m(e  ≡ )exact(x − )m(x  is the error vector after the m-th iteration, )exact(x  is the exact 

solution obtained by using the direct TDMA and )m(x  is the m-th iterate vector obtained 
by using an iterative method. In practice, the exact solution is not known in general and 
we must use the residual norms ||r||q instead of the error norms. As shown in Fig.7.1.2, 
both error norms and residual norms behave quite the same for a convergent basic 
iterative method. 
 
 As we have learned from Chapter 4, an iterative method is convergent if and only 
if an error norm (or residual norm) decreases with iterations. The iteration process is 
often terminated when the norm reduces to a given fraction ε of its initial value as 
 

)0(

)m(

||||
||||
⋅
⋅

≤ ε,  0< ε <<1      (7.1.6) 
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In (7.1.6), the required number of iterations (m) can be used to measure how fast the 
iterative method converges. Recall from Chapter 5 that it is also possible to use a 
contraction number by which the error (or residual) norm is reduced after each iteration 
step as a measure of the convergence 
 

ρm = )1m(

)m(

||||
||||

−⋅
⋅

→ ρ  as  m → ∞     (7.1.7)  

 
where ρ is the spectral radius of the iteration matrix. Since ρm is usually not constant, 
especially, during the beginning of the iteration process or when the total number of 
iterations is small as in case of a multigrid application, it is more convenient to use its 
average value over a number of iterations which is derived as follows 
 

 mρ = m21 ...ρρρ  = )1m(

)m(

)1(

)2(

)0(

)1(

||||
||||...

||||
||||

||||
||||

−⋅
⋅

⋅
⋅

⋅
⋅  = )0(

)m(

||||
||||
⋅
⋅  = ε 

 
∴ ρ  = m/1ε          (7.1.8) 

  
It can be noticed that while the pointwise norm ||⋅||∞ is the cheapest to compute, it, unlike 
the other summation norms (||⋅||1 or ||⋅||2), may show an irregular trend of its change during 
the beginning of the iteration process. Thus, any of the summation norms that behave 
monotonously is more preferred. Theoretically, as m→∞, we should get ε→0. In practice, 
due to the computing decimal precision, ε cannot be reduced to absolute zero (0) but to 
some non-zero constant ε0 > 0 (see in Fig. 7.1.2). The 2-norm (||⋅||2) is not only more 
expensive to compute than the 1-norm (||⋅||1) (as it requires additional N multiplications 
and taking a square root), but also its value of ε0 somewhat increases with the number of 
unknowns. For example, if the value of computing precision is of order 1610− , then the 

iterations 
100 

10-4 

10-8 

10-12 

10-16 

Norms, ||⋅||  
Figure 7.1.2. Norm behaviour for a convergent iterative solution 

←ε0 

0                     100                   200                   300 m (iterations) 
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value of ||⋅||2 cannot be reduced below the square root of this value, i.e. 8
0 10−>ε . 

Therefore, we will further use the 1-norm (||⋅||1) throughout our analysis and simply 
denote it as ||⋅||. 
 
Basic iterative solution 
 
If we use the Gauss-Seidel (GS) or successive overrelaxation (SOR) method to iteratively 
solve the system (7.1.3) on a computational grid with different sizes (provided the time 
step is properly chosen for its solution to converge), we will see from Fig.7.1.3 that the 
number of iterations required to reduce the error (or residual) norm of the iterate solution 
by 1/ε, say 105, times is proportional to the grid size raised to the power of some constant 
α > 1, as 

mε = cNα       (7.1.9) 
 
where c is a constant of proportionality; N is the number of algebraic equations (or the 
grid size); α ≈ 2 for the GS and α ≈ 1 for the SOR. That is, the convergence of basic 
iterative methods, as expected, is strongly mesh-dependent. Although SOR, being a GS 
with an optimum relaxation ωop, is faster than GS by nearly an order of magnitude, it is 
impossible to obtain the optimum value ωop in practice or it is too costly to do so. 
Obviously, when the grid size is relatively large, i.e. several hundreds of mesh points in 
1D or tens of millions in 3D, these iterative methods are too slow to be used. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Multigrid solution 
 
We now apply a multigrid method to solve the system (7.1.3). In Fig.7.1.4 we show the 
results obtained by using the ACM algorithm with the simplest V(1,1)-cycle (i.e. one pre-
smoothing and one post-smoothing step) and with the plain GS method as a smoother. 
We will allow for the multigrid solver to reach the coarsest grid that has only one non-

102 

104 

106 

100 
Grid size 

m (iterations)  

Figure 7.1.3. Required number of basic iterations to reduce the error norm by 105 times

GS 

SOR 
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trivial grid node. The accuracy ε at which the multigrid iteration is terminated is set to a 
small value, say, 10-5 in one case and to the computer’s precision ε0 in the other case (i.e. 
the iteration is stopped as soon as the error norm no longer decreases). 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 At first glance, one is able to observe the spectacular performance of the multigrid 
in terms of convergence. That is, it requires much fewer iteration steps than GS or SOR 
to reduce the error norm to the same level (cf. Fig.7.1.3). Moreover and most importantly, 
the required number of multigrid iterations depends very weakly on the grid size and 
tends to be mesh-independent at a larger grid size. Even if we allow for the most 
accurate solution to be obtained, ε = ε0 (i.e. when the error norm could no longer decrease 
with further iteration), the needed number of multigrid iterations is bounded. It is 
interesting to note that, when the grid size is extremely large, this iteration number tends 
to decrease (see Fig.7.1.4). This, however, does not mean that fewer iterations are needed 
for a larger grid size, but simply it is due to deterioration of precision in computing so 
many small values of the error norm at a very large grid size. As we can see from the 
ACM application (Fig.7.1.4), at small grid sizes (below 100, which is not typical for the 
finite-difference disretization of a practical reactor problem) its convergence is still mesh-
dependent but weakly. Particularly, it is clearly seen that, regardless of the grid size when 
it is about several hundreds or more (that size is typically used in practical reactor 
calculations), the number of ACM iterations required to solve a reactor kinetics problem 
at each time step is small and fixed. That is, in terms of grid-size dependency for the 
multigrid convergence as in relationship (7.1.9), we should have 
 
 α ≤ ½  if N < 100 
 
 α ≈ 0  if N ≥ 100 
 
(cf. α ≥ 1 for the other known unigrid iterative methods).  
 

Figure 7.1.4. Required number of ACM iterations for solution to converge to within ε 
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 The fact that the ACM convergence is mesh-independent when the grid size is 
large can be explained as in the following. In Chapter 5 we know that a multigrid method 
with high order transfer operators (based on linear or more accurate interpolation) could 
provide the mesh independence of convergence for solving a second-order partial 
differential equations. With higher order restriction and prolongation, the coarse grid 
correction is closer to the error that must be solved for on the fine grid. For example, 
linear interpolation for a 1D diffusion problem discretized on a vertex-centered grid 
provides an exact equality between the correction at a coarse grid point and the error at 
the fine grid point that is projected by that coarse grid point onto the fine grid. Although 
the errors at the fine grid points that are not projected from any coarse grid points are not 
exactly corrected, the vector of newly corrected errors on the fine grid becomes so 
oscillated (with a half-wavelength about the fine grid mesh size) that can be removed 
effectively by a fixed number of basic iterations. On the other hand, the best coarse 
correction that the ACM, which has the lowest order of restriction and prolongation, 
could ever provide is only an average value of the errors in the fine grid points that form 
the corresponding coarse grid point. However, if the grid is fine enough, the values in any 
two neighbouring grid points tend to be closer to each other so that there is little 
difference between their average and their own values. This is the case when the fine grid 
has such a large number of mesh points that the ACM is able to correct the fine grid error 
most accurately. 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 To end this section, we show the results obtained with different smoothing 
methods in our ACM application. Although the SOR is the fastest method among the 
known basic iterative methods on a single grid, it is a rather poor smoother for multigrid 
application, as seen in Fig.7.1.5. On the other hand, the plain Jacobi method is also a poor 
smoother, but the ‘damped’ Jacobi (DJ) method with a properly chosen underrelaxation 
parameter is as good as the GS. Application of DJ, though requiring storage of one vector 
of unknowns more than GS or SOR, is favourable to parallel computation since it does 

Figure 7.1.5. ACM convergence with different smoothing methods 
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not require an orderly sweep through the equations in the algebraic system as GS or SOR 
does. It is possible, however, to reorder the equations in an algebraic system so that GS 
and SOR could be used to sweep though the system regardless keeping any order. The 
Red-Black Gauss-Seidel (RBGS) is such a method of reordering by colouring the grid 
mesh points red and black such that there are no two adjacent points of the same colour. 
The RBGS will sweep through red points first and then through black points. The RBGS 
is not only suitable for parallel computation but also saves the storage of one unknown 
vector less than DJ, as well as it is as a good smoother as DJ or GS (see in Fig. 7.1.5). 
 
7.2 The Multigroup Kinetics Problem 
 
In practical reactor calculations, we usually have to deal with more than one group of 
neutron energy (typically, 2-4 groups for thermal reactors and 15-20 groups for fast 
reactors). That is, besides the spatial coupling due to diffusion of neutrons in the same 
energy group, the reactor kinetics equations are also coupled through the scattering and 
the fission neutron sources - the group coupling. It is this group coupling that makes the 
algebraic matrix structure of the reactor kinetics discretized system difficult to 
manipulate if matrix multiplication or inversion is required. 
 
7.2.1 A Two-Group Problem Example  
 
The original equations 
 
To examine the effect of group coupling of neutrons in solving the reactor kinetics 
equations, we will again consider a modelled 1D reactor problem as in the previous 
section but with two neutron groups, one fast group (g = 1) and one thermal group (g = 2) 

 

1v
1

t∂
∂
φ1(x,t)  = 

x∂
∂ D1 x∂

∂
φ1 − ΣR1φ1 + νΣf2φ2, 

 

2v
1

t∂
∂
φ2(x,t)  = 

x∂
∂ D2

x∂
∂
φ2 − ΣR2φ2 + Σs12φ1,    (7.2.1) 

 
x ⊂ [0, a~ ],  t > 0 

 
Initial condition  φg(x, 0) =  φg0(x) 

 
Boundary condition  φg(0, t)  =  φg( a~ , t)  =  0;    g = 1, 2 

 
where the unknown functions φ1 and φ2 are respectively the fast and thermal neutron 
fluxes. In this example, we assume that the source term in the fast group equation is the 
fission neutrons produced by thermal fissions (νΣf2φ2), and the source term in the thermal 
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group equation is the neutrons scattering (i.e. slowing down) from the first group (Σs12φ2). 
All notations in (7.2.1) are standard. 
 
Discretization   
 
Again, we utilize the cell-centered grid (7.1.2) as in the previous one-group example for 
spatial discretization of (7.2.1) and the fully implicit scheme for time integration to obtain 
the following two-group algebraic system: 
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where the algebraic coefficients are calculated as 
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7.2.2 Numerical Solution  
 
As noted in Chapter 6, a traditional approach to solve the group-coupled discretized 
system like (7.2.2) is to use the source iteration (or power) method [Wachspress (1966)], 
which consists of two loops of iteration: an outer loop and an inner loop. The outer (or 
source) iteration begins with guessing the source term in every algebraic equation 
 

)1(
sib  = )2(

i
)1(

sia φ + )1(
ib  and )2(

sib  = )1(
i

)2(
sia φ + )2(

ib    (7.2.3) 
 
and reduces the group-coupled system (7.2.2) into two single-group systems 

 
g
i

g
pia φ  = g

1i
g
wia −φ  + g

1i
g
eia +φ  + g

sib ,  g = 1,2    (7.2.4) 
 
The inner iteration will solve each of the single-group systems (7.2.4) for spatial flux 
distribution in the group with that guessed source g

sb . The outer iteration then improves 
the source terms (7.2.3) for a next inner iteration. This tandem outer-inner iteration 
process is repeated until the flux solution, and the source as well, converges to within 
some acceptable accuracy. An increase in accuracy of inner iteration would obviously 
reduce the required number of outer iterations for the overall solution to converge 
(Fig.7.2.1) but it does not necessarily reduce the computational cost as we will see 
shortly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 With the source iteration method, a multigrid method can be straightforwardly 
applied to iteratively solve each single-group algebraic system (7.2.4) with the purpose of 
accelerating convergence of the inner iteration. Although multigrid application of this 
type would somewhat reduce the overall work of computation for solving the system 
(7.2.4), it is not the most efficient way. The reason is that to solve for spatial fluxes 
accurately is not only expensive but also unnecessary while the source term is still an 

Figure 7.2.1. Source iteration at different accuracies of inner solution 
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approximate. One could save a few steps of the outer iteration but at the greater cost 
spent on a more accurate solution of the algebraic systems at the beginning of the 
iteration process. In fact, as seen in Fig.7.2.2, although the number of outer iterations 
decreases, the total number of inner iterations (and so the total computational work) 
increases significantly with increasing accuracy of the inner solution. It is expected that 
during a first few outer iterations the multigrid actually works well, but it quickly 
becomes wasteful because after these first iterations only a couple or even one inner 
iteration is quite enough to have the same effect as a full multigrid cycle. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 In order to apply the multigrid more efficiently for solving the coupled system 
(7.2.2), we will make a clever change in the order of the iteration procedure, by moving 
from the source iteration (which is in the group-then-space iteration order) to the space-
then-group iteration order. The idea of switching the iteration order comes from the fact 
that if we use the source iteration method but with a single sweep for the inner iteration, 
the final effect is the same as if we move from a grid point to a grid point and solve the 
group equations at each grid point [Garland (2001)]. This change has no gain on single-grid 
(unigrid) application but it greatly facilitates multigrid implementation. We no longer 
need to guess the source terms and, more importantly, the matrix structure of the 
algebraic equation systems is preserved on all grids, both fine and coarse.  In addition, 
since the number of neutron groups in a practical reactor problem is small, especially for 
thermal reactor calculations, the direct solution of the group equation system at a grid 
point is not so expensive that one could even improve the overall efficiency. With this 
idea we proceed to a multidimensional multigroup reactor kinetics problem in the next 
section. 
               
7.3 Multidimensional Multigroup Problem 
 
We have seen from above that multigrid methods are greatly faster than any basic 
iterative method in reducing the solution error in the 1D reactor problem as they tend to 
have mesh-independent convergence with an increasing grid size. In a multidimensional 
problem, the error is reduced independently in each direction during the iterative solution 

Figure 7.2.2. Iteration number vs. accuracy of the inner solution 
−log(εin) 
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process. Hence, multigrid methods are expected to work well in solving the 3D reactor 
kinetics problem as they do in 1D. Moreover, multigrid application in 3D is even more 
efficient than in 1D because the number of mesh points in a 3D coarse grid is roughly 8 
times fewer than in its finer related grid (it is only twice in 1D), and so is the 
computational work spent on sweeping through an algebraic equation system on a coarse 
grid. We have also observed that the ACM do not experience difficulties in handling the 
group coupling of the 1D kinetics equations and this is extended to the 3D case as well. 
 
7.3.1 A 3D Multigroup Example                     
 
The starting equation system 
 
The general reactor kinetics system of a multigroup diffusion model in 3D Cartesian 
geometry is given by (see in Chapter 3) 
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iC
t∂
∂  =  −λiCi(x,y,z,t)  +  βi∑

=

φΣν
G

1'g
'g'fg , i = 1,.., N   (7.3.1b)    

  x ⊂ [0, xa~ ];   y ⊂ [0, ya~ ];   z⊂ [0, za~ ];   t ≥ 0  

I.C.  φg(x,y,z,0)  =  φ0g(x,y,z) 

B.C. φg(xs,y,z,t)  =  φg(x,ys,z)  =  φg(x,y,zs) = 0;  xs = 0| xa~ ; y = 0| ya~ ; z = 0| za~  
 
Not only the group neutron fluxes φg and the delayed precursor concentrations Ci, but 
also the group constants Dg and Σ(⋅)g are functions of space and time variables (x,y,z,t). 
The extrapolated lengths, where the diffusion model treats the neutron flux as equal to 
zero, are added to the physical geometry and, as a result, the computational domain is 
formed and its dimensions are denoted as xa~ , ya~ , za~ .   
 
Discretization 
 
By discretizing the system (7.3.1) with finite differences in a cell-centered spatial grid 
and with a general theta-method for time integration, and eliminating the precursors in 
the flux equations, we obtained the algebraic system for the neutron group fluxes at any 
given time step as (see Chapter 3 for details) 
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[AP][ΦP]  = ∑
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with the algebraic coefficients 
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The initial and boundary conditions become 
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 0t,P
g

=φ = P
g0φ , ∀g, P;  BP

g
=φ = 0, ∀g, t > 0 
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p
'g0

p
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i

i , ∀g, i      (7.3.3)          

 
As we are only interested in cases where an implicit scheme (with θ > 0) is used, namely, 
when θ = ½ in the Crank-Nicholson scheme or θ = 1 in the fully implicit scheme, the 
algebraic system (7.3.2) is required to be solved iteratively for the group fluxes at every 
grid point.   
 
McMaster Nuclear Reactor 
 
As for our numerical experiments, we will solve the kinetics equations applied for the 
McMaster Nuclear Reactor (MNR) core (Fig.7.3.1). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Although the MNR core is small compared to any practical power reactor, its 
composition is quite complex as it is composed of various types of core assemblies. On 
the other hand, we can in principle refine the grid, i.e. use as many mesh points as we 
want, to form a grid of practically any size. We will refer to the grid where the upper (or 
lower) face of a grid node is the horizontal cross section of a core assembly as the basic 

 Basic grid (8×11×8) Twice-refined grid (16×22×16) 

Figure 7.3.1. MNR core: horizontal plane view 
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grid. Note that the north-south pitch and the west-east pitch of the grid can be different. 
The height of each grid node (or the vertical pitch of the grid) should be about either of 
the horizontal pitches. As a result, the basic grid is composed of a number of rectangular 
nodes of the same dimension. 

  
Usually, the group constants in a core assembly are homogenized over each of its 

sections (e.g. a header, a body and a tail of a fuel assembly or a control-in section and 
control-out section of a control rod, etc.. Calculations of homogenized group constants 
for a specific core composition are beyond the scope of our work, and here we only use 
the provided results from these calculations [Day (2002)]. From the basic grid, we can form 
a grid of a larger size simply by dividing each dimension of the basic grid node into 2 or 
4,..,2n equal intervals. 

 
7.3.2 Numerical Solution 
 
Unigrid solution 
 
The algebraic system (7.3.2) can be solved by using a basic iterative method on a given 
single grid. Usually, the GS method would be the first choice before any other methods 
because of its simplicity. However, for an extremely large grid, as usually used in neutron 
diffusion calculations, the GS would be too slow to converge since doubling the grid size 
would reduce the GS convergence rate by quadruple. Of course, on a single grid, any 
overrelaxation, i.e. 1<ω<2, for the GS scheme would accelerate the solution convergence 
to some extent, up to an order of magnitude. Not only can overrelaxation accelerate the 
spatial solution (similarly to the inner iteration) of the neutron kinetics system, it also 
speeds up the overall solution thanks to accelerating the group solution (similarly to the 
source iteration). The maximal acceleration could be achieved at an optimum value of the 
relaxation parameter ωop, which, unfortunately, is impossible to compute in advance, 
especially, in cases where algebraic coefficients of the solving system vary from one time 
step to another time step.  
 
 In Fig.7.3.2 there is shown convergence behaviour of the GS and SOR methods 
for solving the 3D few-group neutron diffusion equations on a single computational grid - 
the unigrid methods (UG), in comparison with that of the multigrid methods (MG) for 
which these iterative methods are used as smoothers.  
 
 We have mentioned that within each grid node we can solve directly the group-
coupled system as we have done for the two-group problem in the previous section. If 
there are only two or three neutron groups, it is possible to use Cramer’s rule to directly 
solve such a small system at the lowest cost. But if the neutron group number is four or 
more, the computational cost of Cramer’s direct solution would be no less than that of 
iterative solution. In addition and the most importantly, we can see from Fig.7.3.2 that 
only a single sweep through the algebraic equations within a node has exactly the same 
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effect as if a direct solution by the Gaussian elimination were performed. This is, again, 
to demonstrate our simple principle that it is unnecessary to solve exactly an algebraic 
system while the source term is still approximate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multigrid solution 
 
The ACM can be easily applied to solving system (7.3.2). As for a smoothing method, we 
use the plain GS method or its modification, the Red-Black Gauss-Seidel method. Both 
GS and RBGS provide exactly the same convergence in solving our 3D few-group 
problem (Fig.7.3.1). In the Table 7.1 below we compare the convergence rate (which can 
be either the number of iterations (m) required to reduce the residual norm ||r|| from its 
original value by 1/ε times or the average contraction number ρ ) for both unigrid and 
multigrid schemes on the computational grid of different discretization sizes. 
   

Table 7.3.1. Unigrid (UG) and multigrid (MG) convergence rates (ε=10-5) 
 

UG-GS MG-V(1,1) 
Grid 

Number 
of nodes m(ε) ρ  m(ε) ρ  

Basic grid 8×11×8 704 60 0.825 13 0.410 
2x-refined grid 16×22×16 5,632 183 0.939 20 0.555 
4x-refined grid 32×44×32 45,056 699 0.984 36 0.774 
8x-refined grid 64×88×64 360,448 ~2800 0.996 55 0.810 

  
Although the computational work per multigrid iteration step is several times 

greater than that per unigrid iteration step, the total cost of the multigrid iterative solution 
is only a fraction of the unigrid solution cost. If the same iterative method used in the 
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Figure 7.3.2. Unigrid and multigrid convergence behaviour on grid 32×44×32 
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unigrid application is also used as a smoother in the multigrid application, and if the work 
per iteration of the former is denoted by U (this UG work unit is proportional to the 
number of the algebraic equations in the discretized system), then the work per iteration 

of the multigrid V(1,1) cycle can be estimated about 
7
24 U, added up of 

 
i) pre-smoothing and post-smoothing work on all grids 
 

 2U(1 + 2-d + 2-2d + …+2-Ld) ≈ d21
U2
−−

 = 
7

16 U 

 
where d = 3 for 3D grid and L is the number of course grids used. 
   

ii) restriction and prolongation work (these operations, though required for all grid 
nodes, consist only of simple arithmetic additions and are over-estimated as 

half the smoothing work) ≈
7
8 U. 

 
We also have to account for the work spent on the calculation of coarse-grid algebraic 
coefficients, i.e. grid coarsening, which is done once at the beginning of the iteration 
process. With the ACM, grid coarsening consists of only arithmetic additions and is 
estimated as an extra iteration step. If other algebraic multigrid methods were applied, the 
grid coarsening work would be significantly great as complex matrix multiplications are 
required. These calculated multigrid costs are, in fact, overestimated, as our numerical 
experiments have shown that the work for multigrid coarsening is only about 0.55U and 
for a V(1,1) cycle is (2.2-2.6)U.  
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Figure 7.3.3. Comparison of unigrid and multigrid solution costs 
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It is clearly seen in Fig.7.3.3 that while the computational work per grid node for solving 
the algebraic system (7.3.2) by using the GS method on a single grid almost quadruples if 
the grid size doubles, such work done by the multigrid method (the ACM in our case) 
tends to level up at some small fraction of the former. It should be noted here that, the 
grid size in 3D is not the total number of grid nodes as in a 1D grid but rather the number 
of intervals used to divide either one of the 3D grid dimensions whichever is the largest. 
 
 It is of interest to compare the solution costs of the multigrid V and W cycles, 
implemented with different numbers of pre- and post-smoothing steps (Table 7.3.2). 
 

Table 7.3.2. Solution by V and W cycles in comparison to V(1,1) 
 

MG Cycle (1,1) (2,1) (1,2) (1,3) or (2,2) 
V 1 0.96 0.95 0.97 
W 0.58 0.60 0.57 0.62 

 
Note: The solution work by the V(1,1) cycle is set to unity (1) 
 In parentheses are the numbers of pre- and post-smoothing steps, respectively. 
 
As seen in Table 7.3.2, W-cycle solution is much faster than V-cycle solution, roughly 
twice faster than the latter. Since implementation of a W-cycle does not require any 
additional efforts in coding other than a V-cycle, it is always advantageous to switch to a 
W-cycle in any multigrid application. Also, adding either one pre- or post-smoothing step 
will slightly reduce the computation cost of a multigrid cycle, but the effect of post-
smoothing is a little better than pre-smoothing. However, to continue adding more 
smoothing steps would degrade the multigrid efficiency and, therefore, should be 
avoided. 
   
Remarks on smoothing methods  
 
We further notice that, a properly chosen overrelaxation parameter ω > 1 could well 
accelerate the multigrid convergence (Fig.7.3.2). However, the optimal value of 
relaxation in a multigrid application is quite different than that of SOR in a unigrid 
application. If the SOR (ω = ωop) were used for smoothing, the final results would be 
worse than using the plain GS (ω = 1) as already known in the above 1D one-group 
example, and a further increase in the relaxation parameter (ω > ωop) would be likely to 
cause non-convergence or even divergence of the solution. On the other hand, for a 
multigroup neutronic problem, the overrelaxation iteration will accelerate convergence of 
the source terms in a similar manner as provided by the Chebyshev acceleration method 
[Dederstadt & Hamilton (1976)]. Therefore, an appropriate value of the multigrid 
overrelaxation parameter should be between 1 and ωop. Because there is no general way 
to predict the optimal value for multigrid overrelaxation, it is safer to use the plain GS as 
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a smoother. A quite similar reason, but only in the opposite direction, is for the damped 
Jacobi not to be used as a smoother. An underrelaxation for the Jacobi scheme would 
accelerate smoothing of the spatial solution but, at the same time, slow down the source 
convergence. As a result, the damped Jacobi fails to smooth the multigrid solution of the 
multigroup neutronic problem.  
 
 In principle, it is possible to use any known iterative method for smoothing in 
multigrid application but we need to consider the overall efficiency. In multidimensional 
multigrid the short-wave and long-wave modes are not completely separated as in the 1D 
case, because the error modes are generally changed at different rates in different 
directions, and thus they may be short in one direction (dimension) but still long in other 
direction(s). It is important not to allow any modes to amplify; otherwise, the iterative 
method used for smoothing may not reduce the error as expected and even ruins the 
solution eventually (see in Chapter 5). If the solving system is indefinite, singular or 
nearly singular, the basic iterative methods are likely to fail as smoothers because while 
they reduce the short-wave modes in one direction they may amplify the long-wave 
modes in another. It is also very questionable to use the Conjugate Gradient (CG) method 
or any one of its kind in the family of Krylov subspace methods as a smoother. Such a 
CG-like method is known as a rougher rather than a smoother because it reduces the 
long-wave modes of the error faster than the short-wave modes. 
  
Time step restriction                   
 
Up to this point we have not mentioned about how to choose time steps for temporal 
integration of the multidimensional multigroup kinetics equations. We have seen in the 
1D one-group example that, the time step, though mesh independent, has to be restricted 
by the grid material properties in order to avoid singularity or indefiniteness of the 
discretized equation system. In the multidimensional multigroup case, such a restriction 
must also be imposed on the time step, but, unfortunately, we do not have a direct 
relation to predict a proper value of time steps. In most cases, we would rely on the fact 
that a value of the time step required to avoid numerical instability is usually smaller than 
that required for acceptable accuracy. In the worst case, by checking if the residual norm 
either decreases too slowly or increases, we could halt the iteration process, return to its 
beginning, and then repeat it with a newly reduced time step. 
 
Flux shape              
 
It is interesting to show how different the flux solution is for the basic grid and for one of 
its refined grids. In Fig.7.3.4 are shown the thermal neutron fluxes at the midplane and in 
several vertical positions of the MNR core, with all control rods 2/3 out. The maximum 
flux location is well predicted in both low and high resolution grids, but the high-
resolution value is greater than the low-resolution value by 15-20%, implying the low-
resolution solution is less conservative with respect to reactor safety analysis. 
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* 
*   * 

 
The multigrid solver developed in this research approaches an optimal solution of spatial 
neutron kinetics problems in a nuclear reactor of practical interest, for the convergence of 
the solver tends to be almost independent of the typical mesh size of the grid used for 
problem discretization. Moreover, the solver is certainly the simplest method, since it 
utilizes the simplest transfer operators as well as the cheapest smoothing method. All of 
these features essentially make it a very efficient method for reactor physics calculations. 
  
 We have finally reached our goal of research and will summarize our work in the 
next, last chapter, together with some concluding remarks and recommendations.      
    

Basic grid (8×11×8) solution 4x-refined grid (32×44×32) solution 

 W - water F - fuel assembly CR - control assembly 

Figure 7.3.4. Thermal neutron flux in the MNR core  
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Chapter 8 
 

CONCLUSIONS 
 

8.1 Research Summary 
 
In this research we have explored the possibility of using a multigrid method for 
numerical solution of spatial neutron kinetics in nuclear reactors. We have addressed the 
fundamental issues that have restricted the practical use of multigrid methods to reactor 
physics computation, ranging from physics of reactor kinetics to numerical solution of 
algebraic systems, as summarized below. We have reached our goal of developing an 
efficient multigrid solver which is computationally cheaper but faster than any other 
spatial methods known in reactor kinetics calculations.           
 
 Numerical simulation of reactor dynamics has been recognized to be vital for 
control and safety analysis of nuclear reactors, in which the neutronics computation plays 
the most important role and usually consumes the largest portion of computational 
resources. Although the neutron transport theory provides the most exact and 
fundamental description of behaviour of neutrons in a nuclear reactor, it is extremely 
difficult to solve the neutron transport equation for any nuclear reactor system of 
practical interest. Until today and, perhaps, in the near future, the group diffusion theory - 
an approximation to the transport theory assuming the neutron as a continuum gas 
diffusing within a reactor core - has been and will be the most practical model to be used 
in reactor physics calculations, for the diffusion model is more computationally 
manageable while it still provides sufficiently reliable results (Chapter 2).  
 
 It is commonly agreed that kinetics of neutron population in a nuclear reactor is 
adequately represented by the time-dependent few-group neutron diffusion equations and 
the group delayed neutron precursor equations. Various numerical methods have been 
developed for solving this kinetics system of partial differential equations of second order 
in space and first order in time (Chapter 3). The point kinetics model is the simplest and 
fastest, but its results tend to be not only inaccurate but also non-conservative for many 
cases of reactor transients important to reactor safety analysis. Therefore, the use of a full 
3D spatial kinetics model is necessary to obtain satisfactory results for numerical 
simulation of reactor dynamics.  
 
 In general, finite difference methods are the simplest and most direct approach to 
numerical solution of the spatial neutron kinetics equations, but they usually require such 
large computational resources that hardly find practical application in their 
straightforward manner. A finite difference method must utilize a very fine mesh grid for 
spatial discretization of the neutron diffusion equations to obtain acceptable accuracy, 
giving rise to an extremely large algebraic system of discretized equations to be solved. 
Most usual numerical methods are inefficient for solving such a large algebraic system. 
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 To overcome the inefficiency of finite difference methods, a plethora of spatial 
methods for reactor kinetics problems have been developed, among which the family of 
nodal methods have found the greatest acceptance within the reactor physics community. 
Nodal methods utilize a relatively large mesh size in discretization, hence, allow a 
significant reduction in the number of equations in the nodal discretized system and, 
consequently, in the computational cost to an affordable degree. Nevertheless, the nodal 
methods are not free of difficulties and, most importantly, the nodal model computation 
is still very time-consuming.   
 
 Either method for discretization of reactor kinetics equations leads to an algebraic 
system, usually large, that must be solved by using digital computers. Direct numerical 
methods are normally used for solving those algebraic systems either of a small size or of 
a specific form such as a tridiagonal matrix system. For large algebraic systems, an 
iterative method must be used in favour of computational efficiency and accuracy. 
However, most iterative methods have a property that their convergence strongly 
deteriorates with an increasing size of the algebraic system being solved; therefore, these 
usual iterative methods are quite inefficient for solving the discretized neutron kinetics 
system (Chapter 4).      
 
 Multigrid methods (Chapter 5) are among the fastest iterative methods known 
today for solving large algebraic systems arising from disretization of partial differential 
equations. The essential principle of multigrid methods is to eliminate different error 
components on different grids of corresponding scales. A number of basic iterative 
methods, though simple and cheap, are so effective at damping down the short-wave 
components that they could be used for smoothing errors of the solution in multigrid 
application. Long-wave components, which are not effectively reduced by a smoother on 
a given grid, turn out to be short on some coarser-related grids and hence could be 
effectively damped down there by using the same smoothing method. The greatest 
advantage of multigrid applications is that the multigrid method, if properly constructed, 
could provide an optimal convergence that is independent of the size of the solving 
algebraic system.    
 
 It is possible to develop a multigrid method for numerical solution of the spatial 
neutron kinetics equation system (Chapter 6) provided a couple problems associated with 
grid coarsening and error smoothing are identified and resolved. By using an Additive 
Correction Multigrid (ACM) technique, whose transferring operations are based on 
piece-wise constant interpolation, we are able to achieve the minimal cost for grid 
coarsening and inter-grid transferring. Also, by adjusting the time step for temporal 
integration, we could avoid another problem with singularity and/or indefiniteness of the 
discretized system so as to use a cheap iterative method (such as the point Gauss-Seidel 
relaxation method) for multigrid smoothing of the error.          
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 Numerical experiments (Chapter 7) have shown that our multigrid solver could 
efficiently handle the spatial multigroup neutron kinetics problem. The ACM 
convergence tends to be mesh-independent with an increasing size of the computational 
grid and approaches an optimal iterative method at a large grid size that is typically used 
in neutron diffusion calculations of a practical reactor. Even on a relatively coarse grid, 
although the ACM convergence is mesh-dependent, this dependence is so weak that the 
multigrid solver could still well compete with other spatial methods in terms of efficiency 
for solving the reactor kinetics problem. 
    
8.2 Concluding Remarks                                  
 
In this work we have demonstrated that multigrid methods can be well applied to reactor 
physics problems. In particular, we have developed a multigrid solver that is capable of 
solving the time-dependent few-group neutron diffusion equations in a full 3D Cartesian 
geometry. Our multigrid solver is shown to be an accurate and efficient method for 
spatial neutron kinetics, owing to finite difference discretization of the original kinetics 
equations and multigrid iterative solution of the discretized equation system. Some 
concluding remarks on the multigrid solver can be made as in the following. 
       
1) Finite difference methods are capable of providing accurate discretization of the 

multigroup neutron diffusion equations.   
 
A finite difference method is, no doubt, the simplest and most direct way to discretize 
any space-time partial differential equations. With a finite difference method, we are able 
to achieve any desirable accuracy of the solution simply by changing the discretization 
length. The discretized system resulting from finite difference discretzation on a required 
fine-mesh grid, though extremely large, can be effectively solved by using a multigrid 
method. In addition, fine-mesh utilization would allow the direct use of the algebraic 
solution of the discretized system for other related calculations, as well as it would not 
require the homogenization of large core regions. 
 
2) Multigrid application provides efficient solution of an algebraic equation system 

arising from finite difference discretization.  
 
The multigrid solver developed in this work is based on the Additive Correction 
Multigrid (ACM), which is the simplest and cheapest multigrid method. Unlike 
traditional multigrid methods, the ACM does not require knowledge of coarse grid 
properties (such requirements probably prevent a traditional multigrid method from being 
applied in reactor physics), hence, it is an algebraic multigrid method. But unlike other 
algebraic multigrid methods, the ACM does not involve expensive operations on 
algebraic matrices. The ACM restriction and prolongation are based on piece-wise 
constant interpolation, making it easy to handle neutron group couplings within the 
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reactor kinetics system. As a result, the ACM solver minimizes computational work on 
grid coarsening and transferring (since these are simple arithmetic additions). 
 
 An important modification to the source iteration procedure in solving the 
multigroup system of neutronics equations has been made, by switching from the source-
then-point iteration order to the point-then-source iteration order, enabling the multigrid 
solver to step in both group and space at the same time and, thus, maximizing its 
performance. 
   
3) The ACM solver tends to be an optimal method on a computational grid with an 

increasing size.             
 
An optimal multigrid solver must have a convergence rate that is independent of 
computational grid size. Convergence of the ACM, due to its lowest order transferring 
operators, still depends on the grid size, but, fortunately, this dependence is rather weak 
on a coarse grid and becomes practically mesh-free on a very fine grid. Numerical 
experiments have shown that for a grid size that is typically used for reactor kinetics 
calculations the ACM convergence approaches an optimum. 
 
 Even on a very coarse computational grid, multigrid solution is still better than 
any unigrid method (e.g. SOR) in terms of computational efficiency, while it is only a 
fraction of the latter once the multigrid solver becomes optimal on very fine grids. 
    
4) The point Gauss-Seidel method is a good choice for multigrid smoothing. 
 
In order for a cheap basic iterative method, such as the point Gauss-Seidel relaxation 
method, to be used as a multigrid smoother, it is necessary to avoid singularity or 
indefiniteness of the discretized equation system. This can be achieved by choosing an 
appropriate time step for temporal integration of neutron kinetics equations. Although 
there exists an overrelaxation parameter at which the multigrid convergence is maximal 
for multigroup multidimensional problems, it is difficult or too costly to obtain such an 
optimal relaxation value in practice; therefore, we would rather use the plain Gauss-
Seidel method for multigrid smoothing. It is even better to use the Red Black Gauss-
Seidel method in order to facilitate parallel computation without loss of convergence 
speed. 
 
5) Multigrid solution can be improved by choosing only a few pre- and post-

smoothing steps as well as by switching to W-cycle implementation.   
 
Although V(1,1)-cycle multigrid solver is the simplest, its solution is far from the best.   
It is possible to improve performance of the multigrid solver by a simple adjustment of 
multigrid parameters. That is, in our numerical experiments, a combination of one pre-
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smoothing step and two post-smoothing steps, i.e. V(1,2) or W(1,2), has given the best 
results. Also, W-cycle multigrid solution can be twice faster than its V-cycle counterpart. 
       
6) With our multigrid solver, we could avoid many serious problems which would 

arise should other spatial methods be utilized in reactor physics.  
 
Taking, for example, the nodal methods, which are known as the most efficient methods 
today for reactor physics calculations, such problems could be: 
 

 the great analytical efforts required for deriving the nodal discretized system;   

 the need for homogenization of large core regions (nodes); 

 the need for dehomogenization of the algebraic solution to obtain the flux 
distribution within a node to be used in related calculations; 

 the difficulty in numerical solution of a nodal discretized system since the 
nodal algebraic system is not linear and diagonal-dominant; 

 the need for validation of nodal results with some finite difference benchmark 
results.  

 
8.3 Recommendations for Future Research 
 
Although multigrid methods, one of which we have developed in this work, prove to be 
efficient for solving a diffusion modelled problem of spatial neutron kinetics in nuclear 
reactors, there are some issues requiring further investigation in order to maximize 
multigrid capability. 
 
1) Estimation of appropriate time steps 
 
We have identified that the time step for our multigrid solver are mesh-independent but 
unable to relate the time step to the reactor group constants in a general multigroup 
problem (we still rely on a suggestion that this time step should be larger than that 
required for acceptable accuracy of the solution). Further research on this issue should be 
directed to examining the algebraic coefficients in the discretized system for whether it is 
an “equivalently” diagonal-dominant system. Since a multigroup neutron model 
represents discretization of the energy variable, it is logical to treat the fission and 
scattering terms as another coupling direction in addition to the three spatial coupling 
directions. Therefore, it would be suggested that for a discretized multigroup system to be 
diagonal-dominant (so that its solution error could be smoothed with a point relaxation 
method), the algebraic coefficients of group coupling terms should satisfy certain 
conditions yet to be found. 
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2) Flux factorization to lengthen time steps 
 
We have applied multigrid only to spatial grids because it is difficult to coarsen the 
temporal grid. In principle, a flux factorization technique could be used to split the group 
neutron flux into a flux amplitude and a flux shape. Then, the multigrid can now be 
applied only to the shape, while the amplitude is found by solving a much simpler system 
of ordinary differential equations of first order in time. This procedure does not relax our 
burden in solving for spatial distribution of the flux, but it is useful for lengthening the 
time interval required for re-computing the flux shape. 
 
 Nevertheless, it is unclear whether it is worth lengthening the time step for 
neutronics computation while that for the thermalhydraulics computation, which is 
carried out in parallel with the former, may be more restrictive. 
        
3) Implementation of parallel computation 
 
It can be imagined that any numerical solution of an algebraic system would have two 
sides, a wide and a deep. The wide side of the solution is associated with computational 
work spent on computing equation by equation in the algebraic system per iteration, 
hence, this work is directly proportional to the number of equations in the system or the 
system size. The deep side of the solution is associated with the total number of iterations 
required for solution convergence. The multigrid application actually deals with the deep 
side, by minimizing the required number of iterations regardless the size of the solving 
algebraic system.  
 
 To deal with the wide side, it is rational and necessary to implement parallel 
computation, by dividing the wide side work load over a number of processors at the 
same time. Although this aspect is beyond the scope of our work, we have carefully 
chosen a smoothing method for our solver such as the Red Black Gauss-Seidel method 
that is suited to parallel computation. We have recognized that only when both wide and 
deep sides of the problem solution are resolved, the real efficient method is fully 
developed. 
 
 The scheme of parallel computation described above would face no problem in a 
single grid application. However, in a multigrid application, since coarse grids have 
smaller and smaller sizes, there would be an issue with non-even distribution of work 
load over the processors on a very coarse grid (one or two processors works but many 
other are idle). 
                  
4) Extension to transport computation 
 
There is nothing serious that could prevent the multigrid from being applied to the 
transport problem, at least for the spatial variables as in the case of multigroup diffusion 
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problems. The SN method for discretization of the angular variable, along with the group 
treatment of the energy variable, will result in a very large algebraic system having the 
angular, energy and spatial couplings (again, as in the diffusion problem case, it is not 
reasonable to coarsen the temporal grid). If the number of elementary solid angles and the 
number of energy groups are both small, then multigrid methods should be as efficient 
for the transport problem as for the diffusion problem, in which only spatial grids are 
subject to coarsening. Otherwise, it would be required that an appropriate coarsening 
strategy be developed for the angle and energy grids as well. 
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Appendix 

CODE LISTINGS 
A1. Example of Input File for MNR Kinetics Simulation 
 
File:  INPUT.DAT 
[Delayed group constants] 
N   6 
betta  0.0069 
lambda 0.0129  0.0311  0.134  0.331  1.26   3.21 
gamma  0.038   0.213   0.188  0.407  0.128  0.026 
[Material Group Constants] 
G  4 
inv  3.78E-10 7.60E-09 6.36E-07 4.55E-06 
kappa  0.872261 0.127738297 1.18177E-08 0 
kappad 0.089156 0.909340 0.001504 0 
Materials  6 
0 Water 
SIGMAa 0.000356541 0.000159863 0.002433038 0.018564954 
nuSIGMAf 3.27382E-10 2.86001E-09 9.06383E-09 1.15812E-07 
SIGMAt 0.183534328 0.538618188 0.644639481 2.295133858 
SIGMAs 0.082247006 0.10092893 1.84402E-06 0 
  0  0.435985711 0.096540588 0.005932247 
  0  0  0.223166261 0.431198693 
  0  0  8.79444E-05 2.27647925 
D  1.869083523 0.622768342 0.512394651 0.148033356 
1 Fuel 
SIGMAa 0.000910669 0.004386477 0.01559947 0.072668247 
nuSIGMAf 0.001560095 0.003867626 0.01299741 0.119888635 
SIGMAt 0.173860801 0.35794341 0.41469881 1.33177145 
SIGMAs 0.102579408 0.070369703 1.24218E-06 8.1352E-14 
  0  0.294979139 0.055193996 0.003383923 
  0  0  0.126701404 0.272397617 
  0  0  0.000348934 1.258752323 
D  1.942543661 0.942493601 0.804173988 0.279613014 
2 CR-in 
SSIGMAa 0.000851411 0.009847043 0.08019748 0.100738256 
nuSIGMAf 0.00102181 0.002077098 0.007410718 0.083439786 
SIGMAt 0.137540725 0.344930327 0.42699934 1.232308882 
SIGMAsg 0.072580467 0.064108023 1.11916E-06 8.06297E-12 
  0  0.277684483 0.054084575 0.003314541 
  0  0  0.09678535 0.25001615 
  0  0  0.000433534 1.131138887 
D  2.512030834 0.984157622 0.78101611 0.303849184 
3 CR-out 
SIGMAa 0.000695568 0.002444313 0.009230591 0.04531265 
nuSIGMAf 0.001018259 0.002013301 0.006544246 0.060412812 
SIGMAt 0.1673375 0.361138845 0.426232532 1.59150838 
SIGMAs 0.095620875 0.071019738 1.25759E-06 5.56254E-14 
  0  0.294591503 0.060398905 0.003703777 
  0  0  0.127404708 0.289596717 
  0  0  0.000214083 1.545980679 
D  2.02321137 0.937097341 0.782493463 0.22942734 
4 Lead 
SIGMAa 0.000111899 0.000347981 0.000593734 0.002480705 
nuSIGMAf 2.9732E-10 2.31383E-09 9.02311E-09 5.37142E-08 
SIGMAt 0.155943603 0.329770693 0.367788196 0.370410927 
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SIGMAs 0.151876825 0.003954283 8.54707E-10 5.22851E-11 
  0  0.329230487 0.000191896 0 
  0  0  0.365230583 0.001969883 
  0  0  0.002172028 0.365758379 
D  2.138079992 1.025304164 0.906303466 0.899917141 
5 Graphite 
SIGMAa 0.000109509 0.000633526 0.00163672 0.235402784 
nuSIGMAf 3.09693E-10 8.38279E-10 8.31551E-09 1.79773E-08 
SIGMAt 0.047145073 0.044605511 0.035227811 0.259437079 
SIGMAs 0.042328875 0.004706692 3.27388E-08 1.13886E-10 
  0  0.043970495 1.46175E-06 0 
  0  0  0.029033424 2.12311E-07 
  0  0  0.001179971 0.022854296 
D  7.136363436 7.664834066 10.8868435 1.289991584 
100 [End of material constants] 
[Assembly/Cell Structure] 
Dimensions  7.7  8.1  80 
Assemblies  5 
0 W 1 80 0 
1 F 3 10 0 60 1 10 0 
2 C 4 10 0 20 2 40 3 10 0 
3 L 1 80 4 
4 G 1 80 5 
100 [End of assembly structure] 
[Core composition] 
Sizes 8 11 8 4 
   0 1 2 3 4 5 6 7 
 0 W W W W W W W W 
 1 L W W F F F W W 
 2 L G F C F C W W 
 3 L F F F F F F W 
 4 L F C F F C F W 
 5 L F F W F F F W 
 6 L F C F F C F W 
 7 L W F W F F W W 
 8 L G G G G G G W 
 9 L W W W G W W W 
10 W W W W W W W W 
100 [End of core composition] 
[Initial conditions] 
node# 0 0 0 
s 0 0 0 0 
phi   0 0 0 1 
c 0 0 0 0 0 0 
[End of ititial conditions] 



 Nguyen Thai Sinh PhD Thesis 
McMaster - Engineering Physics Appendix. Code Listings 

 151

A2. MNR Kinetics Simulation  
 
File: MNRKIN.CPP 
#include <math> 
#include <fstream> 
#include <conio> 
 
#include "param.h" 
#include "grid.h" 
 
main() 
{ 
Grid f,*cg,**CG;   //declare fine and coarse grids  
 
ifstream fin("input.dat"); //open a file for input 
f.Input(fin);   //reading input  
 
ofstream fout("output.dat"); //open a file for output 
 
int I,J,K; f.Get(I,J,K); //fine grid size 
int Imax=I; if(Imax<J) Imax=J; if(Imax<K) Imax=K; //max dimension 
int Lmax= ceil(log(Imax)/log(2)); //max# of grid levels 
CG=new Grid*[Lmax+1];  //pointers to grids 
CG[0]=&f;    //first coarse grid = fine grid 
 
//Set up coarse grids 
if(Lmax){ 
 cg=new Grid[Lmax]; 
 for(int lvl=0;lvl<Lmax;lvl++){ 
     I=(I+1)/2; J=(J+1)/2; K=(K+1)/2; //grid sizes 
       cg[lvl].Set(I,J,K); 
  CG[lvl+1]=&cg[lvl]; 
    } 
} 
f.Get(I,J,K);   //restore I,J,K of the fine grid 
 
Parameter Rsd, Rsd1; 
double t=0, tend=3600, dt=1e-4; //times in sec 
double dphi, epso=1e-5, omega=1.; //iteration parameters 
int m1=1, m2=1, mc=1;   //MG-cycle parameters   
int itos=MAXINT; if(epso>=1) itos=int(epso);//#iterations 
 
//Time advancement  
while(t<=tend){t+=dt; //time increment 
  

{ 
//Group constant adjustment 
//based on changes in temperature, composition or control  

 } 
 
 f.StorePhi(); //store old fluxes 
 f.UpdateAB(dt); //update fine grid equations 
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 for(int lvl=0;lvl<Lmax;lvl++){//generate coarse grid matrices 
  CG[lvl]->TransferA(*CG[lvl+1]); 
 } 
 
 Rsd1=f.Residual(); //compute initial residual 
 
 for(int ito=1;ito<=itos;ito++){//iterative solution for fluxes 
 
  MG(CG, Lmax, 0, m1, m2, mc, omega); //call MG solver 
 
     Rsd=f.Residual();  //compute residual 
     if(epso<1 && Rsd(1)/Rsd1(1)<=epso) break; //stop iteration 
 } 
 
 f.UpdateC(dt); //compute precursors 
 
 { 
 //Send flux values as input for computation of other processes 
 //i.e. thermalhydraulics, poisoning, burnup, etc.  
 } 
 
}//t>tend 
 
} 
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A3. The Kinetics Module: Classes and Methods 
 
File:  GRID.H 
#ifndef GRID_H 
#define GRID_H 
 
#include <math> 
#include <values> 
#include "param.h" 
#include "node.h" 
 
//MG solver 
double MG(Grid **C, int Lmax, int lvl,  

int m1, int m2, int mc, double omega);//declare 
 
double MG(Grid **C, int Lmax, int lvl,  

int m1, int m2, int mc, double omega) 
{ 
double dphi; 
if(lvl==Lmax) dphi=C[lvl]->Gauss();//solve on coarsest grid 
else{ 

if(m1>0) dphi=C[lvl]->PGS(m1,omega);//pre-smoothing 
 C[lvl]->UpdateRsd();   //calculate residuals 
      C[lvl]->Restriction(*C[lvl+1]); //transfer to coarse grid 
      for(int i=1; i<=n; i++)  

MG(C, Lmax, lvl+1, m1, m2, n,omega); //recursive call 
      C[lvl]->CorrectPhi(*C[lvl+1]); //correct solution 

if(m2>0) dphi=C[lvl]->PGS(m2,omega);//post-smoothing 
} 
return dphi; 
} 
 
//Grid structure 
class Grid{ 
      int I, //#west-east columns 
       J, //#north-south rows 

K;    //#top-bottom layers 
 int div;    //#cell divisor 
      Material *material; //material group constants 
      Cell **pos;   //core composition 
 
 public: 
 Node *nnode;  //array of grid nodes 
      Node null;   //Null node (boundary) 
 
 //Methods  
     Grid(int I=1, int J=1, int K=1);  //constructor 
      ~Grid(){delete[]nnode;}   //destructor 
      void Set(int I, int J, int K); //set size 
      void Get(int&I, int&J, int&K); //get size 
      Node& node(int n); 
      Node& node(int i, int j, int k); 
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      double PGS(double epsi=1, double omega=1); 
      double RBGS(double epsi=1, double omega=1); 
      double Gauss(); 
      int TransferA(Grid& cg); 
      int TransferRsd(Grid& cg); 
      int Restriction(Grid& cg, int mode=0); 
 int CorrectPhi(Grid& cg, int mode=0); 
      void StorePhi(); 
      void UpdateAB(double dt); 
      void UpdateC(double dt); 
      Parameter Residual(); 
      double MaxRsd(); 
      void UpdateRsd(); 
      int Init(Node& n,  

int i1, int i2, int j1, int j2, int k1, int k2); 
 void Input(istream& is); 
}; 
 
//Set up a grid with indexed nodes 
Grid::Grid(int II, int JJ, int KK) 
{ 
 I=II; J=JJ; K=KK; 

nnode = new Node[I*J*K]; 
if(!nnode){cerr<<"Grid allocation error";} 

 
 int i,j,k,nn; 
    for(int n=1; n<=I*J*K; n++){ 
     nn=n-1; k=nn/I/J+1;  

nn-=(k-1)*I*J; j=nn/I+1;  
i=nn-(j-1)*I+1; 

  node(n).SetIdx(i,j,k); 
    } 
 null.SetIdx(0,0,0);  

null.SetDim(0,0,0); 
    Node *p=&null; 
 for(k=1;k<=K;k++) 
    for(j=1;j<=J;j++) 
       for(i=1;i<=I;i++){ 
   node(i,j,k).SetNb(west,i>1? node(i-1,j,k):*p); 
        node(i,j,k).SetNb(east,i<I? node(i+1,j,k):*p); 
        node(i,j,k).SetNb(north,j>1? node(i,j-1,k):*p); 
   node(i,j,k).SetNb(south,j<J? node(i,j+1,k):*p); 
   node(i,j,k).SetNb(up,k>1? node(i,j,k-1):*p); 
   node(i,j,k).SetNb(down,k<K? node(i,j,k+1):*p); 
     } 
} 
 
void Grid::Set(int II, int JJ, int KK) 
{ 
    if(I==II&&J==JJ&&K==KK) return; 
 
 if(I*J*K!=II*JJ*KK){ 
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  delete[]nnode;  
nnode=0; 

     nnode=new Node[II*JJ*KK]; 
       if(!nnode){cerr<<"Grid allocation error";} 
    } 
 I=II; J=JJ; K=KK; 
 int i,j,k,nn; 
    for(int n=1; n<=I*J*K; n++){ 
     nn=n-1; k=nn/I/J+1;  

nn-=(k-1)*I*J; j=nn/I+1;  
i=nn-(j-1)*I+1; 

  node(n).SetIdx(i,j,k); 
    } 
 null.SetIdx(0,0,0);  

null.SetDim(0,0,0); 
    Node *p=&null; 
 for(k=1;k<=K;k++) 
    for(j=1;j<=J;j++) 
       for(i=1;i<=I;i++){ 
   node(i,j,k).SetNb(west,i>1? node(i-1,j,k):*p); 
        node(i,j,k).SetNb(east,i<I? node(i+1,j,k):*p); 
        node(i,j,k).SetNb(north,j>1? node(i,j-1,k):*p); 
   node(i,j,k).SetNb(south,j<J? node(i,j+1,k):*p); 
   node(i,j,k).SetNb(up,k>1? node(i,j,k-1): *p); 
   node(i,j,k).SetNb(down,k<K? node(i,j,k+1):*p); 
     } 
} 
 
void Grid::Get(int& II, int& JJ, int& KK) 
{ 
 II=I; JJ=J; KK=K; 
} 
 
//Node reference by single or triple index 
Node& Grid::node(int n) 
{ 
 if(n<1||n>I*J*K) return null; 

return nnode[n-1]; 
} 
 
Node& Grid::node(int i, int j, int k) 
{ 
 if(i<=0||j<=0||k<=0||i>I||j>J||k>k) return null; 
 int n=(k-1)*I*J+(j-1)*I+i; 
 return node(n); 
} 
 
//Point Gauss-Seidel smoothing 
double Grid::PGS(double epsi, double omega) 
{ 
    int itis=MAXINT; if(epsi>=1) itis=int(epsi); 
    if(omega<0||omega>2) itis=1; 
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 double dif,dphi; 
    int IJK=I*J*K; 
 for(int iti=1;iti<=itis;iti++){ //iteration 
  dphi=0; 
    for(int n=1;n<=IJK;n++){ //sweep 
          dif=node(n).UpdatePhi(omega); 
          if(fabs(dif)>fabs(dphi)) dphi=dif; 
       } 
      if(epsi<1 && fabs(dphi)<=epsi) break;//stopping check 
 } 
    return dphi; 
} 
 
//Red-Black Gauss-Seidel smoothing 
double Grid::RBGS(double epsi, double omega) 
{ 

int itis=MAXINT; if(epsi>=1) itis=int(epsi); 
    if(omega<0||omega>2) itis=1; 
 double dif,dphi; 
    int IJK=I*J*K; 
 for(int iti=1;iti<=itis;iti++){ 
    //Red nodes swept through 
  for(int n=1;n<=IJK;n++){ 
          if(node(n).IsRed()) node(n).UpdatePhi(omega); 
       } 
    //Black nodes swept through 
  dphi=0; 
    for(int n=1;n<=IJK;n++){ 
           if(!node(n).IsRed()){ 
           dif=node(n).UpdatePhi(omega); 
           if(fabs(dif)>fabs(dphi)) dphi=dif; 
             } 
       } 
      if(epsi<1 && fabs(dphi)<=epsi) break; //stopping check 
 } 
    return dphi; 
} 
 
//Direct Gauss elimination 
double Grid::Gauss() 
{ 
 double dif,dphi=0; 

int IJK=I*J*K; 
 for(int n=1;n<=IJK;n++){ 
       dif=node(n).GUpdatePhi(); 
       if(fabs(dif)>fabs(dphi)) dphi=dif; 
   } 
    return dphi; 
} 
 
//Grid coarsening 
int Grid::TransferA(Grid& cg) 
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{ 
 if(I==1&&J==1&&K==1) return 0; 
 int I1,J1,K1; cg.Get(I1,J1,K1); 
    if(I1<(I+1)/2||J1<(J+1)/2||K1<(K+1)/2) return 0; 
 
 //Set coarse grid coefficients to zeros 
 int i1,j1,k1; 
    int i,j,k; 
    for(k1=1;k1<=K1;k1++) 
  for(j1=1;j1<=J1;j1++) 
       for(i1=1;i1<=I1;i1++){ 
   cg.node(i1,j1,k1).ap=node(1).ap*0; 
             cg.node(i1,j1,k1).anb=node(1).anb*0; 
     cg.node(i1,j1,k1).bp=node(1).bp*0; 
             cg.node(i1,j1,k1).as=node(1).as*0; 
   cg.node(i1,j1,k1).phi=node(1).phi*0; 
          } 

cg.null.phi=null.phi*0; 
 

//Coarsening matrix A 
int isw, isn, isu; 
for(k=1;k<=K;k++){ k1=(k+1)/2; isu=k%2; 

 for(j=1;j<=J;j++){ j1=(j+1)/2; isn=j%2; 
  for(i=1;i<=I;i++){ 1=(i+1)/2; isw=i%2; 
 
 for(int g=1;g<=Group::G;g++){ 
   

//ap 
 cg.node(i1,j1,k1).ap(g)+=node(i,j,k).ap(g) 

-(isw? (i<I? node(i,j,k).anb(e,g):0):node(i,j,k).anb(w,g)) 
-(isn? (j<J? node(i,j,k).anb(s,g):0):node(i,j,k).anb(n,g)) 
-(isu? (k<K? node(i,j,k).anb(d,g):0):node(i,j,k).anb(u,g)); 

    //anb 
    if(isw&&i>1) cg.node(i1,j1,k1).anb(w,g)+=node(i,j,k).anb(w,g); 
 if(!isw&&i<I)cg.node(i1,j1,k1).anb(e,g)+=node(i,j,k).anb(e,g); 
    if(isn&&j>1) cg.node(i1,j1,k1).anb(n,g)+=node(i,j,k).anb(n,g); 
 if(!isn&&j<J)cg.node(i1,j1,k1).anb(s,g)+=node(i,j,k).anb(s,g); 
    if(isu&&k>1) cg.node(i1,j1,k1).anb(u,g)+=node(i,j,k).anb(u,g); 
 if(!isu&&k<K)cg.node(i1,j1,k1).anb(d,g)+=node(i,j,k).anb(d,g); 

//as 
    for(int gp=1;gp<=Group::G;gp++) 
    if(gp-g) cg.node(i1,j1,k1).as(gp,g)+=node(i,j,k).as(gp,g); 
     

}//g-loop end 
 
      }//i-loop end 
      }//j-loop end 
    }//k-loop end 
    return 1; 
} 
 
//Restriction 
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int Grid::TransferRsd(Grid& cg) 
{ 
 int i1,j1,k1; 

int i,j,k; 
 

for(k=1;k<=K;k++){ k1=(k+1)/2; 
 for(j=1;j<=J;j++){ j1=(j+1)/2; 
      for(i=1;i<=I;i++){ i1=(i+1)/2; 
      cg.node(i1,j1,k1).bp=cg.node(i1,j1,k1).bp+node(i,j,k).rsd; 
      } 
      } 

} 
 return 1; 
} 
 
int Grid::Restriction(Grid& cg, int mode) 
{ 
 int I1,J1,K1; cg.Get(I1,J1,K1);//get size of the coarse grid 
 
 //Set bp and phi to zeros 
 int i1,j1,k1; 
    int i,j,k; 
    for(k1=1;k1<=K1;k1++) 
  for(j1=1;j1<=J1;j1++) 
       for(i1=1;i1<=I1;i1++){ 
     cg.node(i1,j1,k1).bp=0; 
     cg.node(i1,j1,k1).phi=0; 
             cg.node(i1,j1,k1).phit=cg.node(i1,j1,k1).phi; 
          } 
 

TransferRsd(cg);  //Transfer residual and store in cg.bp 
    if(mode==0) return 1; //Correction scheme 
    else;    //Full approximation scheme 
    for(k=1;k<=K;k++){ k1=(k+1)/2; 
 for(j=1;j<=J;j++){ j1=(j+1)/2; 
      for(i=1;i<=I;i++){ i1=(i+1)/2; 
      cg.node(i1,j1,k1).phi=cg.node(i1,j1,k1).phi+node(i,j,k).phi; 
      cg.node(i1,j1,k1).phit=cg.node(i1,j1,k1).phit+1; 
      } 
      } 
    } 
 

for(k1=1;k1<=K1;k1++){ 
 for(j1=1;j1<=J1;j1++){ 
      for(i1=1;i1<=I1;i1++){ 
  cg.node(i1,j1,k1).phi= 

cg.node(i1,j1,k1).phi/cg.node(i1,j1,k1).phit; 
          cg.node(i1,j1,k1).phit=cg.node(i1,j1,k1).phi; 
      } 
      } 
    } 
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//Calculate bp 
 for(k1=1;k1<=K1;k1++){ 
 for(j1=1;j1<=J1;j1++){ 
      for(i1=1;i1<=I1;i1++){ 
          cg.node(i1,j1,k1).UpdateBpH(); 
      } 
      } 
    } 
 return 1; 
} 
 
//Prolongation and Correction 
int Grid::CorrectPhi(Grid& cg, int mode) 
{ 
 int I1,J1,K1; cg.Get(I1,J1,K1); 

if(I1<(I+1)/2||J1<(J+1)/2||K1<(K+1)/2) return 0; 
 
 int i1,j1,k1; 

for(int k=1;k<=K;k++){ k1=(k+1)/2; 
for(int j=1;j<=J;j++){ j1=(j+1)/2; 

      for(int i=1;i<=I;i++){ i1=(i+1)/2; 
  if(mode==0) 
       node(i,j,k).phi=node(i,j,k).phi+cg.node(i1,j1,k1).phi; 
       else 
       node(i,j,k).phi=node(i,j,k).phi+cg.node(i1,j1,k1).phi 

-cg.node(i1,j1,k1).phit; 
      } 
      } 
    } 
 return 1; 
} 
 
//Store old flux 
void Grid::StorePhi() 
{ 
 int IJK=I*J*K; 
 for(int n=1;n<=IJK;n++)  

node(n).phit=node(n).phi; 
} 
 
//Update A and Bp (without scattering and fission sources) 
void Grid::UpdateAB(double dt) 
{ 
 int IJK=I*J*K; 
 for(int n=1;n<=IJK;n++)  
     node(n).UpdateAB(material, pos, div, dt);  
} 
 
//Update precursors 
void Grid::UpdateC(double dt) 
{ 
    int IJK=I*J*K; 
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    for(int n=1;n<=IJK;n++){ 
  double sf=Sum(node(n).nXf(material, pos, div)*node(n).phi); 
     node(n).UpdateC(dt,sf); 

} 
} 
 
//Compute residuals 
Parameter Grid::Residual() 
{ 
    Parameter Rsd(Group::G); Rsd=0; 
    int IJK=I*J*K; 
    for(int n=1;n<=IJK;n++){ 
     node(n).UpdateRsd(); 
       Rsd=Rsd+Abs(node(n).rsd); 
      } 
 return Rsd/(I*J*K); 
} 
 
double Grid::MaxRsd() 
{ 

double Rsd=0, r; 
int IJK=I*J*K; 
for(int n=1;n<=IJK;n++){ 

     node(n).UpdateRsd(); 
       r=AbsMax(node(n).rsd); 
       if(Rsd<r) Rsd=r; 
    } 
 return Rsd; 
} 
 
void Grid::UpdateRsd() 
{ 
 int IJK=I*J*K; 
    for(int n=1;n<=IJK;n++) 
     node(n).UpdateRsd(); 
} 
 
//Initialize node functions 
int Grid::Init(Node& n, int i1, int i2, int j1, int j2, int k1, int k2) 
{ 
 for(int i=i1;i<=i2;i++) 
    for(int j=j1;j<=j2;j++) 
    for(int k=k1;k<=k2;k++){ 
       node(i,j,k)=n; 
       node(i,j,k).phit=n.phi; 
       node(i,j,k).ct=n.c; 
      } 
    null.phi=n.phi*0; 
    null.c=n.c*0; 
    return 1; 
} 
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//Initialize the fine grid 
void Grid::Input(istream &is) 
{ 
 char note[256]; int num; 
 
 //Delay constants 
 Delay d; d.Init(is); 
 
 //Common group constants 
 Group g; g.Init(is); 
 
 //Material group constants 
 is>>note>>num; 
 material=new Material[num]; 

int i,j,k; 
 while(is){ 
  is>>i; if(i>=num) break; 
     material[i].Init(is,i); 
 } 
 is.getline(note,255); 
 for(i=0;i<num;i++) 
 
 //Assembly structure 
 is.getline(note,255); cout<<note<<endl; 
 is>>note>>Cell::X>>Cell::Y>>Cell::Z; 
 is>>note>>num; 
 Cell *cell=new Cell[num]; 
 while(is){ 
  is>>i; if(i>=num) break; 
     cell[i].Init(is);//reading assembly structure 
 } 
 is.getline(note,255); 
 is.getline(note,255); 
 
 //Core composition 
 char ct; 
 int Ic, Jc, Kc; 
 is>>note>>Ic>>Jc>>Kc>>div; 
 pos=new Cell*[Ic]; 
 for(i=0;i<Ic;i++) pos[i]=new Cell[Jc]; 
 cout<<"\t"; 
 for(i=0;i<Ic;i++) {is>>ct;cout<<ct<<" ";} cout<<endl; 
 while(is){ 
  is>>j; if(j>=Jc) break; 
  for(i=0;i<Ic;i++) { 
   is>>ct; 
      pos[i][j]=cell[0]; 
      int type=1; 
   while(type<num){ 
         if(cell[type].ctype==ct){ 
             pos[i][j]=cell[type]; 
               break; 
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              } 
           type++; 
        } 
     } 
  } 
 

int I=Ic*div; 
 int J=Jc*div; 
 int K=Kc*div; 
 double hx=Cell::X/div; 
 double hy=Cell::Y/div; 
 double hz=Cell::Z/K; 
 
 //Setting grid 
 Set(I,J,K); 
 for(int n=1;n<=I*J*K;n++) { 
  node(n).SetDim(hx,hy,hz);//inner node dimension 
 } 
 
 //Initial conditions 
 Node nod; 
 int i2,j2,k2; 
 is.getline(note,255); 
 is.getline(note,255); 
 while(is){ 
  is>>note; if(note[0]!='n') break; 
     is>>i>>j>>k; 
  is.getline(note,255); 
  if(note[0]){is>>i2>>j2>>k2;} 
  else{ 
     if(i<=0) {i=1; i2=I;} else i2=i; 
     if(j<=0) {j=1; j2=J;} else j2=j; 
     if(k<=0) {k=1; k2=K;} else k2=k; 
       } 
     nod.Init(is); 
  Init(nod, i, i2, j, j2, k, k2);//initialization 
 } 
 cout<<"End of input and initilization of the fine grid"<<endl; 
} 
#endif 
 
File:  NODE.H 
#ifndef NODE_H 
#define NODE_H 
 
#include "param.h" 
#include "group.h" 
#include "delay.h" 
 
enum face{p,w,e,n,s,u,d,point=0,west,east,north,south,up,down, 

P=0,W,E,N,S,U,D,Point=0,West,East,North,South,Up,Down}; 
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Parameter Gauss(Parameter a, Parameter b); 
 
//Node with flux and precursors 
class Node{ 
 int i,j,k;    //node index 
  

public: 
    Parameter delta; 
      Node* nnb[6];   //pointer to neighbouring 
      Parameter ap, anb, bp, as;  //algebraic coefficients 
      Parameter Kappa;   //energy spectrum 
      Parameter c;   //precursor 
      Parameter ct;   //old precursor 
      Parameter sx;   //extra source 
      Parameter phi;   //flux 
      Parameter phit;   //old flux 
      Parameter rsd;   //residual 

 
//Node methods 

      int Init(istream& is);   
    Node(int ii=0, int jj=0, int kk=0); 
      void SetIdx(int ii=0, int jj=0, int kk=0); 
      void SetDim(double hx, double hy, double hz); 
      int IsRed(); 
      Node* nb(face f); 
      void SetNb(face f, Node& node); 
      int operator==(Node& node); 
      int operator!=(Node& node); 
      Node& operator=(Node& node); 
 

//Methods for updating algebraic coefficients 
 void UpdateC(double dt, double fissource); 
      void UpdateAB(Material *m, Cell **pos, int div, double dt); 
      double UpdatePhi(double omega=1.); 
      void UpdateRsd(); 
      double GUpdatePhi(); 
      void UpdateBpH(); 
 

//Functions for group constants 
      Parameter Dg(Material *m, Cell **pos, int div=1); 
      Parameter Xa(Material *m, Cell **pos, int div=1); 
      Parameter Xt(Material *m, Cell **pos, int div=1); 
 Parameter Xf(Material *m, Cell **pos, int div=1); 
 Parameter nXf(Material *m, Cell **pos, int div=1); 
      Parameter Xs(Material *m, Cell **pos, int div=1); 
}; 
 
int Node::Init(istream& is) 
{ 
 Parameter c0(Delay::N), s0(Group::G); 

char note[256]; 
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is>>note>>s0; sx=s0; 
is>>note>>s0; phi=s0; 
is>>note>>c0; c=c0; 

 is.getline(note,255); 
 
if(!is) return 0; 

    return 1; 
} 
 
Node::Node(int ii, int jj, int kk) 
{ 
 SetIdx(ii,jj,kk); 
} 
 
void Node::SetIdx(int ii, int jj, int kk) 
{ 
 i=ii; j=jj; k=kk; 
} 
 
void Node::SetDim(double hx, double hy, double hz) 
{ 
 delta.Set(6); 
 delta(w)=delta(e)=hx/2; 
    delta(n)=delta(s)=hy/2; 
    delta(u)=delta(d)=hz/2; 
} 
 
Node* Node::nb(face f) 
{ 
 if(f<1||f>6) return this; 
 return nnb[f-1]; 
} 
 
void Node::SetNb(face f, Node& node) 
{ 
 if(f<1||f>6) return; 
 nnb[f-1]=&node; 
} 
 
Node& Node::operator=(Node& node) 
{ 
 phi=node.phi; 
    sx=node.sx; 
    c=node.c; 
 
    return *this; 
} 
 
int Node::operator==(Node& node) 
{ 
 if(i==node.i&&j==node.j&&k==node.k) return 1; 
    else return 0; 
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} 
 
int Node::operator!=(Node& node) 
{ 
 if(i==node.i&&j==node.j&&k==node.k) return 0; 
    else return 1; 
} 
 
void Node::UpdateAB(Material *m, Cell **pos, int div, double dt) 
{ 
 //a-neighbour 
 anb.Set(6,Group::G); 
    Parameter Dp, Dnb(Group::G); 
    Dp=Dg(m,pos,div); 
 
    for(face l=w;l<=d;l++){ int lp=l%2? l+1:l-1;//oposite direction 
      Node *p=nb(l); 
    double deltaL=p->delta(lp); 
      if(p->i) Dnb=p->Dg(m,pos,div); else Dnb=0; 
    for(int g=1;g<=Group::G;g++){ 
       anb(l,g)=(Dnb(g)*deltaL + Dp(g)*delta(l)) 
         /(deltaL + delta(l))/(deltaL + delta(l)) 
            /(delta(l) + delta(lp)); 
      } 
    } 
 
    //bp 
    Kappa=Group::kappa*(1.-Delay::beta) 
     + Group::kappad*Delay::beta 
          *Sum(Delay::lambda*Delay::gamma*dt/(Delay::lambda*dt+1.)); 
 

bp=sx+Group::inv/dt*phit 
     +Group::kappad*Sum(Delay::lambda*c/(Delay::lambda*dt+1.)); 
 
    //a-scattering+fission sources 
    as.Set(Group::G,Group::G); 
 Parameter Xsg=Xs(m,pos,div); 
    Parameter nXfg=nXf(m,pos,div); 
    for(int g=1; g<=Group::G; g++) 
    for(int gp=1; gp<=Group::G; gp++) 
       as(gp,g) = Xsg(gp,g) + Kappa(g)*nXfg(gp); 
 
 //ap 
 ap=Group::inv/dt+Xt(m,pos,div);; 
    for(int g=1;g<=Group::G;g++){ 
    double sumanb=0; 
      for(face l=w;l<=d;l++) sumanb+=anb(l,g); 
    ap(g)+=sumanb-as(g,g); 
    } 
 
} 
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double Node::UpdatePhi(double omega) 
{ 
 if(omega<0||omega>2) return GUpdatePhi();//Gaussian elimination 
 
 double sumnb, sums, phi_old, dphi; 

for(int g=1;g<=Group::G;g++){ 
    sumnb=sums=0; 
    for(face l=w;l<=d;l++) sumnb+=anb(l,g)*nb(l)->phi(g); 

for(int gp=1;gp<=Group::G;gp++) if(gp-g) sums+=as(gp,g)*phi(gp); 
      phi_old=phi(g); 
    phi(g)=omega*(bp(g)+sumnb+sums)/ap(g)+(1.-omega)*phi_old; 
 dphi=phi(g)-phi_old; 
    } 
    return(dphi); 
} 
 
void Node::UpdateBpH() 
{ 
 double sumnb, sums; 
    for(int g=1;g<=Group::G;g++){ 
    sumnb=sums=0; 
    for(face l=w;l<=d;l++) sumnb+=anb(l,g)*nb(l)->phi(g); 
    for(int gp=1;gp<=Group::G;gp++) if(gp-g) sums+=as(gp,g)*phi(gp); 
    bp(g)=bp(g)+ ap(g)*phi(g)-sumnb-sums; 
    } 
} 
 
void Node::UpdateRsd() 
{ 
 Parameter sumnb(Group::G), sums(Group::G); 
    sumnb=0; sums=0; 
    for(int g=1;g<=Group::G;g++){ 
 for(face l=w;l<=d;l++)sumnb(g)+=anb(l,g)*nb(l)->phi(g); 

for(int gp=1;gp<=Group::G;gp++)  
if(gp-g) sums(g)+=as(gp,g)*phi(gp); 

    } 
 rsd=sumnb+bp+sums-ap*phi; 
} 
 
int Node::IsRed() 
{ 
 return(i+j+k)%2; 
} 
 
//Gaussian elimination 
double Node::GUpdatePhi() 
{ 
 Parameter a, b, phi_old; 
    a=as*(-1.); b=bp; phi_old=phi; 

for(int g=1;g<=Group::G;g++){ 
     double sumnb=0; 
     for(face l=w;l<=d;l++) sumnb+=anb(l,g)*nb(l)->phi(g); 
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       b(g)=bp(g)+sumnb; 
       a(g,g)=ap(g); 
    } 
 phi=Gauss(Transpose(a),b); 
 for(int g=1;g<=Group::G;g++){ 
    double sumnb=0; double sums=0; 
     for(face l=w;l<=d;l++) sumnb+=anb(l,g)*nb(l)->phi(g); 
  for(int gp=1;gp<=Group::G;gp++) sums+=a(gp,g)*phi(gp); 
    } 
    return(AbsMax(phi-phi_old)); 
} 
 
Parameter Gauss(Parameter a, Parameter b) 
{ 
    int N=a.row(); 
    int i,j,k; 
 
    for(i=1; i<=N; i++){//forward elimination 
     if(a(i,i)==0){//check for pivot 
   if(i==N) {cerr<<"Indefinite case"; return 0;} 
   for(k=i+1;k<=N;k++){ 
       if(a(k,i)){  

double temp; 
        for(j=1;j<=N;j++){ 
          temp=a(k,j);  

a(k,j)=a(i,j);  
a(i,j)=temp; 

               } 
          temp=b(k);  

b(k)=b(i);  
b(i)=temp; 

          break; 
         }  
      } 
      if(k>N) {cerr<<"Indefinite case"; return 0;} 
  } 
  for(k=i+1;k<=N;k++){ 
   double aki=a(k,i); 
           b(k)-=b(i)/a(i,i)*aki; 
   for(j=i+1;j<=N;j++) a(k,j)-=a(i,j)/a(i,i)*aki; 
      a(k,i)=0; 
     } 

} 
    Parameter x(N); 
 x(N)=b(N)/a(N,N); 
 for(i=N-1; i>=1; i--){//backward substitution 
     double sum=b(i); 
  for(j=i+1;j<=N;j++) sum-=a(i,j)*x(j); 
       x(i)=sum/a(i,i); 
    } 
 return x; 
} 
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void Node::UpdateC(double dt, double sf) 
{ 
 if(dt<0) return; 
   if(dt)c=(c+Delay::gamma*Delay::beta*dt*sf)/(Delay::lambda*dt+1.); 
    else c=Delay::gamma*Delay::beta*sf/Delay::lambda; 
} 
 
//Diffusion coefficient 
Parameter Node::Dg(Material *m, Cell **pos, int div) 
{ 
 Parameter one(Group::G); one=1; 

int ic=(i-1)/div; //cell i-idx 
    int jc=(j-1)/div; //cell j-idx 
 
    int t1,t2; 
    double dz=delta(u)+delta(d); 
    double z1=(k-1)*dz; 
    double f=pos[ic][jc].fract1(z1,z1+dz,t1,t2); 
    return one/((one/m[t1].D)*f + (one/m[t2].D)*(1-f)); 
} 
//XSections 
Parameter Node::Xa(Material *m, Cell **pos, int div) 
{ 
    int ic=(i-1)/div; //cell i-idx 
    int jc=(j-1)/div; //cell j-idx 
    int t1,t2; 
    double dz=delta(u)+delta(d); 
    double z1=(k-1)*dz; 
    double f=pos[ic][jc].fract1(z1,z1+dz,t1,t2); 
    return m[t1].SIGMAa*f + m[t2].SIGMAa*(1-f); 
} 
Parameter Node::Xf(Material *m, Cell **pos, int div) 
{ 
    int ic=(i-1)/div;//cell i-idx 
    int jc=(j-1)/div;//cell j-idx 
    int t1,t2; 
    double dz=delta(u)+delta(d); 
    double z1=(k-1)*dz; 
    double f=pos[ic][jc].fract1(z1,z1+dz,t1,t2); 
    return m[t1].SIGMAf*f + m[t2].SIGMAf*(1-f); 
} 
Parameter Node::Xt(Material *m, Cell **pos, int div) 
{ 
    int ic=(i-1)/div; //cell i-idx 
    int jc=(j-1)/div; //cell j-idx 
    int t1,t2; 
    double dz=delta(u)+delta(d); 
    double z1=(k-1)*dz; 
    double f=pos[ic][jc].fract1(z1,z1+dz,t1,t2); 
    return m[t1].SIGMAt*f + m[t2].SIGMAt*(1-f); 
} 
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Parameter Node::nXf(Material *m, Cell **pos, int div) 
{ 
    int ic=(i-1)/div;//cell i-idx 
    int jc=(j-1)/div;//cell j-idx 
    int t1,t2; 
    double dz=delta(u)+delta(d); 
    double z1=(k-1)*dz; 
    double f=pos[ic][jc].fract1(z1,z1+dz,t1,t2); 
    return m[t1].nuSIGMAf*f + m[t2].nuSIGMAf*(1-f); 
} 
Parameter Node::Xs(Material *m, Cell **pos, int div) 
{ 
    int ic=(i-1)/div;//cell i-idx 
    int jc=(j-1)/div;//cell j-idx 
    int t1,t2; 
    double dz=delta(u)+delta(d); 
    double z1=(k-1)*dz; 
    double f=pos[ic][jc].fract1(z1,z1+dz,t1,t2); 
    return m[t1].SIGMAs*f + m[t2].SIGMAs*(1-f); 
} 
#endif 
 
File:  MATERIAL.H 
#ifndef MAT_H 
#define MAT_H 
 
#include <iostream> 
#include "group.h" 
 
//Core assembly or cell 
class Cell{ 
 public: 
 int Nz; 
      double *h; 
      int *t; 
 static double X,Y,Z; //dimensions 
 int i,j;   //position in core 
      char ctype;   //type 
 
      Cell(){Set(1);} 
      Cell(int num){Set(num);} 
      int Init(istream& is); 
      void Set(int num); 
      void SetIdx(int ic, int jc); 
      void Set(int i, double hz, int tz); 
      Cell& operator =(const Cell& cell); 
      double fract1(double z1, double z2, int &t1, int &t2); 
      friend ostream& operator<<(ostream& os, Cell& cell); 
}; 
double Cell::X=7.7; 
double Cell::Y=8.1; 
double Cell::Z=80; 
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double Cell::fract1(double z1, double z2, int &t1, int &t2) 
{ 
    if(Nz==1){ 
     t1=t2=t[0]; 
       return 1; 
      } 
 double z=0; 
 int i=0; 
 while(i<Nz){ 
       z+=h[i]; 
     if(z1<=z) break; 
       i++; 
      } 
 t1=t[i]; 
 if(z2>z&&z2<=Z) t2=t[i+1];  

else t2=t[i]; 
 if(t1==t2) return 1; 
 else return((z-z1)/(z2-z1)); 
} 
 
int Cell::Init(istream& is) 
{ 
 is>>ctype; 
 is>>Nz; Set(Nz); 
 for(int i=0;i<Nz;i++){ 
     is>>h[i]>>t[i]; 
      } 
 if(!is) return 0; 
    else return 1; 
} 
 
void Cell::Set(int num) 
{ 
 Nz=num; 
    h=new double[Nz]; 
    t=new int[Nz]; 
 for(int i=0;i<Nz;i++){ 
     h[i]=0; 
       t[i]=0; 
      } 
    h[0]=Z; 
} 
 
void Cell::Set(int i, double hz, int tz) 
{ 
 if(i>=Nz) i=Nz-1; 
    if(i<0) i=0; 
    double z=0; 
 if(i>0) for(int j=0;j<i;j++) z+=h[j]; 
    if(hz+z>Z) hz=Z-z; 
    if(hz<0) hz=0; 
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 h[i]=hz; t[i]=tz; 
} 
 
void Cell::SetIdx(int ic, int jc) 
{ 
 i=ic; j=jc; 
} 
 
Cell& Cell::operator =(const Cell& cell) 
{ 
 if(Nz!=cell.Nz){ 
     Nz=cell.Nz; 
       Set(Nz); 
      } 
    ctype=cell.ctype; 
    for(int i=0;i<Nz;i++){ 
       h[i]=cell.h[i]; 
     t[i]=cell.t[i]; 
      } 
   return *this; 
} 
 
//Material group constants 
class Material: public Group{ 
 public: 
    int type; 
    char mtype[20]; 
      Material(){}; 
      int Init(istream& is, int i); 
}; 
 
int Material::Init(istream& is, int i) 
{ 
 Parameter t(Group::G), tt(Group::G,Group::G); 
 char note[128]; 
 type=i; 
 is>>mtype; 
 
 is>>note; 
 is>>t;SIGMAa=t; 
 
 is>>note; 

is>>t;nuSIGMAf=t; 
 
 is>>note; 
 is>>t;SIGMAt=t; 
 
 is>>note; 
 is>>tt;SIGMAs=tt; 
 
 is>>note; 
 is>>t;D=t; 
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if(!is) return 0; 

 else return 1; 
} 
#endif 
 
File:  GROUP.H 
#ifndef GROUP_H 
#define GROUP_H 
 
#include <iostream> 
#include "param.h" 
 
//Neutron group constants 
 
class Group{ 
 public: 
    static int G;   //#neutron groups 
      static Parameter  inv,  //inverse velocity 
         kappa, //fission spectrum 
         kappad; //delay spectrum 
 
      Parameter   D,  //diffusion coefficient 
         nuSIGMAf, //fission neutron emision 
         SIGMAa, //absorption X-section 
         SIGMAt, //total X-section 
         SIGMAf, //fission X-section 
         SIGMAs; //scattering X-section 
 
 Group(){} 
    Group(int num); 
      ~Group(){} 
      void Set(int num); 
      double SIGMAr(int g); 
      int Init(istream& is); 
}; 
int Group::G=1; 
Parameter  Group::inv(Group::G), 
  Group::kappa(Group::G), 
  Group::kappad(Group::G); 
 
Group::Group(int num) 
{ 
 Set(num); 
} 
 
void Group::Set(int num) 
{ 
 if(num<1) num=1; 
 G=num; 
    inv.Set(G); 

kappa.Set(G); 
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kappad.Set(G); 
 

D.Set(G); 
nuSIGMAf.Set(G); 
SIGMAa.Set(G); 
SIGMAt.Set(G); 
SIGMAf.Set(G); 
SIGMAs.Set(G,G); 

} 
 
double Group::SIGMAr(int g) 
{ 

return SIGMAt(g)-SIGMAs(g,g); 
} 
 
int Group::Init(istream &is)//Global constants 
{ 
 char note[256]; 
 int num; 
 is.getline(note,255); 
 is>>note>>num; 
 Set(num); 
 is>>note>>inv; 
 is>>note>>kappa; 
 is>>note>>kappad; 
 if(!is) return 0; 
    else return 1; 
} 
 
#endif 
 
File:  DELAY.H 
#ifndef DELAY_H 
#define DELAY_H 
 
#include <iostream> 
#include "param.h" 
//Delayed neutron group constants 
class Delay{ 

public: 
 static int N; 
 static Parameter lambda, //decay constant 
         gamma; //relative fraction yield 
 static double beta;  //total delay fraction 
 
      Delay(){;} 
      Delay(int num); 
      ~Delay(){} 
      void Set(int num); 
      int Init(istream &is); 
}; 
//static allocation 
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int Delay::N=1; 
Parameter  Delay::lambda(Delay::N), 
  Delay::gamma(Delay::N); 
double Delay::beta=0; 
 
Delay::Delay(int num) 
{ 
 N=num; if(num<0) N=1; 
 lambda.Set(N); 

gamma.Set(N); 
} 
 
void Delay::Set(int num) 
{ 
 if(num<0) return; 
   N=num; 
  lambda.Set(N); 
    gamma.Set(N); 
} 
 
int Delay::Init(istream& is) 
{ 
 char note[256]; 
 int num; 
 is.getline(note,255); 
 is>>note>>num; 
 Set(num); 
 is>>note>>beta; 
 is>>note>>lambda; 
 is>>note>>gamma; 
 is.getline(note,255); 

if(!is) return 0; 
else return 1; 

} 
#endif 
 
File:  PARAM.H 
#ifndef PARAM_H 
#define PARAM_H 
 
#include <iostream> 
#include <math> 
 
//Parameter 
class Parameter{ 
 int rows, cols; 
 double *data; 
 public: 
    Parameter(int num=1); 
      Parameter(int row, int col); 
      Parameter(int num, double *a); 
      Parameter(int row, int col, double *a); 
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      Parameter(Parameter& a); 
      ~Parameter(){delete[]data;} 
 
      void Set(int num); 
      void Set(int row, int col); 
      void Set(int num, double *a); 
 
      int& row(){return rows;} 
      int& col(){return cols;} 
 
      friend double Sum(Parameter& a); 
      friend Parameter Transpose(Parameter& a); 
      friend double AbsMax(Parameter& a); 
      friend Parameter Abs(Parameter& a); 
 
      Parameter operator-(const Parameter& a); 
      Parameter operator-(const double a); 
      Parameter operator+(const Parameter& a); 
      Parameter operator+(const double a); 
      Parameter operator*(const Parameter& a); 
      Parameter operator*(const double a); 
      Parameter operator/(const Parameter& a); 
      Parameter operator/(const double a); 
      Parameter& operator=(const Parameter& a); 
      Parameter& operator=(const double a); 
 
      double& operator()(int i)const; 
      double& operator()(int i, int j)const; 
 
 friend ostream& operator<<(ostream& os, const Parameter& a); 
      friend istream& operator>>(istream& is, Parameter& a); 
}; 
 
Parameter::Parameter(int num) 
{ 
 rows=1; 

if(num<1) cols=1; else cols = num; 
int bound=rows*cols; 
data = new double[bound]; 
for(int i=0;i<bound;i++) data[i]=0; 

} 
 
Parameter::Parameter(int row, int col) 
{ 
 if(row<1) rows=1; else rows=row; 

if(col<1) cols=1; else cols=col; 
int bound=rows*cols; 
data = new double[bound]; 
for(int i=0;i<bound;i++) data[i]=0; 

} 
 
Parameter::Parameter(int num, double *a) 
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{ 
 rows=1; 

if(num<1) cols=1; else cols = num; 
int bound=rows*cols; 
data = new double[bound]; 
for(int i=0;i<bound;i++) data[i]=a[i]; 

} 
 
Parameter::Parameter(int row, int col, double *a) 
{ 
 if(row<1) rows=1; else rows=row; 

if(col<1) cols=1; else cols=col; 
int bound=rows*cols; 
data = new double[bound]; 
for(int i=0;i<bound;i++) data[i]=a[i]; 

} 
 
Parameter::Parameter(Parameter& a) 
{ 
 rows=a.rows; 

cols=a.cols; 
int bound=rows*cols; 
data = new double[bound]; 
for(int i=0;i<bound;i++) data[i]=a.data[i]; 

} 
 
void Parameter::Set(int num) 
{ 

int bound=rows*cols; 
 rows=1; 
 if(num<1) cols=1; else cols=num; 
 int newbound=rows*cols; 

if(bound!=newbound){ 
  double *a=new double[bound]; 
     for(int i=0;i<bound;i++) a[i]=data[i]; 
     delete[]data; 
       data=new double[newbound]; 
       for(int i=0;i<newbound;i++){ 
        if(i<bound) data[i]=a[i]; else data[i]=0; 
          } 
       delete[]a; 
      } 
} 
 
void Parameter::Set(int row, int col) 
{ 
    int bound=rows*cols; 
    if(row<1) rows=1; else rows=row; 
    if(col<1) cols=1; else cols=col; 
 int newbound=rows*cols; 
    if(bound!=newbound){ 
  double *a=new double[bound]; 
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     for(int i=0;i<bound;i++) a[i]=data[i]; 
     delete[]data; 
       data=new double[newbound]; 
       for(int i=0;i<newbound;i++){ 
        if(i<bound) data[i]=a[i]; else data[i]=0; 
          } 
       delete[]a; 
      } 
} 
 
void Parameter::Set(int num, double *a) 
{ 
    int bound=rows*cols; 
    if(num<1) num=1; 
    if(num>bound) num=bound; 
    for(int i=0;i<num;i++) data[i]=a[i]; 
} 
 
double& Parameter::operator()(int i)const 
{ 
    int bound=rows*cols; 
 if(i<1||i>bound){cerr<<"Beyond the bounds\n"; i=1;} 
    return data[i-1]; 
} 
 
double& Parameter::operator()(int i, int j)const 
{ 
 if(i<1||i>rows||j<1||j>cols) 

{cerr<<"Beyond the bounds\n"; i=1;j=1;} 
    return data[(i-1)*cols+j-1]; 
} 
 
Parameter& Parameter::operator=(const Parameter& a) 
{ 
    int bound=rows*cols; 
    rows=a.rows; 
    cols=a.cols; 
    int newbound=rows*cols; 
    if(bound!=newbound){ 
  bound=newbound; 
       delete[]data; 
     data = new double[bound]; 
      } 
    for(int i=0;i<bound;i++) data[i]=a.data[i]; 
    return *this; 
} 
 
Parameter& Parameter::operator=(const double a) 
{ 
    int bound=rows*cols; 
    for(int i=0;i<bound;i++) data[i]=a; 
    return *this; 
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} 
 
ostream& operator<<(ostream& os, const Parameter& a) 
{ 
    int bound=a.rows*a.cols; 
 for(int i=1;i<=bound;i++){ 
     os<<a.data[i-1]; 
       if(i%a.cols) os<<'\t'; 
       else{ 
        os<<'\n'; 
        if(i<bound) os<<'\t'; 
       } 
      } 
    return os; 
} 
 
istream& operator>>(istream& is, Parameter& a) 
{ 
    int bound=a.rows*a.cols; 
 for(int i=0;i<bound;i++) is>>a.data[i]; 
    return is; 
} 
 
Parameter Parameter::operator-(const Parameter& a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols<=a.rows*a.cols? rows*cols: a.rows*a.cols; 
    for(int i=0;i<bound;i++) temp.data[i]-=a.data[i]; 
    return temp; 
} 
 
Parameter Parameter::operator-(const double a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols; 
    for(int i=0;i<bound;i++) temp.data[i]-=a; 
    return temp; 
} 
 
Parameter Parameter::operator+(const Parameter& a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols<=a.rows*a.cols? rows*cols: a.rows*a.cols; 
    for(int i=0;i<bound;i++) temp.data[i]+=a.data[i]; 
    return temp; 
} 
 
Parameter Parameter::operator+(const double a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols; 
    for(int i=0; i<bound; i++) temp.data[i]+=a; 
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    return temp; 
} 
 
Parameter Parameter::operator*(const Parameter& a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols<=a.rows*a.cols? rows*cols: a.rows*a.cols; 
    for(int i=0; i<bound; i++) temp.data[i]*=a.data[i]; 
    return temp; 
} 
 
Parameter Parameter::operator*(const double a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols; 
    for(int i=0; i<bound; i++) temp.data[i]*=a; 
    return temp; 
} 
 
Parameter Parameter::operator/(const Parameter& a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols<=a.rows*a.cols? rows*cols: a.rows*a.cols; 
    for(int i=0; i<bound; i++) temp.data[i]/=a.data[i]; 
    return temp; 
} 
 
Parameter Parameter::operator/(const double a) 
{ 
 Parameter temp(*this); 
   int bound=rows*cols; 
    for(int i=0; i<bound; i++) temp.data[i]/=a; 
    return temp; 
} 
 
double Sum(Parameter &a) 
{ 
 double s=0; 
    for(int i=1;i<=a.rows*a.cols;i++) s+=a(i); 
    return s; 
} 
 
double AbsMax(Parameter &a) 
{ 
 double s=0; 

for(int i=1;i<=a.rows*a.cols;i++) if(fabs(a(i))>fabs(s)) 
s=fabs(a(i)); 

    return s; 
} 
 
Parameter Transpose(Parameter& a) 
{ 
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 Parameter temp(a.cols,a.rows); 
    for(int i=1;i<=a.cols;i++) 
    for(int j=1;j<=a.rows;j++) temp(i,j)=a(j,i); 
    return temp; 
} 
 
Parameter Abs(Parameter& a) 
{ 
 Parameter temp(a); 
    for(int i=1;i<=a.rows*a.cols;i++) temp(i)=fabs(a(i)); 
    return temp; 
} 
#endif 
 
 




