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More about this document

Summary:
Here is a collection of various miscellaneous bits of mathematics useful for nuclear engineering
that you need to know but may have forgotten. It is intended as refresher material, not as
material for first-time learners.

Reference textbook: Chapra and Canale, Numerical Methods for Engineers, 5th edition,
Publishers: McGraw Hill, ISBN 0-07-291873-X, TK345.C47, Year: 2006.
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1 Introduction

1.1 Overview

Notes on how the class will be conducted:
- short lecture
- worked examples
- hands-on
- break.

More advanced students in a given topic can help others or can try a tougher problem of the same
topic.

Safe sandbox to build confidence and competence. Not intended to give you mastery, just help
you on your way.

1.2 Assessment

There are two forms of assessment: formative and summative. Formative assessment is feedback
during the learning process to guide the student, identify strengths and weaknesses and so on.
Summative assessment is testing with some sort of grade assigned.

Herein, there will be no formal assigned grade. Assessment will be informal and formative. To
the extent that is possible in the compressed nature of this course, it will be individual.
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1.3 Learning Outcomes

The goal of this course is for the student to understand:
e The basic mathematical tools needed for nuclear engineering.

But what do we mean by ‘understand’? See http://www.nuceng.ca/teach/teachindex.htm and
read Learning 101 - A Student Guide to Effective Learning, especially section 3. Therein, 6

- 1 Knowledge

- 2 Comprehension

- 3 Application

- 4 Analysis

- 6 Evaluation. ‘ > Synthesize

The first three levels are certainly required

for an engineer'. Likely, proficiency on the

analysis level is also required in most topic

procedures and since procedures, even if we

tried very hard to reduce reality to

procedures, could not possibility cover off

all possible scenarios, the engineer will be

more appropriate one on a regular basis. In addition, if an error was made in the execution of a
procedure, the engineer would be required to recover from this error. These situations require
analysis, perhaps interpolation of current practice, and, to the extent that extrapolation of current
procedures are required, synthesis. Evaluation, or that 'heads up' view of life, would likely be

levels of understanding are enumerated:
| oy
- 5 Synthesis 4 »:?” 6%%
areas. Since the reality does not follow
required to switch from one procedure to a
required as a matter of course.

1.4 Why Math and Modeling

Working engineers are interested less in math for its own sake as they are interested in math as it
relates to their reality. We stylize our reality by the use of models. Hence we arrive at math and
modeling as a core need. But how do we achieve that?

1.5 Math Pedagogy

One does not understand math so much as one becomes familiar with it. The more you fiddle
with it, the more it makes sense.

1.6 Mental Modeling Pedagogy

Modeling is pattern recognition, which is inherent in our way of thinking. So we are all capable,
to some degree at least, of being able to abstract a mental model. Our lives are full of concepts

1 We can extend our coverage to scientists as well as engineers but for brevity this text will simply write ‘engineers’
for the sake of brevity and with out loss of generality. Apologies to those feeling slighted.
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(mother, hot, cold, up, left, etc). It is a stylization of reality. A triangle is a model. They are all
constructs of the mind to facilitate manipulation. An idea is a model. We lump concepts to build
up a hierarchy of concepts to form more complex, layered models.

People are pattern recognition machines. We can memorize facts and images but that is of
limited use in facing new situations. We need an internal representation, a mental model, that
can make sense of a situation that can look beyond the image seen to model the processes and
make predictions. These are abstractions of reality and allow us to interpolate and extrapolate so
that we can make sense of the new images we see. We need this because the future, the new
situations, are not just repeats of the past. Pure memory is of little value. It also seems that
memorizing facts with no context is difficult. It is far easier to remember facts when there is a
context.

Thus learning should be mental model based, not memory based. See http://teachingmath.info .
In that research, it was found that mental models are learned when people try to achieve a goal
and receive feedback after each effort. So, according to that research, mental models can be
taught by giving students a goal to accomplish. This is goal-oriented learning. The author
suggests this works because the human brain was designed to achieve goals, and thus this is a
natural way for human beings to learn. Putting this all together, the natural technique for teaching
mental models is goal-oriented learning. It was found that it does not work to just teach a
solution because the students just memorize the procedure. Problem solving works better.

1.7 Study techniques

The student is urged to visit http://www.nuceng.ca/teach/teachindex.htm and read Learning 101 -
A Student Guide to Effective Learning for some general tips on studying and for some insight
into how it is that we learn, internalize and use knowledge and skills.

1.8 Mastery

It takes considerable effort and time to master any skill. And if you are going to work that hard
and spend that much time at it, you might as well enjoy it as much as you can. Hard word and
enjoyment are not contradictions. In fact, it turns out that real joy can come from the process of
mastering something. For more on this, see http://www.nuceng.ca/teach/teachindex.htm and read
Mastery - proceeding with a sense of quality. The key, and this applies to the task of learning
more than anything else, is to proceed at an optimal pace — not too slow and not too fast, and to
ramp up the complexity of the task as your abilities grow. It’s a mindset.

Don’t confuse speed with mastery. Deep thinking takes time. Don’t be swayed off your path by
the apparent speed of others.

You need to master the prerequisites (or refresh yourself in them if you have forgotten them)
before you can move on to subsequent material.

And so, we begin.
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2 Engineering Concepts, Equations and Context
2.1 The Evolution of Physics

There is a rather interesting little book The Evolution of Physics by A. Einstein and L. Infeld (see
http://www.nuceng.ca/eng2c3/eng2c3index.htm for a summary) that surveys the evolution of the
concept of a “field”. It is common place now to think of reality in terms of force fields, including
gravity, electricity, and magnetism. But these are recent concepts, dating from the early 1800’s
or so. The development of the mathematics and physics in the last 200 years has been a
phenomenal success...Maxwell’s equations, relativity, potential and kinetic energy, and so on,
all are based on the concept of a field. Yet, we still don’t know what a field is and probably
never will. In the end, the force field is a convenient mathematical construct whose sole
justification is that it works.

And so it is with mathematics. As I said above, one does not understand math so much as one
becomes familiar with it. It is astoundingly and unreasonably useful. But useful it is.

So if you have harboured deep and nagging doubts about science and mathematics, and thought
that this was a personal shortcoming, then perhaps you had a good understanding of math and
scientific thinking after all. This doubt is justified but we must press on regardless. This doubt
raises a big of mystery and wonder to it all, making the pursuit of knowledge all the more
interesting. And amazing.

Exercises:

1. Define force. Then define the terms you used to define force.
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2.2 A Simple Mathematical Model

[Reference C&C 1.1]

Typically we proceed systematically as shown below. PACE yourself!

PACE

Problem
D

Formulation

Problem Setup

Mathematical

oS

Problem Solving
Tools

<>

Evaluate Add Context

<>

Let’s take a simple example to illustrate the above and to introduce some concepts along the way.
This will be typical of the approach in this course: introduce concepts in context to link the
abstract with the concrete.

Analyse

Compute
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2.3 Force Balance

Consider a falling object:

k= moo &P:i’\ﬂ“ TM;L‘G{{&&-—‘: —CVv a0

AN e
ey
| NP (}‘z‘: Qv
Mo = 2/ F % Y isson
¢ v -

o dVv M " dreviy

% L8 Llngocw)
= %ftv/m

Solution:

Can sometimes do it analytically if the problem is simple enough but usually we have to use
numerical techniques.

Analytical solutions are good for ‘ball parking’ results, scoping studies, looking for relationships
and effects of the various parameters on the solution. They are often a good sanity check on
numerical results.

Numerical solutions are good for more realistic assessments and have a broader applicability.
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Analvtical solution
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Numerical solution
& v/
at

Use a spreadsheet or code to solve. Try it for g =9.8 m/s2, ¢ = 12.5 kg/s, m = 68.1 kg for
various time steps and compare to analytical solution.

Notes:
1. The nice thing about the numerical solution is that we can easily add more realism,
complicated time-varying drag coefficient, etc., and still solve with ease.
2. The above numerical solution technique (Euler) is simple to implement but can lead to
large errors and instabilities for larger time steps. More on this later.

Exercise:
1. What is the distance traveled? Do analytically and numerically.
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2.4 Conservation Laws
[Reference C&C 1.2]

This section presents common equation types and computational situations that engineers
encounter and points to what math is needed.
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And so in short, the engineer needs to be fluent in the following areas:
e Algebra
e Calculus
e Vectors result from force and velocity diagrams
e Matrices result from systems of equations
e ODE - ss and transient
e PDE - ss and transient, parabolic, elliptical, hyperbolic
e Analytical and numerical - > Taylor series

e Laplace

e Fourier

e Stats

e Prob
Can only scratch the surface on these topics.
Won’t do:

- error analysis

- anything in depth

The goal is just to get you back up to speed and to ensure you feel confident to tackle just about
any mathematical situation that might arise on the job.

Once in a while, we’ll stop to derive something because sometimes these ‘not understood bits’
erode your confidence.

Exercise:
What else should be on the list?

Rank them in terms of importance for work noting that it may be important not because you use
it today but for how it is a basis for thinking.

Where are your weaknesses?

We need to focus on those items with a high importance : weakness ratio.

C:\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-revOd.doc 2009-08-08



Vectors 3-1

3 Vectors (Div, Curl, Grad and all that)
[Reference: http://epsc.wustl.edu/classwork/454/syllabus.html]

3.1 Notation
Aoa A

V= &;h-%»lbﬁ-Jro_lc
- N J
Ui vaslons

IVl = oot e
3.2 Vector Addition
‘_\_‘(5 = \l"ru + V.
=alsbitck
" A A
J'“&"L'u"{l'l.&‘*&.:lll{ ]
= (O, +a )¢ + (b ab % #(Cﬁeﬁ‘:

3.3 Dot product

P ZHJAWQ E-'-LE
ehzbas loless b
= Sealan.
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3.4 Cross Product
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3.5 Gradient (Grad)

%‘-M same seollan 43(-1_,%:5) R %m_@%
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3.6 Divergence (Div)
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3.8 Laplacian
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4 Linear Algebra

[ref C&C PT3.1 Pg 217 and following].
[See Reference: http://www.cse.unr.edu/~bebis/MathMethods/ for more details]

Our motivation to study matrices is that we often end up with linear systems of equations of the
form:

D2zl

which needs to be solved for x.

4.1 Notation and Basic Rules

T-jt.. Qmﬂ*mhﬁ Qo |

e-i-é: %-‘hﬂ; i on end y» Do
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c=06 il

4.2
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Exercise:

1. C&C Problem 9.2 page 261 (identify matrix types and parts).
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4.2 Solution by Determinants

We introduce determinants by looking at a simple situation:

ax+by =0
=Ax=0
cx+dy=0 =
therefore y= _X
d
ax—bC—X: 0
d
s.dax—bex =0
s(da-bc)x =0

..da—dc =0 if there is to be a solution where x # 0.

We can generalize this:
determinant of A = det(A) = ‘é‘ =0forx=0

=ad —bc in the above particular case.

Cramer’s Rule [Reference C&C 9.1.2 pg 234]

Q:f:'b

ey

[

L

= 1A Ok AL o A ot (BN o

—

[A]  MapRacsd Ay b

Exercise:
1. C&C Problem 9.6 page 262 (determinant and Cramer’s rule).

(3.1)
(3.2)

(3.3)

(3.4)
(3.5)
(3.6)

(3.7)
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4.3 Solution by Gauss Elimination
[Reference C&C 9.1 pg 231]

QL: Ib

For = - -
ﬂ-t; “I'g"‘t'{l”__xh'{' :L}I C,‘:LJ
&'2.-1 x; +ﬁ.',__..|__ xq:*.,___ =z b, (_.‘L;)

1 xr -+ QL&. \'f(';,. B = L}z‘
_O"'LJ I '—‘&'1-4 ul"LKL - = O\-L L
o, T
Q.
> © 4 G»LL"G'-HDWL X, ~==- = }’JL‘—“Q-"J L
—_ z - %
G!-.I-\ aﬁ-*\.

4.4 Jacobi — Richardson iterative scheme

Separate out the diagonal part:
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A=D-B
X X X X X X X X
X X X X X X X X (8)
x x x x| X Ix x X
X X X X X X X X
Thus:
Ap=S=D¢=Bp+S 9)
Solving for ¢:
¢=D"'B+D'S (10)

Inverting the diagonal matrix is trivial so this solution scheme is quick to program and fast to
solve per iteration. Note that you have to iterate because ¢ appears on the right hand side of the
equation. So whether this turns out to be an effective scheme depends on how quickly the
solution converges, ie, on how many iterations are necessary before a steady state is reached.

Written out in full, the scheme is:

m+) 1 N (m)
(I)i = Si_zaij(l) (11)
;i j=l !
i#]
for the general matrix. In the simple two dimensional reactor case that we had before, the A
matrix was quite sparse so the sum is only over 4 terms, not the whole row, ie, since:

aPNd)N + aPW(I)W + aPP(I)P + a’PW(I)W + aPS(I)S = S
we can rewrite equation 11 as:

m+) ] (m) (m) (m) (m)
(I)P _g[SP_aPNd)N _aPS(I)S —dpg E _aPW(I)W:| (12)

The one and three dimensional cases should be obvious.

The iterative scheme, where the superscript represents the iteration number, is:

¢(0) = guess
¢")=D'B¢"” +D'S
etc. until

"' =¢™ = the converged ¢
This works but converges slowly. We look for an improved scheme.

4.5 Gauss-Seidel or successive relaxation
[Reference C&C 11.2 pg 289]

In this scheme, we take advantage of the fact that as we sweep though the grid, we can use the
updated values of the fluxes that we have just calculated. Thus the iteration scheme is:

(I)i(mu) _ L[Si B iaij(l)jerl) _ i aij(I)Zm)} (13)

all j=1 j=i+l

or

C:\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-revOd.doc 2009-08-08



Linear Algebra 4-6

(m+1) 1 (m) (m) (m+1) (m+1)
(I)P = |:Si_aPS S —apg E —apy _aPW(I)W } (14)

N
app

where it is assumed that the sweep is from the north to the south, west to east, so that the north
and west points have newly updated values available. Actually, programming this is quite easy:
just always use the latest available values for the fluxes!

Compare this to the Jacobi-Richardson scheme just encountered. In the J-R scheme, only the old
values were used.

In matrix form, the Gauss-Seidel method is equivalent to:

A=L-U
X X X X X X X X
X X X X X X X X (15)
X X X X B X X X - X
X X X X X X X X
where L contains the diagonal. Thus:
Ap=S=Lo=Udp+S (16)
Solving for ¢:
d=L"Udp+L"'S (17)
The iterative scheme, where the superscript represents the iteration number, is:
¢(0) = guess
o =L + L's
etc. until

™' =¢™ = the converged ¢

L is not that hard to invert and the iteration converges more quickly that the J-R method.
Overall, there is a net gain so that G-S is faster than J-R but convergence is still slow.

4.6 SOR (Successive Over-Relaxation)

If the convergence of the steady state reactor diffusion calculation is slow and if we have the
change from one iteration to the next, could we not extrapolate ahead and anticipate the
upcoming changes? Yes we can. The method is called the Successive Over-Relaxation (SOR)
scheme. Basically the scheme is to first calculate as per Gauss Seidel and then extrapolate, ie
first calculate an intermediate solution, ¢* as per GS:

o*=L"Up™ +L'S (18)
then weigh the intermediate solution with the old solution:
o :co¢*+(1—co)¢(m),coe(1—2) (19)

Since o is between 1 and 2, this is an extrapolation procedure. If it were between 0 and 1, it
would be an interpolation procedure but we are trying to speed up the process, not stabilize it.
The parameter o is varied to give optimum convergence rate. It is suggested that you start out
with o close to 1 (ie heavy reliance on the GS solution) at the beginning and to increase ® as you
become more confident that the extrapolation won’t lead to overstepping the situation.
Convergence rates ~100 times better than Jacobi are reported. Figure 7 illustrates this idea.
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true solution

Gauss-Seidel

flux at some fixed point in space

Jacobi-
Richardson
10 20 30 40 50 60 70 | 8 | 90
iteration, m

Figure 1 Convergence rate for iterative schemes.

These iterations are referred to as inner iterations. Outer or source iterations refer to varying
parameters to achieve criticality and occur when the fixed source term, S, is replaced by a fission
term that is proportional to the flux. More on that in a later chapter.
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5 Calculus

We need to deal with rates of change, gradient induced flows, etc., inherent in differential
equations. We need to be able to manipulate them.

5.1 Differentiation

[Reference C&C PT6.1 pg 569 and following]
[See also http://www.mathcentre.ac.uk/search_results.php?=1&c=1&t=26]
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Calculus 5-2

5.2 Integration

b b
5;%‘“’“ T = £ (o))
MM"P‘L.:

[C&C PT6.1 pg 569 and following]

-L n nyl |k
— n+l et |
L x"dy= fudl = “’_ - &
il NH Ty
ELL&.\J: b *JAL«.
LWJ% du
Yz owav :Qi-'u_\l
A -
o o Qs o
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5.3 Development of the Taylor Series

[Reference C&C 4.1]
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5.4 Linearization

Sometimes our models are nonlinear. For example we had for our falling object:

Av
x T ATRY
i
But a more realistic drag force might give:
AN 2t
——an - R o R
ae T ATRYE

j S \

We can linearize this by using the Taylor series:

i:_ NYy =
ami\,(\ Fa () + E—E"ii\q (vova) & e

é\r b‘u"‘\-—-,_.z

= Vot 4 ey av
b - |
Wy -—-,I,;m{\""\""“\ + DCEL\IL)
B 1
AL VA
AN
At ey
5y —_— Vv

We can solve this analytically as before. But this is valid only at v close to vop. We might want to
do this even though it has limitations so that we can see the analytical behaviour of a system
about some operating point.

This comes up often in looking at system behaviour and our inevitable task of having to solve

systems of equations. Invariably we linearize to form Ax=b so we can capitalize on the vast
solution literature for such linear systems.

Exercise:

Problem C&C 4.1, page 97
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6 ODE - Steady State and Transient

L:l H [Reference C&C PT7]
dv _a-Cu
:H-__ ™

s Lo o tromgln B o n;t.”j‘,;tn ,

~X ;“m;\, (i F)

m dx" .

:Z_ -+ Q%ﬁ krzo (Wm mrj;,,\_)
mmhwxﬁh% ‘[} I"*MJL_,\_
T R

3= dx

ok
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Exercise:
1. Given an initially pure radioactive sample (species N;) that decays to N, which subsequently

decays to N3, write the differential equations governing the decay sequence. Set up the finite
difference equations and outline a solution procedure.
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7 Boundary-Value and Eigenvalue Problems

[Reference C&C 27 page 572]
So far we have looked only at initial value problems — typically transients were the initial
conditions provide the constants of integration. Two other types of differential equations are
boundary-value problems and eigenvalue problems.

7.1 Boundary-Value Problems

Boundary value problems are those that involve 2 or more conditions that ‘pin’ the solution
down at more than one point in the solution space, for example, the temperature T at both ends of
a rod, as follows.
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Numerical solution
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7.2 Eigenvalue Problems
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Spring-mass Example
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Exercise:

1. Look at 5 coupled chemical reactors (C&C page 307 Figure 12.3 for the transient situation).
The equations are given on page 783 (caution: the equation for C4 is wrong). Set up the matrix
in eigenvalue form.
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8 Partial differential Equations
[Reference C&C PTS]

8.1 PDE Classification

Herein we look at Partial differential Equations (PDE) in the steady state and transient modes.
They are classified according to their behaviour as parabolic, elliptical, or hyperbolic.

PMWW arian. Whone mt s 2 an vmens.
M\A\--fm\lm-‘r M&QMM %mwmwrl—mm 2-D,
%MWMMMM E-MMJJJ\J/&;\LM
o 2 B domanaions , daady T and Baneid

“a 2
Astu +5§i4ﬂyﬂ. +Dd =0

.

Syt 3Dy 3y Q%L@h(xjm% A6 C)

B -4AcC E fty,gté_n
Z o MleXlo 37 3T _ m&m@m@

SO Hegpedle Wy 0 L
Ay él_ﬁwm

We seldom meet hyperbolic equations so they will not be reviewed here.
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8.2 Elliptic
[Reference C&C Chapter 29 page 820]

aﬂwqmmm i6 Mt wanbickan in
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Exercise:

1. Set up the finite difference equations for steady state heat conduction in a plate where
boundary temperatures are held constant (each boundary is potentially different). Limit yourself
to 9 (ie 3x3) interior grid points.
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8.3 Parabolic
[Reference C&C Chapter 30 page 840]
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Exercise:

1. Set up the finite difference equations for transient heat conduction in a plate where boundary

temperatures are held constant (each boundary is potentially different). Limit yourselfto 9 (ie
3x3) interior grid points. The initial interior plate temperature is given.
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8.4 The Crank Nicolson Method

We can mix the explicit and implicit forms with the Crank-Nicolson method which is 2" order

accurate in both space and time):

trnt -t
T T " 2T 4T
&kl i
H (-0 k;_f‘{_t TRt hak)

‘.-"
- | — 0 4
Axr b . ey )
where 0 is a weighting factor whose value is between 0 and 1, ie 6 € (0,1). Solving for the
unknown T"* gives you a matrix equation to solve (tri-diagonal in this case).

We can vary 0 to get a blend of the explicit and implicit methods as desired. Setting 6 = 0.5
simulates using an evaluation of T at mid step, which is probably the most accurate value to use.
Just make sure that

E‘Tﬁt *@S\ Li Tfﬂ >0

else unstable oscillations can occur.
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9 Data Analysis

9.1 Motivation
[Reference C&C PT5.1 pg425]

Often we need to analyse data to
- establish a relationship (curve fit)
- interpolate
- extrapolate
- test significance of a model
- do trend analysis
- eftc.

Herein we look at some basic statistics and curve fitting.

9.2 Statistics
[Reference C&C PT5.2]
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9.3 Least Squares Regression

[Reference C&C 17 pg440]
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So that’s the general approach. But what model to use in general?
- It 1is best to plot the data up and eyeball the situation.
- The plot will suggest some model perhaps.
- Try semi-log plots, etc.
- Often you can do a variable transformation to get the data linearized.
- You can also do polynomial regressions, etc. Same idea, just messier.

Exercise:

1. C&C 17.4 page 471.
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9.4 Binomial, Gaussian and Poisson Distributions
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9.5 Bayesian Probability
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10 Laplace Transforms
[Reference: Kells “Elementary Differential Equations”, Chapter 7]

Solving differential equations often involves transforming the dependent variable(s) to cast the
equation in a form more easily solved. The Laplace Transform does just that for Ordinary
Differential Equations.

We define

i{g&}lz g(S): S:O %H)Ef%k C’;\JE

where f is a well behaved function. Notice that f(s) is a function of s which has dimensions of

inverse time. We transform the function from the t domain to the s domain. The s may be
complex.

We can see immediately that

dloflbra, wl a4 4]+ o, T 0507

Typical functions have been transformed and put in tables for convenience.
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11 Control Theory

[Reference: Chemical Process Control: An Introduction to Theory and Practice, George

Rl o

(AEN
Denp ik

S dp I
BT L

) @_ﬁ yls)

Gl fo called Hoo
S v

(} . .
A TR et

ad
E%-{'Q"ﬁ:bg‘{-fj

Qhéﬁ_‘é N &H“lén-\
AE" 'ch‘; “

W

‘6(.“\:: A'L_J_\‘ - A=l
e PR TP
0 d\%nq {-

| -
On 5" 86040, 8y (5
%Ls\ b

- TTTTTe——
W©

le%h-t-- .

&S +Q.

e A8l ac sy LTl

= —é(si

pot I Aa-wu-{»mw m

Stephanopoulos]

MW

4 | v | = h-hg
| |4,
kr—\—l‘lf -

gé“h P ~ > Y
w fJ\.JC - *‘_"_i‘-"wi’\jg

S Ady
ES Y

oo ) SRAG R

Wy = fy
Do i)

~ (Rg+ f/;z)
& Q \‘_‘_i‘_} |
U Ao =609

\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-rev0d.doc 2009-08-08



Control Theory 11-2

ety = k. ethy4 Cq 'ty -
t% e .'.‘ c’Em ke €(t)
ColsY = (g

— =k

PL ( prnpadional- L2 \ ) o
clt)= b W) 4 ke g{:f:{ﬂcﬂc + C
T. de

<

c:'{{\f ("_L‘H'*Cs T:_> e &)= kq_‘:{‘“" K ¢ &gmﬁ
LY 5 ke Ble) 4 ke Eo T g“
TS
.‘leﬁzg_{;iE:'l(c '14-':L>
CL) E

C:\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-revOd.doc 2009-08-08



N VS = W) Jo_D)

c(B)= etm__k_c_g CWH; 4k T d€ N

o "
S ORI mh)
Cos

Asda

Mew w3
*-%]C.-..%Ql_;) EWE '—ﬁ‘k\fsqu, >
wﬁ
— s & ey R Tl

C:\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-revOd.doc 2009-08-08



Control Theory 11-4

GeGe G, (G “ &< Ui - Gag)
5 L,“_f__%'_, Qsr - C’m‘@d- Gg&

(=
Al G“‘“"‘ L Gad
CHJ{-G@} QJr@G )

QJA-FMQ.L j&a w W & Sm’\.ﬂc Q.C-JCIQ;'\_,
2~ (L‘—é-w-onq«_'& AV YW R e Kﬁu}ﬁi:,nh Q_c:hﬁ;'n

S ko gl et il Lt

A A

Gy

PM \/ .:> .
e, L:

C:\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-revOd.doc 2009-08-08




Control Theory 11-5

87 GGl (o - Gad 4 €y &

- = G
Lﬁ(-‘h = G%i.lo(ﬂ
h—‘—'——'-.__.___"—“__“_

C:\data\epic\unene\public_html\un-math-primer\UNENEMathRefresherCourse-revOd.doc 2009-08-08



Worked Examples 12-1

12 Worked Examples
12.1 Tank Problem

The moderator in your CANDU unit has been poisoned with gadolinium nitrate due to activation
of shut-down system two (SDS-2). The plant manager asks you to quickly calculate how long it
will take to clean up the moderator. A rough schematic of the system is shown below.

Q1.  Develop a mathematical expression describing the concentration of GANO3 in the
moderator with time based on the schematic below.

Q2. Given:

flow rate through the ion exchange columns, Q = 2,300 L/min
initial concentration of GANO3, Co = 12 mg/L

volume of D,0 in the calandria, V =220 000 L

removal efficiency of the ion exchange columns, O = 95%

Calculate how long it will take to get the GANO3 concentration below 0.01 mg/L in order to
begin plant start-up activities.

Initial Cgg = 12 mg/L
Calandria

-

V ~220000 L
Removal

efficiency,

o
Flow Rate, Q
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13 Appendices

13.1 Bessel Functions

J = Bessel function of the first kind (3.20)
Y = Neuman = N (x)

= Bessel function of the second kind (3.21)

_cos(vm)J, (x)—J_, (x)

- sin(vx)
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