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Atomic and Nuclear Constituents 
 
Atom 
• Electrons 
• Nucleus -  made up of nucleons: 

o protons 
o neutrons 

 
The nucleus is “held together” by nuclear attraction forces.  These 
have to be stronger than the repulsive electrostatic forces. 
 
For neutral atoms, the number of protons in the nucleus equals the 
number of electrons in orbit. 



Some subatomic particles 
 
• proton 
• neutron 
• electron (beta particle) 
• positron 
• photon (gamma particle) 
• neutrino 
• antineutrino 
• alpha particle (2 protons + 2 neutrons) 



Properties (quantities) characterizing subatomic particles 
 
• Mass (rest mass) 
• charge  
• spin (denoted by s) 
• parity 

o property resulting from Quantum Mechanics.  
o describes the parity of the wave function 
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All these quantities are important because they are conserved in 
nuclear reactions. 



Properties of Nuclei 
 
• Atomic number – Z = number of protons 
• Mass number – A = total number of nucleons (protons and 

neutrons) 
• Number of neutrons – N  

 
The atomic number Z identifies the nuclear species. 
 
Two nuclei with the same Z but different N are called isotopes. 
 

Notation: XA
Z , where X is the chemical symbol. 



Other properties of nuclei (parallel those of particles) 
 
• Mass  
• charge (+Ze) 
• spin (s) 
• parity 



Atomic Mass Unit (amu) 
 
• Defined as 1/12 of the mass of a 12C atom 

That means that it is 1/12 of the 12C nucleus, plus the mass of  
1/2 electron. 

• Atomic weight = Mass of an atom expressed in amu 
• Molecular weight = Mass of a molecule expressed in amu 
• 1 Mole – Quantity of a pure substance that has the same mass 

expressed in grams as the atom’s (or molecule’s) mass expressed 
in amu. 

• 1 Mole Has NA =6.023x1023 atoms (molecules) 
• NA is the ratio between 1g and 1 amu.  

(There are NA amus in a gram.) 



How many Kg does an amu have? 
 
NA atoms of 12C weigh 12 g.  It follows that 1 amu weighs 1/NA 
grams. 
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Expressing mass using energy 
 
Because of the mass-energy equivalence expressed by Einstein’s 
formula 2mcE = , mass can also be expressed in units of energy  
over c2. 
For example:  
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Expressing mass using energy 
 
In nuclear physics the energy is often measured in MeV, and the 
mass in MeV/c2. To find the relation between 1kg and one MeV/c2 
we write: 
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Instead of saying that the mass if a particle is X MeV/c2 it is 
customary to just say that the mass is x MeV.  What is really meant 
is that the total energy of that particle is X MeV, and hence its mass 
is X MeV/c2.  One just omits mentioning c2. 



MeV Equivalent of 1 amu 
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Examples of elementary particle mass 
 

particle mass 

  kg amu MeV/c2 

proton 1.6726E-27 1.007276 938.28 

neutron 1.6750E-27 1.008665 939.57 

electron 9.1090E-31 5.486E-4 0.511 

 



Atomic Weight for a Mixture of Atoms 
 
Consider a mixture of 30% (by atom) C and 70% (by atom) Al.  
What is the average atomic weight of the mixture? 
 
Answer 
• Assume there are N atoms in total 
• of these  

o NC=0.3N are C 
o NAl=0.7N are Al 



Atomic Weight for a Mixture of Atoms 
 
The total mass of the mixture (in amu) is: 
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The average mass of one atom (in amu) is: 
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Atomic Weight for a Mixture of Atoms 
 
In general 
 
For a mixture of n types of atoms, each with atomic fraction 
Xi=Ni/N, the average atomic weight is: 
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If the different types of atoms are isotopes of the same atom, the 
atomic fractions are called isotopic abundances. 



 
 
 
 
 
 
 

Properties and Structure of Nuclei 



Nuclear Radius 
 
Assume that nuclei are made of “nuclear material” of the same 
density ρ  for all species of nuclei. 
 
It follows that the mass of the nucleus is given by:  
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Nuclear Radius 
 
The mass of the nucleus is given also by the mass of its constituents 
(neutrons and protons) 
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Because the mass of the proton and the one of the neutron are almost 
equal to 1 amu, we can write:  
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Nuclear Radius 
 
By writing the equality between the two masses, we have: 
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Solving for R3, we obtain 
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Nuclear Radius 
 
Solving for R, by taking the cube root on both sides, we have: 
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It turns out that: 
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Binding Energy 
 
Since particles that constitute the nucleus stay together (held by 
nuclear interaction forces), the total (rest) energy of the nucleus must 
be lower than the total (rest) energy of the particles if they were 
separated. 
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This is called the Binding Energy 
 
In the above, E denotes rest energy. 
  



Binding Energy 
 
Einstein’s energy formula translates into: 
 

2cmE neutronneutron =  
2cmE protonproton =  
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Z =  (M is rest mass of the nucleus.) 
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The mass of the nucleus is smaller than the sum of the masses of its 
constituents 
The difference, Δ , is called the mass defect 



Alternate expression for the mass defect 
 
Using the nuclear mass to calculate the mass defect can be difficult 
because, most of the time, what is given in tables is the mass of 
neutral atoms, rather than the mass of their nuclei. 
 
To use the atomic masses instead of the nuclear masses, we can add 
and subtract the mass of electrons.  (We will also ignore the binding 
energy of the electrons.  However, that energy is much smaller that 
the nuclear binding energy, so we can safely neglect it.)  Hence: 
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Where ( )XA
Z

0M  is the atomic mass of element XA
Z  



Question Period 
 
• Q: If I climb to the top of the CN tower (approximately 550 m) 
will my body mass be larger? 
• A: Yes, but not enough for people to notice. 
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Nuclear Models 



Shell Model - Potential Well 
 

• We can picture the nucleons (protons and neutrons) as “living” 
in a “potential well” created by the nuclear forces. 

• The binding energy is the energy that needs to be 
communicated to the nucleons to allow all of them to exit the 
well. 
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More details on the potential well 
 

• Nucleons can occupy different energy levels in the well, just 
like electrons can occupy different energy levels in an atom. 

• The state of the nucleus is given by the states (energy, spin, 
parity) of all its nucleons. 

• Pauli’s exclusion principle applies (No two nucleons can 
occupy the same state). 

 

n p 

p n 

n p 
E 

A
Bb =   

Average binding energy per 
nucleon 



More details on the potential well 
 

• Depending on the “arrangement” of nucleons on energy levels inside 
the well, the nucleus can have different binding energies. 

• The lowest energy level of the nucleus (corresponding to the largest 
binding energy) is called the ground level, and the corresponding state 
is called the ground state.  

• Higher energy levels are called excited levels, and the corresponding 
states are called excited states.   
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Binding Energy per Nucleon 
 

 



Liquid Drop Nuclear Model 
 

• Attempts to express the binding energy as a function of nuclear 
characteristics. 

• Leads to a semiempirical formula. 
– Shape of formula determined from the model 
– Values of constants determined from measurement 
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Liquid Drop Model – Meaning of Terms 
 

• av – Volume effect – proportional to the “volume” of the nucleus, which can 
be considered to be roughly proportional to A.  This term was introduced 
because it was observed that the binding energy per nucleon is almost 
constant. 

• as – Surface effect – proportional to the “surface” of the nucleus, roughly 
proportional to A2/3.  This negative term was introduced because the nucleons 
situated close to the surface have fewer neighbors, and hence contribute less 
to the binding energy. 

• ac – Coulomb effect – electrostatic repulsion between protons has a potential 
energy 
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• aA – Asymmetry effect.  It vas observed that nuclei with N=Z are more 
stable, hence the binding energy is probably smaller if Z and N differ.  This 
term accounts for that effect. 

• ),( AZδ  - Pairing term.  Introduced because it was found experimentally that two 
protons or two neutrons are bound stronger than a proton and a neutron.  It is 
zero for odd A, 
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Liquid Drop Model Numerical values of coefficients 
 
 
 
 

aV 15.7 MeV 
aS 17.8 MeV 
aC 0.71 MeV 
aA 23.6 MeV 
aP 12.0 MeV 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

Radioactivity 



Nuclear Stability 

 
 



Radioactivity 
 

• Discovered first by Henri Becquerel (1852-1908).   
• Becquerel discovered that a mineral containing Uranium would 

darken a photographic plate even when the latter was wrapped in 
opaque paper. 

• In 1903 Becquerel shared the Physics Nobel Prize with Pierre 
and Marie Curie, for their discovery and work on radioactivity. 



Radioactive Decay 
 

• Some nuclei are stable, while others are unstable. 
• Unstable nuclei decay, by emitting a particle and changing into a 

different nucleus. 
• Most common types of decay (others possible too): 

• Alpha ( α42 ), Helium nucleus emission 
• Beta ( β01− ), electron emission 
• Beta plus ( β01  ) positron emission 
• Gamma ( γ00 ), photon emission (no change in nuclear species) 
• Electron capture (an electron is “captured” rather than 

emitted) 



Radioactive Decay 
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(Parent Nucleus  Daughter Nucleus + Emitted Particle) 
 

• Charge and number of nucleons are conserved. 
• For gamma decay, technically the nucleus does not change into a 

different one.  Only its energy state changes. 
• Electron capture (still classified as “decay”) 
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Alternative Notation (no chemical symbol) 
 

• General decay 

),(),(),( mnmAnZAZ +−−→  
• Alpha 

α42)4,2(),( +−−→ AZAZ  
• Beta minus 
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• Electron capture 
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Characteristics of Radioactive Decay 
 

• Nuclei decay randomly. 
– It is impossible to predict which nuclei will decay in a given 

period of time, and which not. 
– It is impossible to predict when a particular nucleus will 

decay. 
• On average, for large initial numbers of nuclei and for short 

periods of time Δt, the number of nuclei that decay within Δt is 
proportional to the time Δt, and to the original number of nuclei 
present at the beginning of the time interval. 



Derivation of the Law of Radioactive Decay 
 

• Let N(t) be the number of X-type nuclei present at time t. 
• Let Δt be a short time interval. 
• According to the second bullet on the previous slide, we have, on 

average: 
ttNttNtNN Δ××−=Δ++−=Δ )()()( λ   (1) 

• λ is called the decay constant, is dependent on nucleus type, and 
is measured in s-1. 



Derivation of the Law of Radioactive Decay 
 

• The previous can be rewritten as: 

)(tN
t
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• which, considering that Δt is small, yields:  
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Derivation of the Law of Radioactive Decay 
 
Eq. (3) is an ordinary differential equation with constant coefficients.  
Its solution is of the form: 

ctct eCCee =≡ −+−         ; λλ
 

The multiplicative constant C can be determined from the number of 
nuclei present at t=0.   

CeCNN =×=≡ ×− 0
0)0( λ

 
It follows that the number of X-type nuclei is given at any time t by: 

teNtN λ−×= 0)(  
Law of Radioactive Decay 



Example 
 

• At t=0, a sample of 24Na weights 1.0 mg.  How many beta 
particles are emitted in an hour? (λ =1.2836x10-5 s-1) 

• Solution 
– The number of emitted particles equals the number of 

decayed nuclei: 
( )tt eNeNNtNNN λλ −− −×=×−=−=Δ 1)( 0000  

• The initial number of Na nuclei is: 
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• Hence the number of emitted particles is: 
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Half Life 
 

• Definition 
– The half life, T1/2, of a radioactive species is the time after 

which the initial number of nuclei decreases to one half. 
• Expression 

– By definition: 
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Expression of Half-Life 
 

• The definition of half life is equivalent to: 
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• Dividing be N0 we obtain:  
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• By taking the natural logarithm of both sides we get: 
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Radioactive Decay and Half Life Important Notes 
 
• Half life can be measured from any moment of time.  The 

number of nuclei left after T1/2 elapses will be half of those existent 
at t0.  

• According to the radioactive decay law, the number of parent 
nuclei keeps halving every T1/2, but never reaches zero.  However, 
it can become negligibly small. 

• As the number of remaining nuclei becomes small, deviations 
from the law of radioactive decay start to appear, as the law of 
radioactive decay is valid on average. 
We cannot have 2.5 parent nuclei left.  What such a number means 
is that we can have 2 or maybe 3 nuclei left in different 
experiments, such that the average is 2.5 



Exponential Decay 
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Law of Radioactive Decay – Probabilistic Interpretation 
 

• N(t) out of N0 nuclei do not decay.  
• It cannot be determined a priori which nuclei do not decay and 

which do. 
• The ratio N(t)/N0 can be interpreted as the probability of one 

nucleus not decaying after time t. 
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• Conversely, the probability that a nucleus does decay after time t 
is: 

tt
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Activity 
 

• The rate at which a radioactive sample decays is called activity. 
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• Equivalent definition 
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• Units: 

– 1 decay/second = 1 Becquerel (Bq) 
– 1 Curie = 3.7x1010 Bq 



Average Life of a Nucleus 
 

• At t=0 there are N0 parent nuclei. 
• At time t, there are N parent nuclei left. 
• At time t, dteNdtt tλλ −=Λ 0)( decay in dt 
• These nuclei have “lived” t before decaying. 
• To get the average life, we need to sum (integrate) over dt and 

divide by the initial number of nuclei. 

( ) ( ) λ
λ

λ
λλ

λ
λ

λ
τ

λ
λλ

λ

λ

λ

11

)(

1
0000

00

0
0

0

0
0

0

0

=−−==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

===

=
Λ

=

∞
∞

−
∞

−
∞

∞
−

∞
−

∞
−

∞

∫∫

∫
∫

∫∫

tdtedtet

dtte
N

dtteN

N

dteNt

N

dttt

ete tt

t

t

t

 



Energy-Level Diagrams for Decay and Decay Scheme 
 

 
• Q=[M(Z,A)-M(Z-n,A-m)-M(n,m)]c2 
• Q>0 in order for the decay to be energetically possible 
• By convention, the lowest energy on this graph is taken to be 

zero (Energy is expressed relative to the lowest value.). 
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Multimodal Decay 
 

• Some nuclei can decay in more than one way 
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Branching factors 

 
• Fraction of nuclei that decay in a certain mode 
• Have to add up to 1. (100%) 
 
• Consider a species of nucleus that can decay by either a reaction 

1, or another reaction 2. 
• Let dN be the total number of nuclei that decay in dt.  The 

branching factors are defines as: 
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Branching factors and derived quantities 
 

• Partial decay constants 
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• Partial half-lives (What the half life would be if only that decay 
mode was present). 
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Decay Chains  
(Radioactive Families) 

 
• Consider a nuclide whose daughter is also unstable and decays. 
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• This is called a decay chain. 
• Chains can have more than two members.  We then talk about 

radioactive families or series. 



 
 
 
 
 
 
 
 

Nuclear Reactions 
 



Nuclear Reactions 
 
General Expression 
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Q value  
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M are rest masses of nuclei/particles 
 
• Q>0 – exothermic reaction (provides energy to the outside) 
• Q<0 – endothermic reaction (needs energy from outside in order 

to proceed) 



Conservation Laws 
 

• The following quantities are conserved in a nuclear reaction 
– charge 
– number of nucleons 
– energy 
– momentum 



Conservation Laws 
 
 

• Conservation of charge 
 

2121 yyxx ZZZZ +=+  
 

• Conservation of number of nucleons 
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Conservation Laws 
 
If additional particles enter or exit the reaction, their charge, number 
of nucleons, energy and momentum need to be accounted for when 
writing the conservation laws 
 
Example 
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Conservation of charge 
 

12121 −+=+ yyxx ZZZZ  
 

We can represent the electron as e0
1−  



Conservation Laws 
 
Conservation of momentum 
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Conservation of energy 
 

– Expressed by the definition of the Q value 
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– The liberated energy (Q) is found as kinetic energy of the 
products [including all emitted particles (photons or other)] 

 
 



 
 
 
 
 
 
 

Interaction of Radiation with Matter 



Atom Density 
 

• Also called number density. 
• Is the Number of Atoms per Unit Volume 
• Connection with (mass) density 

– n = # of atoms in volume V 
– M = atomic weight of each atom  
– N = Atom density 
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Mechanisms of Interaction for Charged Particles 



Heavy Charged Particles e.g. alpha particles 
 

• Interact mostly with electrons (there are usually much more 
electrons than nuclei) via Coulombic force 

• Are much heavier than electrons 
• Lose little energy in each individual interaction with any one 

electron 
• Eventually do slow down as a consequence of the many 

interactions  
• Have straight-line trajectories 
• Electrons are knocked out of their orbits and atoms become 

ionized (Hence the name “ionizing radiation”) 
• Behave like bowling bowls in a space filled with golf balls 



Linear Stopping Power 
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• Bethe’s formula 
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• Range (tens of microns) 



Fast Light Charged Particles (electrons) 
 

• Interact mostly with electrons (there are usually much more 
electrons than nuclei) via Coulombic force 

• Are much of the same mass as electrons 
• Can lose a lot of energy in each individual interaction with any 

one electron 
• Slow down quickly, after only few collisions.  
• Have broken-line trajectories 
• Can be backscattered 
• Atomic electrons are knocked out of their orbits and atoms 

become ionized (Hence the name “ionizing radiation”) 
• When accelerated, incident electrons produce bremsstrahlung 

(electromagnetic radiation – photons) 
• Trajectory of an electron is a broken line (possible backscatter) 
• Range (millimeters) 



 
 
 
 
 
 
 

Mechanisms of Interactions for Neutral Particles 



Photons 
 

Can have several types of interactions (all depend on energy) 
• Photoelectric effect 
• Compton Scattering 
• Pair production 

o A highly energetic (E>1.02MeV) photon is stopped (by 
collision with a heavy nucleus) and its energy is converted 
into an electron and a positron emitted in opposite directions  

 
+− +→ eeγ  



Neutrons 
 

• Interact with nuclei via nuclear forces, since they have no charge, 
hence they cannot  interact electrostatically with electrons 

• Possible reactions 
– Elastic scattering 
– Inelastic Scattering 
– radiative capture (absorption) 
– (n, 2n) 
– fission 



Neutron Elastic Scattering 
 
 
Kinetic energy is conserved 
 
 
 
 
 
 
 
 
 
The incident neutron is slowed down by elastic scattering 
Some of its kinetic energy is transferred to the target nucleus 
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Energy Loss in Elastic Scattering Collisions - Moderation 
 
 
 
 
Scattering of heavy nucleus (235U)- small energy loss (poor 
moderator) 
 
 
 
Scattering on light nucleus (1H) – large energy loss (good 
moderator) – Water used as moderator because it contains H. 
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Inelastic scattering 
 
 
 
Kinetic energy is not conserved any more (total energy is) 
 
 
 
 
 
 
 
 
The incident neutron is slowed down by inelastic scattering 
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Radiative Capture 
 
 
 
 
 
 
 
 
 
 
 
The incident neutron is absorbed (disappears) by radiative capture 
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Fission 
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Fission - Example 
 

neutronsYXUn ++→+235
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1
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• Possible fission reactions 
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• Distribution of fragments 
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Attenuation of a Photon Beam 
 



Photon Attenuation 
 
Attenuation of a collimated (parallel) beam 
• Consider a beam of photons of intensity I0 that hits a target of 

thickness xt, and a collimated detector that measures the intensity 
of the beam emerging from the target.  The fact that the detector 
is collimated means that only the particles that have not 
interacted in any way are detected.  

• The intensity is defined as the number of photons that pass 
through a surface S per unit time and per unit area. 



Photon Attenuation 
 
 
 
 
 
 
 
 
 
 

• The atom (number) density of atoms in the slab is Nv. (number of 
atoms per unit volume)  

• The area of the material surface perpendicular to the beam is 
denoted by S.  

I0 

I

S 

Xt 



Photon Attenuation 
 

• Consider a thin “slice” of material, of thickness dx situated at 
depth x in the material. 

• Consider each atom can be represented as a hard ball of radius, ra 
, and with a corresponding cross-section area 2

arπσ =  
• Also called “microscopic cross section” 

• The number of atoms in the slice is SdxNdN a=  
• where Na is the atom density 

• Consider the photons to be infinitely small (points)   



Thin slice of material 
 
 

 x x+dx 



View of the dx slice from the photons’ perspective 

 

Total area: S 

Area "covered" by atoms:  σ×adN  



Attenuation of a collimated beam of photons 
The probability that a photon “hits” an atom equals the ratio 
between the area “covered” by atoms and the total area of the slice. 
Let Np(x) be the total number of photons that enter the slice over a 
time tΔ  

tSxIxNp Δ= )()(  
Let Np(x+dx) be the total number of photons that exit the slice dx 
over a time tΔ  

tSdxxIdxxNp Δ+=+ )()(  
The probability of a photon interacting with an atom is: 

dxdxN
S

dxSN
S

dnP a
a

coll ×=××=
×××

=
×

= μσσσ
 

Attenuation coefficient 
σμ ×= aN  

(units of cm-1) 



Attenuation of a collimated beam of photons 
Number of photons that interact and are therefore removed from 
the beam 

dxNPNdN pcollpp ××=×= μ  
Setting up the differential equation 
• Account for the fact that the number of photons that interact 

represent the change in the number of photons that exit the slice, 
with a negative sign 

dxxNxdN pp ××=− μ)()(  
• Solution 

x
pp eNxN μ−= 0)(  

• Np0 is the number of photons entering the material at x=0 



Attenuation of a collimated beam of photons 
Given that 

tS
NI p

Δ×
=  

We also have 
x

x
pp eI

tS
eN

tS
xNxI μ

μ
−

−

=
Δ×

=
Δ×

= 0
0)()(  

Where Np(x) is the number of photons that “make it” to depth x. 



Exponential attenuation (of a collimated beam of photons) 
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Reaction (Collision) Rate 
 

• For a thin slice of thickness dx, the volumetric reaction rate is: 
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Attenuation of a Neutron Beam 
 



Neutron Attenuation 
 

• Same reasoning as for photons, but with specific features 
– Instead of the density of atoms previously denoted by Na we 

talk about the density of nuclei, denoted simply by N.  That is 
because neutrons interact with nuclei and not with atoms as a 
whole. 

• The product σN  is called macroscopic cross section (as opposed 
to attenuation coefficient) and denoted by Σ  (as opposed to μ ). 

σN=Σ   
(units of cm-1) 

Attenuation: 
xeIxI Σ−= 0)(  

Neutron Reaction (Collision) Rate 
Σ=≡ )(xIFR  



Neutron Beam Intensity 
 

• Let n(x) be the neutron density (neutrons/cm3) 
• Consider monoenergetic neutrons (All have the same speed) 
• Let v be the speed of neutrons. 
• Consider a thin “slice” of beam of  

thickness dx, that crosses surface S. 
• There are nSdxdNn =  neutrons in  

this slice. 
• It takes the neutrons in the slice  

time v
dxdt =  to cross surface S. 

• The beam intensity is therefore: 

v

v

ndxS

nSdx
Sdt
dNI n ===

 x dx 
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Microscopic Cross Sections and Reaction Rates for 
Neutrons 

 
 



Consider a single nucleus in a parallel beam of monoenergetic 
neutrons 
 

 
 
Assume (for now) that scattering and absorption are the only 
possible reactions. 
 

[ ]smnI // 2  



Reaction Rates 
 

ast RRRF +==  
Probability of a Certain Reaction Type 
 

t

s
s R

RP =  
 

t

a
a R

RP =  
 

1=+ sa PP  
 

1=+
=+

t

as
sa R

RRPP



Microscopic Cross sections for Individual Reactions 
 

tt IR σ=  
 

stssststs PIPIPRR σσσσ ≡⇒===  
 

ataaatata PIPIPRR σσσσ ≡===    ;  



The sum of individual microscopic cross sections equals the 
total macroscopic cross section.  In our simplified case 
 

tsatstatsat PPPP σσσσσσσ =+=+=+= )(  
For the general case: 
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Microscopic Cross Sections as Measures of Probability 
 
We can write: 

I
Rt

t =σ  
 

I
Ra

a =σ  
 

I
Rs

s =σ  
 

• The microscopic cross sections can hence be interpreted 
as the probability of interaction, per unit incident flux. 

 



Energy Dependence of Microscopic Cross Sections 
 
• The microscopic cross sections depend on the energy of 

the incident neutrons.  The nucleus appears larger or 
smaller depending on how fast the incoming neutron is 
moving! 

)(Ett σσ =  
Where E is the kinetic energy of a neutron 

 

)(Eaa σσ =  
 

)(Ess σσ =  
Reaction rate per nucleus 

)()( EIER σ=  
The reaction rate depends on the energy (speed) of the 
incident neutrons. 



Energy Dependence of Microscopic Cross Section 
(fission) 

 

 



Volumetric Reaction Rate for a Material 
(Collision Density) 

 
Consider a small piece of material placed in a beam of 
monoenergetic neutrons. 
 

NR
V

NR
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×
= −

−
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Where N is the number density of nuclei. 
 

Σ×=×= INIF σ  
Where N×=Σ σ  is the Macroscopic Cross Section.  
 

We have thus recovered the formula obtained in the previous 
lecture using the attenuation of a collimated beam. 



Volumetric Reaction Rate for a Material 
(Collision Density) 

 
Dependence on the energy of the incident neutrons 
 

)()()( EINEIEF Σ×=××= σ  
 



Neutron flux 
 
Q: What happens if we have a small piece of material 
bombarded by two beams of monoenergetic neutrons (both 
having the same energy)?  
 

 
 
 

 
 
Reaction (collision) Rate 
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Neutron flux for monoenergetic neutrons: vn=Φ
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Alternative Interpretation of the Neutron Flux for 
Monoenergetic Neutrons 

 
Consider a small sphere at the intersection of two beams of 
same-energy monoenergetic neutrons.  The situation is 
similar to having one nucleus bombarded by two neutron 
beams. 
 
 
 
 
 
 
The number of neutrons crossing the sphere per second equals 
the “reaction rate” for the sphere, due to both beams (which is 
the sum of the reaction rates due to each beam). 

Cross sectional area 

of sphere: 
2rπ  

 



Alternative Interpretation of the Neutron Flux for 
Monoenergetic Neutrons 
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It follows that: 
 

2r
Rcross

π
=Φ

 
 
So the flux can also be interpreted as the number of neutrons 
that cross a sphere per unit time, divided by the cross 
sectional area of the sphere ( )2rπ . 



Neutron flux for monoenergetic neutrons 
 
For the situation of more than two beams, all of the same 
energy, the definition of the flux is the same: 

vn=Φ  
where n is the total neutron density due to all the beams.   
The flux can still be interpreted as the number of neutrons 
crossing a small sphere, divided by the cross section area of 
the sphere. 



Macroscopic Cross Sections for Mixtures 
 
Consider a mixture of nuclei with number densities Ni. 
The volumetric reaction rate density for each nucleus type i 
is: 
 

iiii NF ΦΣ=×Φ= σ  
 
The total reaction rate density is: 
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Macroscopic Cross Sections for Mixtures 
 
The total macroscopic cross section equals the sum of the 
(partial) macroscopic cross sections for each nucleus species 
 

∑∑ =Σ=Σ
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Neutron Intensity, Flux, Current and their Applications



Single Beam 
 
Consider a beam of monoenergetic neutrons 
 

 
 
The intensity is given by: 

vnI =  
The flux is a scalar quantity given by 

vn=Φ  
The current is a vectorial quantity given by: 
 

vnJ =  



Two intersecting beams of different-energy neutrons 
 

 
Neutron Flux 

212211 vv Φ+Φ=+=Φ nn  
 
Neutron Current 

212211 vv JJnnJ +=+=  



For many intersecting beams: 
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Usefulness of Neutron Flux 
 
Consider a small sample of material placed at the intersection of 
several beams of neutrons. 
 
The total collision density in the sample is equal to the sum of the 
collision densities due to the neutrons in each beam. 
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We rewrite the expression for the total collision density 
 

ΣΦ=ΦΣ=

=Φ×Σ==
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i
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Where ∑Φ=Φ
i

i  
So: 

ΣΦ=F  
 
Regardless of how many beams we have (one or more). 



Usefulness of Neutron Current 
 
Consider a monoenergetic neutron beam that intersects a plane 
surface. 
 

 
 

 



We want to determine the rate at which neutrons cross this surface. 
Per unit area. 
 

tS
NR
Δ
Δ

=
 

 

Where NΔ  is the number of neutrons crossing the plate at time 
tΔ  through surface area S. 

 
 
 
 
 
 



                       Before                                          After ( tΔ  elapsed) 
    (t=0)        (t=Δt) 

  

n  is the unit vector normal to S. nhh =  
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The rate at which neutrons cross the surface in tΔ is given by the 
neutrons in the marked region. 
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 Multiple Beams 
 
The number of neutrons crossing the surface per unit time per unit 
area is the sum of the neutrons in each beam that cross the surface 
per unit time per unit area. 
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Polyenergetic Neutrons 
 
Consider now a parallel beam that has neutrons of different 
energies (speeds).   
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 (volumetric) density of neutrons with energy less or equal to E. 
 

)(En  
 
Neutron density spectrum 
 

dE
EndEn )()( =

 
 
 (volumetric) density of neutrons with energy between E and 
E+dE. 
 

dEEnnd )(=  
 



 Beam intensity for neutrons with energy between E and E+dE 
 

dEEEnEndEId )(v)(v(E))()( =×=  
 
The above is the same as eq. 3.36 in the textbook but the textbook 
does not use the underline. 
 
Energy-dependent beam intensity (Beam Intensity Spectrum) 
 

)(v)()()( EEn
dE

EIdEI ==
 

 
Energy-dependent Flux (Flux spectrum) 
 

)(v)()( EEnE =Φ  
 



 
Energy Dependent Current (Current Spectrum) 
 

)(v)()( EEnEJ =  
 
Where n (number of neutrons with energy between E and E+dE, 
divided by dE) per unit volume. 
Total Reaction Rate for Reaction x  
 

dEEEdEEEEnR xxx )()()()(v)(
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Subscript x can stand for total collisions, or just absorption, or 
elastic scattering, etc. 
 
 
 



 
 
 
 
 
 
 

Attenuation of a Neutron Beam from a Neutron Balance 
Perspective



Neutron Attenuation Revisited 
 
Parallel beam of monoenergetic neutrons 
 
For such a beam 
 

JI ≡Φ≡  
 

 

dx

S

x



 
 
 
 
 
 
 
 
 
Neutron balance in the volume of thickness dx 
 

SdxxxSdxxJSxJ )()()()( ΦΣ=+−  
 
 

dx 

S

x

neutrons 
entering the 
volume 

neutrons 
exiting the 
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neutrons colliding 
(reacting) in the 
volume 



The neutron balance equation can be rewritten: 
 

SdxxIxSdxxISxI )()()()( Σ=+−  
 
Dividing by Sdx  on both sides we obtain 

)()()()( xIx
dx

dxxIxI
Σ=

+−
 

Equivalent to: 
 

)()()()()()( xIx
dx

xdIxIx
dx

xdI
Σ−=⇔Σ=−

 
If the macroscopic cross section is constant, then: 



 

)()( xI
dx

xdI
Σ−=

 
 
Which can be integrated to obtain: 
 

xeIxI Σ−= )0()(  
Exactly what we obtained before using a different kind of 
reasoning. 
 
Moral:  If assumptions are right and reasoning correct, the 
results are the same regardless of the method used. 



Mean Free Path 
 
Neutrons that react (collide) between x and x+dx have had a 
"free path" of length x. 
 
To find the mean free path, we need to average over all the 
neutrons that interact from x=0 to x=∞.   
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The numerator is integrated by parts to give 
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The denominator integrates as: 
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Fission 
 



Fission 
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5 4, 3, 2,~ =ν  

on average 5.2≅ν  
 
A & B = Fission Products (Fission Fragments) 
 



Conservation Laws 
 
Number of nucleons 
 

ν~++=+ BAnX AAAA
 

 

ν~1 ++=+ BAX AAA  
 
Charge 

μ~−+= BAX ZZZ  



Energy 
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M is the relativistic mass 



Using the rest mass and kinetic energy E, we have: 
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M0 is the rest mass 



The above can be rewritten using the Q: 
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For fission, Q is approximately 200 MeV 



Distribution of Energy From Fission 
 
 

Carrier Energy 
(MeV) 

Fission 
Fragments 168 

Beta 8 
Gamma 14 

neutrinos 12 
neutrons 5 

Total  207 
 

Most energy is taken by fission fragments and deposited 
locally. 



Fission Mechanism (simplified) 
 
 
In reality, fission occurs through a compound nucleus which, 
in turn, can decay very rapidly in several different ways. 
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Both A' and B' can be stable or further decay in several 
possible modes: 
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If A' decays according to mode 4, it is called a precursor. 
There are six possible types of precursor, and six possible 
values for λ  
A'' is then called an emitter. 



We cannot predict in advance which nuclei will be 
precursors, but we can predict, on the average how many will 
do so.  This number is equal to the number of delayed 
neutrons emitted, called the delayed neutron yield. 
 

fissionsof
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d #
#
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We cannot predict how many prompt neutrons will be emitted 
in each reaction either.  But we can predict how many will be 
produced on the average.  This is called the prompt neutron 
yield.   

fissionsof
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On the average, the fission reaction can be written: 
 

γμνν +++++→+ ennBAXn ddpp  
 
The total neutron yield is defined as: 
 

5.2≅+= pd ννν  
 
The delayed neutron fraction is: 
 

ν
νβ d=

 



Delayed Neutrons 
 
Are emitted by emitters which result from the beta decay of 
precursors. 
 
There are 6 precursor (delayed neutron) groups, based on 
their half-life. 

654321 ddddddd ννννννν +++++=  
 

 
idν  



Fission Products (Heavy Nuclei) 
 
Mass is distributed asymmetrically. 
 

 
 



Energy Dependence of Fission Cross Section for 235U 
 
 

 
 10^-3          1       100      10^4 
 
235U is fissile, i.e. undergoes fission with near-zero energy 
neutrons with high probability. 
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Energy Dependence of Fission Cross Section for 238U 
 

 
 
238U is fissionable, but not fissile, i.e. it can undergo fission, 
but with higher energy neutrons and with low probability. 



Energy Spectrum of Fission Neutrons 
 
Energy Spectrum 
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Energy Spectrum of Fission Neutrons 
 
Prompt-neutron spectrum (Eavg=2MeV) 

 
 
Delayed-neutron energies are slightly lower. 



Important Facts 
 
• Fission neutron energies are much higher than thermal 

energies (0.025 eV), so they are not appropriate for 
efficient fission in fissile materials. 

• To achieve fission efficiently, the neutrons need to be 
slowed down (their energy needs to be reduced).  This 
process is called moderation.  It is achieved by elastic 
collision with light nuclei (usually Hydrogen or 
Deuterium) 

• Reactors that use thermal neutrons for fission are called 
Thermal Reactors. 

• Special reactor designs can be conceived, where fast 
neutrons are used for fission.  These are called Fast 
Reactors. 



Fission-Related Parameters 
 

Capture-to-fission ratio 

fσ
σ

α γ=
 

Number of neutrons released per absorbed neutron. 

a

f

σ
σ

νη =  
 
For mixtures of fissile and non-fissile elements: 
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fii
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Nuclear Reactors – The Basics 
 
 
 
 



Nuclear Reactors 
 

 Can be of two Types: 
 Thermal - fissions induced by thermal (E<1eV) 
neutrons in fissile nuclei 

 Fast - fissions induced by fast (E≅1MeV) in 
fissile/fissionable nuclei 

 



Thermal Reactor Components 
 
• Fuel - consists of nuclei that fission liberating energy 
• Moderator - slows down fast neutrons resulting from 

fission to thermal energies so they can fission fuel 
nuclei 

• Coolant - removes the heat 
 
The three can be: 
• mixed together → Homogeneous Reactor 
• separated → Heterogeneous Reactor 

 
Most reactors are heterogeneous. 



Power Reactors 
 
• Pressurized Water Reactors 
• Pressurized Heavy-Water Reactors (CANDU) 
• Gas-Cooled Reactors 
• Other 



CANDU Reactors 
 
• Heterogeneous 

 
• Fuel: Natural Uranium Oxide  

o (UO2 0.7% 235U, 99.3% 238U) 
• Coolant: Heavy Water (D2O) 
• Moderator: Heavy Water (D2O) 



CANDU Reactor Schematic 

 



CANDU Reactor - How it Works 
 
• Fissions take place in the fuel 
• Most energy from fissions is taken up by fission 

fragments which stop in less that one micron. 
• In stopping, the fission fragments' kinetic energy 

becomes heat, which raises the fuel temperature. 
• The fuel is cooled by the coolant, which takes the heat 

from the fuel to the steam generators. 
• Neutrons are also produced from fission. 
• Fission neutrons are slowed-down by elastic collisions 

in the moderator and, to a smaller extent, in coolant. 
• Once they become thermal, neutrons can induce new 

fissions, keeping the chain reaction going. 



CANDU Reactor - How it Works (cont.) 
 
• Part of the neutrons get absorbed by radiative capture 

or "leak" out of the reactor.  These do not induce 
fissions. 

• On the average, only one neutron per each fission 
succeeds in inducing a new fission, so there is a 
uniform rate of fissions and not an avalanche of 
fissions. 

 



The CANDU Power Plant 
 

 



The CANDU Power Plant 
 
 

 
 



The Nuclear Steam Supply System 
 

 



CANDU Reactor Fuelling 
 

 



Fuel Handling 
 

 



Primary Heat Transport System 
 

 



Steam Generator 
 

 



Secondary Heat Transport System 
 

 



Turbine and Generator 
 

 



Containment Building 
 

 



Plant Layout 
 

 
 



 
 
 
 
 
 
 
 

Neutron Diffusion and Moderation 



 
 
 
 
 

Nomenclature 
 

 



General Nomenclature 
 
Consider a quantity, say the number of collisions Ncoll: 
 
Rate 
 
We call rate, the ratio between the amount of that quantity that is 
found or produced between time t and time t+dt and dt. (i.e. the 
collision rate is the ratio between the number of collisions that 
occur between t and t+dt divided by dt): 
 

dt
dNR coll

coll =  
 



Spectrum 
 
We call (energy) spectrum the ratio between the amount of that 
quantity that is found or produced between energy E and E+dE and 
dE (i.e. the collision spectrum is the ratio between the number of 
collisions suffered by neutrons with energies between E and E+de 
and dE ): 
 

dE
dNEF coll=)(  



Density 
 
We call (volumetric) density, the ratio between the total quantity 
dQ existing or produced in volume dV and dV (i.e. the collision 
density is the ratio between the number of collisions suffered by 
neutrons in volume dV and dV ) 
 

dV
dNF coll=  

 
We can have names that imply double ratios, e.g. 
 
Collision density spectrum. - the ratio between the number of 
collisions suffered by neutrons in dV with energies between E and 
E+dE and dVdE  
 

dVdE
dNEF coll=)(  



Collision density rate: 
 

dVdt
dNF coll=  

 
Oftentimes, when talking about double ratios people omit to name 
one of them, so you must pay attention to the context.   
 
For example, one will often refer to the collision rate or collision 
density, when, in fact, meaning collision density rate.   
 
The same letter is sometimes used to denote different quantities. 
 
Always look at the context. 
 
 



 
 
 
 
 
 
 

Recapitulation of Important Concepts 



Recapitulation of Important Concepts 
 

 
Volumetric total reaction (collision) rate density for 
monoenergetic neutrons 
 

ΦΣ= tF  
or 
 

vnF tΣ=  



Reaction rate for neutrons with energies between E and 
E+dE: 
 

v(E))()( ××Σ= dEEnEdF  
 
(Total) Reaction rate for neutrons of all energies: 
 

∫∫
∞∞

ΦΣ=Σ=
0

t
0

)()(v(E)dE)()( dEEEEnEF t  
 
where 
 

v(E))()( EnE =Φ  



Reaction Rates for Individual Reactions 
 
Scattering reaction rate density: 
 

∫
∞

ΦΣ=
0

)()( dEEEF ss  
 
Absorption reaction rate density (number of neutrons 
absorbed per cm3 per s): 
 

dEEEF aa )()(
0

ΦΣ= ∫
∞

 
 



 
 
 
 
 
 
 

Neutron Diffusion 



 
 
 
 
 
 

Fick’s Law 



Fick's Law (Diffusion Law) 
 
• Will accept it without proof. 
• Valid far from interfaces. 
• Valid for materials with relatively low absorption. 

 
Gives the neutron current as a function of the neutron flux 
 
Assume monoenergetic neutrons 
Assume the flux only varies along the x axis: 

 

dx
xdDJ x
)(Φ

−=  
 
D = Diffusion Coefficient 



In three dimensions (and monoenergetic neutrons): 
 

Φ∇−=Φ−= DDgradJ  
 
Definition of gradient: 
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Number of particles crossing a surface of orientation n  per 
unit time per unit area (normal current): 
 

nJJn ⋅=  
 

3
trD λ

= , )1(
Σ

=λ  
 
Transport mean free path 
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=
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Average of the cosine of the scattering angle  
 

θμ cos=  
 
 

 
 
 

A3
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Neutron  Nucleus 



 
 
 
 
 
 
 
 

Diffusion Equation 



Neutron Balance Equation (equation of Continuity) for 
Monoenergetic Neutrons 

 
 
Expresses the conservation of neutrons 
 
[ ]
[ ]
[ ]

[ ]dV from leakageneutron  of Rate
dV in volume absorptionneutron  of Rate
dV in volume productionneutron  of Rate

dV  volumesmall ain  neutrons ofnumber  in the change of Rate

−−
−=

=

 

   dxdydzdV =  



Will follow a derivation slightly different from the one in the 
textbook.  
 
You are welcome to use the derivation in the book.  Brush up 
on your vector calculus and Gauss' formula if you want to 
follow the derivation in the book. 
 



Infinitesimal (i.e. very small) Volume 

 
dx, dy, dz small-enough that: 

),,(),,(

),,(),,(

zydxxJzyxJ

zydxxzyx

+≅
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and similarly for y and z 

),,( zyxr =

x 

y 

z 

dx 

dy 

dz 

A B

CD

A' B' 

C' D' 

dxdydzdV =



Production 
The number of neutrons being produced per unit time in volume 
dV. (Neutron Source) 

 

 
 
Production Rate = SdxdydzSdV =

),,( zyxr =

x 

y 

z 

dx 

dy 

dz 

Production Rate: 

)( 13 −− scms
SdV

 



Absorption 

 
Assume, dx, dy, dz are small enough that the flux Φ varies 
negligibly inside our volume  
 

dxdydzdVR aaa ΦΣ=ΦΣ=  
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x 
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z 

dx 

dy 

dz 



Leakage Through Face BCC'B' 
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Leakage Through Face ADD'A' 
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Net Leakage Along X Axis 
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Let's remember that: 
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Total Leakage out of dV 
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Definition of divergence for a vector function ),,( zyxf : 
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Rate of Change of Number of Neutrons in dV 
 

dxdydz
t
ndV

dt
tndttn

dt
dVtndVdttn

dt
tneutronsdttneutronsRchange
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Neutron Balance Equation for dV 
 

dxdydzJdxdydzsdxdydzdxdydz
t
n

a ⋅∇−ΦΣ−=
∂
∂

 
 
Dividing by the volume dxdydzdV =  we obtain: 
 

Js
t
n

a ⋅∇−ΦΣ−=
∂
∂

 
 
 
Valid regardless of whether Fick's law holds true or not 



Neutron Balance in the Diffusion Approximation 
 
Assume Fick's Law to be true:  
 

Φ∇−= DJ  
 
Substitute into the neutron balance eq: 
 

( ) sD
t
n

a +ΦΣ−Φ∇−⋅−∇=
∂
∂

 
 
This is the time-dependent diffusion equation for monoenergetic 
neutrons. 
 
It is important because by solving it we find the flux and the flux 
allows us to calculate all reaction rates, including fission rate - 
which is really what we are after, by using ΣΦ=R . 



If the diffusion coefficient is constant: 
 

( ) sD
t
n

a +ΦΣ−Φ∇⋅∇=
∂
∂

 
 
Remember the definition of the Laplacian: 
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The diffusion eq. can then be rewritten: 
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t
n
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If we keep in mind that 
 

dt
d

VVtt
nnn Φ

=⎟
⎠
⎞

⎜
⎝
⎛ Φ

∂
∂

=
∂
∂

⇒
Φ

=⇒=
1

v
vφ

 
 
We obtain: 
 

sD
t a +ΦΣ−Φ∇=
∂
∂ 2

v
1 φ

 
 
Steady-State Situation (no time dependence) 
 

02 =+ΦΣ−Φ∇ sD a  
Steady-State diffusion equation for monoenergetic neutrons and 
constant D 



Dividing by D: 
 

02 =+Φ
Σ

−Φ∇
D
s

D
a

 
 
Introducing notation (Diffusion Length): 
 

a

DL
Σ

=2

 

D
s

L
=Φ+Φ∇− 2

2 1
 

 



Interface Conditions for the Diffusion equation: 
 

Continuity of flux:        BA Φ=Φ  
 

Continuity of normal component of current ⊥⊥ = BA JJ  
 
Vacuum Interface  
 

0)( =Φ d  
 
Extrapolation distance  trd λ71.0=  
 

Dd 13.2=  
 

D
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The Concept of Infinite Homogeneous Medium 
 
Medium is the same at any point 
Hence, there is no reason why the flux would be different an any 
particular point 
 

constzyx =Φ=Φ ),,(  
 
The current is given by Fick's Law 
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The current is zero in an infinite homogeneous medium 
 

a
a
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The Concept of Homogeneous Half Space 
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In such a configuration, since for the same z all points are 
identical, there is no variation in the flux with x or y  
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The Concept of Infinite Homogeneous Slab 
 
- finite in Z, but infinite in X and Y directions 

 
 

Because there is no change in the material properties in either X 
or Y direction, 
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Energy-Dependent Diffusion



Differential Microscopic Scattering Cross Sections 
 
Beam of monoenergetic neutrons 
 

)(v EnI =  

 
 
Scattering rate: 

)(EIR ss σ=  
Equivalently, we can write (using only macroscopic quantities that can 
be measured): 
 

I
RE s

s =)(σ  

[ ]scmnI // 2
 



By scattering, neutrons lose energy. 
 
Let )(EdRs ′ be the rate at which neutrons are scattered in energy range  
E', E'+dE' 
 
We have: 
 

ss REdR =′∫
∞

0
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Definition of the differential scattering microscopic cross section 
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Scattering Kernel  
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)()( EEkEE ss ′→=′→ σσ  
 
The scattering kernel can be interpreted as the probability density 
function for a neutron of energy E to be scattered such that its final 
energy is between E' and E'+dE'. 
 
The differential and total scattering cross section satisfy: 
 

∫
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′′→=
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)()( EdEEE ss σσ
 

 
 



Differential Macroscopic Scattering Cross Sections 
 

)()( EENEE ss ′→=′→Σ σ  
 
or, using the scattering kernel: 
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Volumetric reaction rate at which neutrons scatter within energy range 
(E, E+dE)  
 

)()'( EEIEER ss ′→Σ=→  
 



 
 
 
 
 

Energy-Dependent Neutron Balance Equation 



Balance Equation for Neutrons with Energy Between E and E+dE 
 

[rate of change of number of neutrons in volume dV with energy 
within range (E, E+dE)] = 
 [rate of production in volume dV of neutrons with energy within 
range (E, E+dE)] +  
[rate of scattering of neutrons in dV into energy range (E, E+dE)] -  
[rate of absorption in dV of neutrons with energy in range (E, 
E+dE)] - 
-[rate of scattering of neutrons in dV outside of energy range (E, 
E+dE)] -  
[rate of leakage out of dV of neutrons with energy within range  
(E, E+dE)] 



[rate of change of number of neutrons in volume dV with energy 
within range (E, E+dE)] 
 

dEdV
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tEndttEn

dt
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[rate of production in volume dV of neutrons with energy within 
range (E, E+dE)] 
 

dEdVEsERp )()( =  
s(E) = number of neutrons produced inside dV with energies between E 
and E+dE, divided by dEdV. 
 
 



[rate of scattering of neutrons in dV into energy range (E, E+dE)] 
 
Rate at which neutrons with energy within )';'( dEEE +  scatter such that 
their energy is within );( dEEE +  
 

dEdVEEdEEEER ss )'(')'()'( →Σ×Φ=→  
 
Rate at which all neutrons scatter such that their energy is 
within );( dEEE +  
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[rate of absorption in dV of neutrons with energy in range  
(E, E+dE)] 
 

dEdVEEdVEdEEER aaa )()()()()( Σ×Φ=Σ×Φ=  
 
 



[rate of scattering of neutrons in dV outside of energy range (E, 
E+dE)] 
 

dEdVEEdVEdEEER sss )()()()()( Σ×Φ=Σ×Φ=→  
 
Note that: 
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[rate of leakage out of dV of neutrons with energy within range  
(E, E+dE)] 
 

dEdVEJELK )()( ⋅∇=  
 
 



Balance Equation for Neutrons with Energy Between E and E+dE 
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Dividing by dEdV we obtain the energy-dependent neutron balance 
equation (continuity equation): 
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We can show the dependence on time explicitly: 
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Definition of energy-dependent flux: 

v(E)
)()(v(E))()( EEnEnE Φ

=⇒=Φ
 

 
Substituting the expression for the energy-dependent neutron density, we 
obtain: 
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Energy-Dependent Steady-State Neutron Balance Equation 
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Diffusion Approximation (use Fick's Law) 
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For position-independent diffusion coefficient: 
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Multigroup Formalism 
 
Approximate treatment of the energy-dependent diffusion equation. 
 



Energy Groups 
 
Divide the energy domain ),0( maxE  into intervals called groups 
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(Energy) Group Flux 
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Can depend on parameters such as position and/or time 
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Group Current 
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Can depend on parameters such as position and/or time 
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Group Source 
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Group Reaction Rates 
 
Reaction Rate for a single Nucleus 

∫∫
−−

Φ=≡
11

)()()(nucleussingle
g

g

g

g

E

E

E

E
g dEEEdEERR σ

 
 
Reaction Rate Density for a Material 
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Can depend on parameters such as position and/or time 
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Group Cross Sections 
 
Microscopic Group Cross Sections  
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Macroscopic Group Cross Sections 
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Inter-Group Scattering (Transfer) Cross Sections 
 
Microscopic 
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Macroscopic 
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Intra-Group Scattering Cross Section 
 
Microscopic 
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Macroscopic 
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Multigroup Neutron balance Equation 
 
[rate of change of number of neutrons in volume dV with energy 
within group g] = 
 [rate of production in volume dV of neutrons with energy within 
group g] +  
[rate of scattering of neutrons in dV into energy group g] -  
[rate of absorption in dV of neutrons with energy in group g] - 
-[rate of scattering of neutrons in dV outside of energy group g] -  
[rate of leakage out of dV of neutrons with energy within group g] 
 
 



 
Multigroup Neutron balance Equation 
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Dividing by dV: 
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Multigroup Neutron balance Equation 

 
Multigroup Fick's Law: 
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Multigroup Diffusion Equation 
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For constant diffusion coefficient: 
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Steady state (no time dependence) 
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Particular Cases of the Diffusion Equation 
 
 
 



One-Group Diffusion Equation 
 

The entire energy range is included in just one group 

 
Time-dependent: 
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One-Group Diffusion Equation 
 

Steady State: 
The steady-state multigroup diffusion equation 
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becomes: 
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1 sD a =ΦΣ+Φ∇−  
We can drop the group index to obtain: 

sD a =ΦΣ+Φ∇− 2
 

 



Two-group Diffusion Equation 
 

 
Group 1 (fast group): g=1 
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Group 2 (Slow, thermal) 
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Two-group diffusion equation 
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→211  (Removal cross section) 

 



Two-group diffusion equation 
 

Steady state 0=
∂
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t
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Two-Group Diffusion Equation 
 
We could have started directly with the steady-state 
multigroup diffusion equation 
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Group 1 (fast): 

1121111
2

1 sD sa =ΦΣ+ΦΣ+Φ∇− →  
Group 2 (slow, thermal): 

2221212
2

2 sD as =ΦΣ+ΦΣ−Φ∇− →  

 
Two-group diffusion equations: 

1121111
2

1 sD sa =ΦΣ+ΦΣ+Φ∇− →  
2221212

2
2 sD as =ΦΣ+ΦΣ−Φ∇− →  



 
 
 
 
 
 
 

Solving the Diffusion Equation for Simple Cases 



One Group, Infinite Homogeneous Medium, Uniformly 
Distributed Source 

 
srrD a =ΦΣ+Φ∇− )()(2

 
 
Infinite, homogeneous medium 

ctr =Φ=Φ )(  
 

02 =Φ∇  
The equation becomes: 

sa =ΦΣ  
 

Solving for the flux, we obtain: 
 

a

s
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Two Groups, Infinite Homogeneous Medium, Uniformly 
Distributed Source 

 
1121111

2
1 sD sa =ΦΣ+ΦΣ+Φ∇− →  
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2

2 sD as =ΦΣ+ΦΣ−Φ∇− →  
 
For an infinite and homogeneous medium with uniformly-
distributed source: 
 

ctr =Φ=Φ 11 )(  
ctr =Φ=Φ 22 )(  
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2 =Φ∇  

 



The two-group equations become: 
 
 

112111 ssa =ΦΣ+ΦΣ →  
222121 sas =ΦΣ+ΦΣ− →  

 
The first equation can be easily solved to yield: 
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The second equation can be rewritten as: 
 

121222 ΦΣ+=ΦΣ →sa s  
 

densitydown  slowing121 ==ΦΣ → Ts q  
 
Using the expression found for the fast flux, we have: 
 

r
sa

ss
Σ

Σ+=ΦΣ →
1

21222  



The thermal flux is hence: 
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If there is no external thermal source ( )02 =s , then the solution 
simplifies to: 
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One-group diffusion equation for a semi-infinite medium 
(half space) 

 
 ( ) )(,, zzyx Φ=Φ  
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   Diffusion Length 
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Characteristic Equation 
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General solution is 

L
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Finding the constant b: 
 
Consider an infinite parallelipiped of cross section area A 

and extending from zero to infinity in the z direction : 
 

 
A=a2 

a  
 
 
0 z 



Express the equality between total absorption in the 
parallelipiped and the source of neutrons coming in from the 
boundary source Sb at Z=0. 

 
Absorption rate from 0 to ∞  in a prism of cross-section area 
A 
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Equality between source and absorption: 
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Hence: 
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One Group Diffusion for an Infinite Planar Source 
Situated in an Infinite Homogeneous Medium at x=0 

 

 
 
Equivalent to two half-spaces (left and right) 
 

0for x   0),,(),,(2 ≠=ΦΣ+Φ∇− zyxzyxD a  
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Because of the planar (y-z) symmetry, )(xΦ=Φ  
 
The equation becomes: 
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Using the diffusion length notation: 
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This is a homogeneous second order linear differential 
equation with constant coefficients.  The general solution is 
of the type: 
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Because the flux needs to be finite, we have C=0.  Hence: 
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The current is: 
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To find A, we use the boundary condition: 
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The initial condition yields: 
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The flux for x>0 is hence:  
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Analogously, the flux for x<0 is: 
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One Group Diffusion for a Point Source Situated in an 
Infinite Homogeneous Medium 

 
Use spherical coordinates with the source placed at the center 

 

r

dr

θrd

ϕθdr sin
θ θd

ϕ ϕd

Ω== drddrdA 22 sin ϕθθ

Ω  

ϕθθ dddrrdVrd sin23 ==

r
r

≡Ω  

r

2r
dAd =Ω  

X 

Y

Z



Because the problem is symmetrical with respect to both θ  
and ϕ  (spherical symmetry), the flux will only depend on r. 
 

( ) ( )ϕθ ,,,, rzyx Φ⇒Φ  
 

)(rΦ=Φ  
 
Expression of Laplacian in spherical coordinates for a 
function with spherical symmetry, f(r). 
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The diffusion equation becomes: 
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This is a homogeneous second order differential equation with 
constant coefficients. 
 
The boundary condition is  

π
επε

4
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SrJrr =→  
Rate at which neutrons exit a very small sphere of radius ε, 
surrounding the origin: 24πεJS =  
This is equal to the rate at which neutrons are produced, because ε 
is so small that absorption in this very small sphere can be ignored. 



To solve the equation, we make the substitution: 
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The equation becomes: 
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Following a similar treatment as for the plane source, we find: 
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One Group Diffusion for a Bare Slab with an Infinite 
Planar Source Situated in the Middle 

 
 

 
 
The problem is symmetric with respect to the source and also 
has planar symmetry 
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Diffusion equation: 
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Will treat the right half. 
 
This is a homogeneous second order linear differential 
equation with constant coefficients.  The general solution is 
of the type: 
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The left boundary condition is, just as before: 
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The right boundary condition is now a vacuum boundary 
condition, that is the flux vanishes at the extrapolated 
boundary. 
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The above yields: 
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We obtain A and C by solving the system: 
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The final solution is: 
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Neutron Moderation (two group treatment) 
 
Two-group diffusion 
 
 Assume 0=Σa  (good moderator) 
 

01211
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1 =ΦΣ+Φ∇− →sD  
0221212

2
2 =ΦΣ+ΦΣ−Φ∇− → asD  

 
The two equations can be rearranged to: 
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2
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We make the following notations: 

lenghtdiffusion   thermal 

areadiffusion   thermal  
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With the new notations, the equations are written: 
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These can be solved for different configurations.   



 
 
 
 
 
 

Nuclear Reactor Theory 
 



 
 
 
 
 
 
 

Multiplication Constant 
 
 



Preliminaries - Neutron Fluence 
 

Neutron fluence is defined as the time integral of the flux 
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Fission Chain Reaction 
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Each fission produces 2-3 more neutrons which can, in 
principle, induce new fissions in avalanche.  This is not 
desirable. 
 
However, not all neutrons resulting from fission induce new 
fissions.  Some undergo gamma capture. 
 
If two few neutrons (less than one per fission) induce new 
fissions the fission reaction dies down.  Not desirable either. 
 
The trick is to only allow one of the secondary neutrons to 
induce a new fission and thus have a fission rate that is 
constant in time.  A reactor operating at a constant fission rate 
is said to be critical.  



Infinite Homogeneous Reactor 
(One-Group Diffusion Approximation) 

Multiplicative medium ( 0>Σ f ). 

Non-Multiplicative medium ( 0=Σ f ). 
 
The steady-state diffusion equation is written: 
 

SD a =ΦΣ+Φ∇− 2
 

 
The source now consists of fission neutrons: 

ΦΣ= fS ν  
 
So the equation becomes: 

ΦΣ=ΦΣ+Φ∇− faD ν2
 



The flux is constant in space because the medium is infinite 
and homogeneous, so the equation becomes. 
 

ΦΣ=ΦΣ fa ν  
 
It is obvious that the above cannot be satisfied, unless  
 

fa Σ=Σ ν  
 
If that is not the case, then the source is artificially divided by 
a factor k, just to balance the equation.   
 

ΦΣ=ΦΣ fa k
ν1

 



k is called the multiplication constant (factor).  For an infinite 
medium, it is called the infinite multiplication constant and 
denoted by k∞. 
 
It is obvious that, for the one-group homogeneous reactor 
case: 

a

fk
Σ

Σ
=∞

ν
 

It is also obvious that the value of the flux cannot be 
determined because once the appropriate k is used, any value 
of the flux will satisfy the balance equation. 
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ννν 11

 



Interpretation of k 
 
Since the balance equation is written: 
 

ΦΣ=ΦΣ
∞

fa k
ν1

 
 
We have: 
 

rateloss
rateproductionk

a

f =
ΦΣ
ΦΣ

=∞
ν

 
 
So k can be interpreted as the ratio of the neutron production 
rate and the neutron loss rate. 



The name "multiplication factor" is used because k represents 
the ratio between the neutron density for one generation of 
neutrons, divided by the neutron density for the previous 
generation.  This needs some explaining. 
 
Consider a bare infinite homogeneous reactor.  Initially there 
are no neutrons present.   
 
Now, assume some neutrons, with density n0 are introduced 
in the reactor.  Let's call these "generation 0" neutrons.  These 
neutrons will fly around, producing a flux v)()( 00 tnt =Φ  which 
will decrease as the neutrons are absorbed, until all neutrons 
are eventually absorbed. 
 
 



The time dependence of the zero-generation neutrons looks 
something like this: 
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The flux, has a similar shape 
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As these zeroth-generation neutrons are absorbed, some of 
them produce fissions.  We consider the neutrons born out of 
these fissions first generation neutrons.  They are produced at 
a rate: 
 

)(0 tfΦΣν  
 
and are absorbed at a rate 
 

)(1 taΦΣ  
 



Overall, the number of first-generation neutrons that are 
produced per unit volume is: 
 

0
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The total number of absorptions of first-generation neutrons 
is: 
 

1
0

1
0

1 )()( ψaaa dttdtt Σ=ΦΣ=ΦΣ ∫∫
∞∞

 
 
 



Since, in the end, all first-generation neutrons get absorbed, 
we have: 
 

01 ψνψ fa Σ=Σ  
 
which yields: 
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The first-generation neutrons, in turn, produce second 
generation neutrons.  Their number is: 
 

1012 nkkn ff ∞∞ =Σ=Σ= ψνψν  



The process continues: 
 

23 nkn ∞=  
 
and so on. 
 
The number of neutrons in each generation is equal to the 
number in the previous generation multiplied by k∞. Hence 
the name multiplication factor. 



Infinite Homogeneous Reactor 
(Two-Group Diffusion Approximation) 

 
Diffusion equations: 
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1 ΦΣ+ΦΣ=ΦΣ+ΦΣ+Φ∇− → ffsaD νν  
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2
2 =ΦΣ+ΦΣ−Φ∇− → asD  

 
Because the reactor is infinite and the flux (both fast and 
thermal) is constant in space, we have: 
 

221112111 ΦΣ+ΦΣ=ΦΣ+ΦΣ → ffsa νν  
022121 =ΦΣ+ΦΣ− → as  



Attempt to solve the system: 
 
Group 2 equation yields: 
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Substituting into the group 1 equation, we obtain: 
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Obviously, the above is only satisfied if: 
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which may not always be the case.  This means that unless the 
above is satisfied, we cannot have a steady-state solution to 
our diffusion equations.  
 
To force the system of equations to have a (steady-state) 
solution, we resort to the same trick as before: use a "fudge 
factor" 1/k that multiplies fission productions. 
 



Thus, our equations become: 
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 into the fast-group 
equation, we obtain: 
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Dividing by the flux, we obtain: 
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We can now solve for k∞ . 
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Choosing k∞ to have the above value ensures the system 
admits a solution.  
 That solution is  

1
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Σ
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We cannot find the fast flux explicitly. 
 



A close look at the system of equations  
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ΦΣ+ΦΣ=ΦΣ+ΦΣ
∞

→ ffsa k
νν  

022121 =ΦΣ+ΦΣ− → as  
 
reveals that it is a homogeneous system of linear equations 
which defines an eigenvalue/eigenvector problem.  The 
eigenvalue is 1/k∞ and, as expected, the eigenvector can only 
be determined up to a multiplicative constant which, in our 
solution, is 1Φ . 



k∞ can, in the two-group case be interpreted in three different 
ways: 
 
1. the eigenvalue that allows the system of equations to have 
a solution 

2. the ratio of productions over losses  
3. the factor by which the number of neutrons gets multiplied 
from one generation to the next 

 



Criticality 
 
K<1 - Subcritical  
• Number of neutrons decreases form one generation to the next 
• Rate of neutron production smaller than rate of neutron loss 

 
K=1 - Critical  
• Number of neutrons stays constant form one generation to the 

next 
• Rate of neutron production equals rate of neutron loss 

 
K>1 - Supercritical  
• Number of neutrons increases form one generation to the next 
• Rate of neutron production larger than rate of neutron loss 

 
 



 
 
 
 
 
 
 

Neutron Life Cycle, Four Factor Formula, Six Factor 
Formula 



The Four-Factor Formula 
 
Let us look at the group 1 equation in the two-group 
approximation. 
 

( )221112111
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ΦΣ+ΦΣ=ΦΣ+ΦΣ
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→ ffsa k
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Solving for the multiplication factor, we obtain: 
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The above can be processed as follows: 
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By making the notation: 
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We obtain: 
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We can continue the processing: 
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Denoting: 
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We have: 
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We can, moreover divide the thermal absorption cross section 
into the absorption cross section for fuel, and the one for 
moderator. 
 

moderator
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With this, we can rewrite the formula for the multiplication 
factor as follows: 
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Denoting: 
 

22

2
fuel

2

ΦΣ
ΦΣ

=
a

af  
and 

2
fuel

2

22

ΦΣ
ΦΣ

=
a

fν
η  

 



We obtain: 

ηεpfk =∞  
 
This is known as the four factor formula. 
 



The names and interpretation of the factors are as follows: 
 
Fast fission factor 
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Resonance escape probability 
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Thermal utilization factor 
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η (number of neutrons produced per neutron absorbed in fuel) 
 

absorptionthermalofrate
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Six Factor Formula 
 

For a finite reactor, in addition to the processes we studied 
above, fast neutrons, as well as thermal neutrons can leak out 
of the reactor.  
 
We define the following two factors to account for the 
leakage: 
 

yprobabilit leakage-nonfast =fα  
yprobabilit leakage-non thermal=tα  

 
Our expression for k then becomes the six-factor formula: 

tfeff pfk αηαε=  



 
 
 
 
 
 

One-Group Treatment of Finite Reactors 



Diffusion Equation 
 

0v1
f

2 =ΦΣ+ΦΣ−Φ∇
k

D a  
 

011
f

2 =Φ⎟
⎠
⎞

⎜
⎝
⎛ Σ+Σ−+Φ∇ ν

kD a  
 
Notation: 
(B2 is called Buckling) 
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The equation can be rewritten: 
 

022 =Φ+Φ∇ B  
 
B depends on k.  It turns out that B cannot take just any value.  
It has to be equal to the value imposed by the geometry, 
called the geometrical buckling.   
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Then: 
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offers an equation for k. 
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Where DBg
2

 is the leakage. 
 
Things will become clearer by showing an example. 
 



Infinite Slab Reactor 
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We then have:    
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Boundary conditions: 
 

0
2

~

2

~
=⎟

⎠
⎞

⎜
⎝
⎛ −Φ=⎟

⎠
⎞

⎜
⎝
⎛Φ

aa
 

 
The symmetry of problem implies: 
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General Solution: 
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Hence: 
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Vacuum B.C. 
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Yields: 
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Fundamental solution 
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B1 is the geometrical buckling 
 
A cannot be determined from the diffusion equation.  It can 
be determined from the condition on the reactor power. 
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Spherical Reactor  
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We have, in sequence: 
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Because the flux has to be finite at r=0, we have: 
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B.C. 
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The total power can be used to find A. 
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Infinite Cylinder 
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Cylindrical coordinates 



We have in sequence: 
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Bessel’s Equation: 
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Our equation is Bessel’s equation for m=0. 



Solution: Bessel functions of first and second kind: 
 

)()( 00 BrCYBrAJ +=Φ  
J – Bessel Function 
Y- Modified Bessel Function 
 

Y0 infinite at origin hence C=0 
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Final Solution 
 

R
xBxRB ~

~ 1
1 =⇒=

 
 

 
22

12
1 ~

405.2
~ ⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

RR
xB

 
 

⎟
⎠
⎞

⎜
⎝
⎛=Φ

R
rAJ ~

405.2
0  

 



Finite Cylinder 
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Separation of Variables 
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Solution: 
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Point Kinetics 
 



 
 
 
 
 
 

Point Kinetics Equations 
 
part 1: all neutrons emitted in a fission are assumed prompt 
 



 
Static One-energy-group diffusion equation 

 
• time-dependent diffusion (results from neutron balance) 

),(),(),(),( 2 trtrDtr
t

trn
af ΦΣ−Φ∇+ΦΣ=

∂
∂ ν  

• If sources are exactly equal to sinks, then the static equation 
results (no time dependence) 

)()()()()()(0 22 rrrDrrDr faaf ΦΣ=ΦΣ+Φ∇−⇔ΦΣ−Φ∇+ΦΣ= νν  
• To keep the static form of the diffusion equation even when the 

sources do not exactly equal the sinks, we introduced K, 
(multiplication factor) to artificially adjust the sources. 
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k
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Time – dependent one-energy-group diffusion equation 
 

• Now, we will not use k any more, but rather concentrate on the 
time-dependent equation 

• Time-dependent one-energy-group diffusion equation 
 

),(),(),(),( 2 trtrDtr
t

trn
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• But let’s remember: 
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• so: 
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Time-dependence of the neutron flux and neutron density 
 

• We can now write the time-dependent diffusion: in two separate 
ways 

– concentrate on the flux 
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– concentrate on the neutron density 
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Some assumptions 
 

• Static one-energy-group diffusion equation for a critical reactor  
)()()(2 rrrD fa ΦΣ=ΦΣ+Φ∇− ν  

• It can be rewritten as: 
0)()( 22 =Φ+Φ∇ rBr  

• Where 
2B

D
af =

Σ−Σν
 

• Assume that the equation satisfied by the time-independent flux 
in a critical reactor is also satisfied, at any time t, by the time-
dependent flux in a non-critical reactor.  

0)()( 22 =Φ+Φ∇ rBr  
),(),(0),(),( 2222 trBtrtrBtr Φ−=Φ∇⇔=Φ+Φ∇  

• This is equivalent to assuming that the spatial shape of the flux 
does not change with time 



Back to the time-dependence of the neutron flux and neutron density 
 

• We can now write the time-dependent diffusion 
– for the flux 
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– for the neutron density 
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Time-dependence of the neutron density 
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• where 
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• Integrating over the entire reactor we obtain: 
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Time-dependence of the total neutron population 
 

• Total neutron population 

∫=
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• Equation governing the time behavior of the total neutron 

population 
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• solution 
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Time dependence of the neutron flux 
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• The results are analogous to those for the neutron density. 
• Integrating over the volume of the reactor: 
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• where: 

∫Φ=
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rdtrt 3),()(φ̂   is the volume-integrated flux 



Observations 
 

• The total neutron population and the volume integrated flux obey 
the same equation. 

• The relation between the volume integrated flux and the total 
neutron population is the same as that between the flux and 
neutron density.  
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Point Kinetics Equation without Delayed Neutrons 
 

• Just a special way of arranging the coefficients. 
• Usually written for the neutron population, but similar equation 

can be written for the volume-integrated flux. 
• Multiplication constant 
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• Reactivity 
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• Notation: 

v
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fΣ
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ν  

• It follows that: 

Λ
=
ρα

 
• The equation for the neutron population can then be written 

)()( tn
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=
ρ

  = Point kinetics eq. w/o delayed neutrons 
• A similar equation can be written for the volume-integrated flux. 
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Alternative Processing Leading to the Point Kinetics Equation 
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• New notation 

( )v
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2
aDB Σ+
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• With the new notation the point kinetics eq. can be written (a less 
common form): 

)(1)( tnk
dt

tdn −
=  

• and, for the volume-integrated flux: 
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Point kinetics equation(s) 
 

• Nomenclature – called point-kinetics because the reactor is 
reduced to a point – no accounting for spatial or energy 
dependence. 

• Can be derived starting from a more general, space and energy 
dependent, flux. 

 



Names and interpretations of symbols 
 

• Neutron generation time 

fΣ
=Λ

νv
1

 
• Interpretations 

– Average time between two neutron births in successive 
generations 

– Time it would take to generate the current number of neutrons 
at the current generation rate. 

– Average “age” of neutrons in the reactor. (Note that this is a 
time, and not the Fermi age). 



 
• Neutron life time 

2
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DBa +Σ
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• For an infinite reactor: 

aΣ
=∞

1
v
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• Interpretations 

– average time between the birth and death of a neutron 
– Time necessary to lose all the neutrons in the reactor at the 

current loss rate. 
– Average life expectancy for neutrons in the reactor.  

 
 
 



Important Notes 
 
• For a critical reactor the generation time and neutron lifetime are 

equal. 
 
• For a supercritical reactor, the generation time is shorter that the 

neutron lifetime.  Neutrons live longer than the time it takes a 
new generation to appear.  The neutron population increases. 

 
• For a subcritical reactor, the generation time is longer that the 

neutron lifetime.  Neutrons live less than the time it takes a new 
generation to appear.  The neutron population decreases. 

 
 



 
 
 
 
 
 

Point Kinetics Equations 
part 2: Accounting for Delayed Neutrons 

 
 
 
 
 



Point Kinetics with Only One Delayed Neutron Group 
 
(Equivalent to assuming that all precursors have the same half life) 

• We make the same assumptions about the buckling staying 
constant as in the case with no delayed neutrons. 

• We write directly the equation for the entire reactor (volume-
integrated quantities)  

• Some neutrons are emitted directly from fission 
• Some neutrons come from the decay of precursors. 
 



Neutron Balance Equation for the Entire Reactor 
• Sources 

– Prompt neutrons from fission 
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– Delayed neutrons from the decay of precursors 
reactor) in the precursors ofnumber  totalĈ(        ˆ =Cλ  

∫=
V

rdtrCtC 3),()(ˆ
 

• Sinks 
– Absorption 
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– Leakage 
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Precursor Balance Equation for the Entire Reactor 
 

• Source 
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• Sink 
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Neutron and Precursor balance Equations 

• Neutron Balance 
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• Precursor Balance 
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• We now have a system of two (coupled) differential equations. 

 



Point Kinetics Equations with One Group of Delayed Neutrons 
 

• Rearrange the first equation in a few steps 
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• Rearrange the second equation 
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Make the same notations and observations as for the case with no 
delayed neutrons  
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• Neutron Balance Equation 
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• Final form of kinetics equations using the neutron population 
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• Final form of the point kinetics equations using the volume-

integrated flux 
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Point Kinetics Equations with Six Groups of Delayed Neutrons 
 

• Equations using the neutron population 
(7 coupled differential equations) 

∑
=

+
Λ
−

=
6

1

ˆ)()(
k

kkCtn
dt

tdn λβρ
 

 

6...1),(ˆ)()(ˆ
=−

Λ
= ktCtn

dt
tCd

kk
kk λβ

 
 

• Equations using the volume-integrated flux 
(7 coupled differential equations) 
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Inhour Equation 
 



Inhour Equation 
 
Start with the point kinetics equation 
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This is a system of seven coupled differential equations with 
constant coefficients. 
 

Solutions are of the form 
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Substituting the above form we obtain: 
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Solving for ck in the precursor equations, we obtain: 
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We can solve graphically for ω  by plotting the RHS and 
intersecting it with a horizontal line at y=ρ. 
 

 
Reactor Period:    
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Discussion 
If 0=ρ  
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For large t 
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Asymptotic behavior of the neutron population. Here is where 

the reactor period comes in. 
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If 0>ρ  
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For large t 
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The asymptotic behavior of the neutron population is governed 

by the reactor period. 



 
 
 
 
 
 
 

Fission Product Poisoning  
 
 
 
 



Fission Product Poisons 
 
• Poisons are isotopes with large absorption cross sections 

for thermal neutrons 
• Some poisons are introduced intentionally to control the 

reactor, such as B or Gd. 
• Some poisons are produced as fission products during 

normal operation of the reactor. 
• Xe and Sm are the most important of these 
• We will only study Xe in detail 

 



Effects of Poisons on Reactivity 
 
For a homogeneous reactor, in a one-energy-group 
formalism: 
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If we add a poison (say Xe) with a uniform concentration 
(number density) X, we have: 
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It follows that: 
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The insertion of the poison induces a change in reactivity: 
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If we assume the initial reactor to be critical )0( 0 =ρ , then the 
reactivity of the reactor with poison is: 
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In order to calculate the reactivity inserted by the poison, we 
need to be able to calculate the concentration of poison 
nuclei, X. 



Effects of Non-Uniform Poison Concentration 
 
In the case of non-uniform poison concentration we need to 
apply the perturbation formula for reactivity: 
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It is easily seen that for a uniform distribution of poison, we 
recover: 
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Xe Production and Destruction 
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Simplified Xe production/destruction 
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Finding the Xe Concentration 
 
To find the number density of Xe nuclei, we first write the 
balance equation for Iodine nuclei: 
 

I
dt
dI

IfI λφγ −Σ=  
 
Where γ  is called the fission product yield and equals the 
average number of I nuclides created per fission.  
 
Next, we write the balance equation for Xe nuclei 
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I Concentration for Equilibrium (Steady-State) 
Conditions 
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Xe Concentration for Equilibrium (Steady-State) 
Conditions 
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Note that both I and Xe concentrations depend on the flux 
level. 
 



Xe Absorption Macroscopic Cross Section 
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By making the notation: 
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We can rewrite the Xe macroscopic cross section as: 
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If Xe is Assumed Uniformly Distributed: 
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For XΦ>>Φ  we have: 
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For XΦ<<Φ  we have: 
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Xe After Shutdown-Reactor Dead Time 
 
Shutdown means 0=Φ  
 
Iodine 
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If Xe is assumed to be uniformly distributed: 
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Where: 
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Xe Oscillations 

 
 

 
 
 

I II Normal flux shape 
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Consequence of XI>XII 
 

 III Φ<Φ   => Over time : III XX <  
Consequence: 
 

 
 
In CANDU Reactors the liquid zone controllers are used to 
dampen Xe oscillations. 
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