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Atomic and Nuclear Constituents



Atomic and Nuclear Constituents

Atom
e Electrons

e Nucleus - made up of nucleons:
oprotons
oneutrons

The nucleus is “held together” by nuclear attraction forces. These
have to be stronger than the repulsive electrostatic forces.

For neutral atoms, the number of protons in the nucleus equals the
number of electrons in orbit.



Some subatomic particles

e proton

e neutron

e electron (beta particle)

e positron

e photon (gamma particle)

e neutrino

e antineutrino

e alpha particle (2 protons + 2 neutrons)



Properties (quantities) characterizing subatomic particles

e Mass (rest mass)

e charge

e spin (denoted by s)

e parity
oproperty resulting from Quantum Mechanics.
odescribes the parity of the wave function

+ Sy (F)=y(-T)
—~ <oy (F)=-y(-T)

All these quantities are important because they are conserved in
nuclear reactions.



Properties of Nucleli

e Atomic number — Z = number of protons

e Mass number — A = total number of nucleons (protons and
neutrons)

e Number of neutrons — N
The atomic number Z identifies the nuclear species.

Two nuclel with the same Z but different N are called isotopes.

A
Notation: z X , Where X Is the chemical symbol.



Other properties of nuclei (parallel those of particles)

e Mass
e charge (+Ze)

e 3Spin (S)
e parity



Atomic Mass Unit (amu)

e Defined as 1/12 of the mass of a **C atom
That means that it is 1/12 of the *“C nucleus, plus the mass of
1/2 electron.

e Atomic weight = Mass of an atom expressed in amu
e Molecular weight = Mass of a molecule expressed in amu

e 1 Mole — Quantity of a pure substance that has the same mass
expressed in grams as the atom’s (or molecule’s) mass expressed
In amu.

e 1 Mole Has Na =6.023x10* atoms (molecules)

e N IS the ratio between 1g and 1 amu.
(There are Na amus in a gram.)



How many Kg does an amu have?

N atoms of **C weigh 12 g. It follows that 1 amu weighs 1/Na
grams.

1

073107 (g) =1.66x10"**(g) =1.66x10"*"(kg)

1
2><NA_ NA(g)_



EXpressing mass using energy

Because of the mass-energy equivalence expressed by Einstein’s

2 - .
formula E =mC” | mass can also be expressed in units of energy
over ¢,

For example:

2 8 \
1kg =1kg>z<c =1X(3X19 ) () :9x1016(i2j
C C C



EXpressing mass using energy

In nuclear physics the energy Is often measured in MeV, and the
mass in MeV/c?. To find the relation between 1kg and one MeV/c

we write:

2

(Mev _ 10°eV. 10°x1.602x10*°CxV
¢’ (3x10°(m/s)f (3x10%(m/s)f
10°x1.602x107J

~1.78x10%Kg

(3x108(m/s)f

Instead of saying that the mass if a particle is X MeV/c? it is
customary to just say that the mass is x MeV. What is really meant
IS that the total energy of that particle is X MeV, and hence its mass
is X MeV/c®. One just omits mentioning c®.



MeV Equivalent of 1 amu

E. .= —1 1g x c? = 1 =
N, 6.023x10
1

6.023 x 10*°

2
x 107°Kg x (3><1O8 mj =
S

%107 x (3x10°f'J =

V
1494 %1073 — MeV = 494x10" ——"Y_\ev =

MeV 10°e xV

1.494 x 10" Cxv MeV = 933MeV

10° x1.6 x10°¥C xV




Examples of elementary particle mass

particle mass

kg lamu MeV/c?
proton 1.6726E-27 1.007276 938.28
neutron 1.6750E-27 1.008665 939.57
electron 9.1090E-31 5.486E-4 0.511




Atomic Weight for a Mixture of Atoms

Consider a mixture of 30% (by atom) C and 70% (by atom) Al.
What is the average atomic weight of the mixture?

Answer
e Assume there are N atoms In total

¢ Of these
ONc=0.3N are C
ONA=0.7N are Al




Atomic Weight for a Mixture of Atoms

The total mass of the mixture (in amu) Is:

m=N.M. +N,M, =0.3NM_ +0.7NM,, (amu)

The average mass of one atom (in amu) is:

o m_ 0.3NM. +0.7NM _
N N

=0.3M. +0.7M ,, = 0.3x12 +0.7x13 =12.7 (amu)




Atomic Weight for a Mixture of Atoms

In general

For a mixture of n types of atoms, each with atomic fraction
Xi=Ni/N, the average atomic weight is:

M =3 XM
1=1

If the different types of atoms are isotopes of the same atom, the
atomic fractions are called isotopic abundances.



Properties and Structure of Nuclel



Nuclear Radius

Assume that nucler are made of “nuclear material” of the same
density £ for all species of nuclei.

It follows that the mass of the nucleus is given by:

4R’
3

m=pV =p



Nuclear Radius

The mass of the nucleus Is given also by the mass of its constituents
(neutrons and protons)

m=Nm_ +2Zm,

Because the mass of the proton and the one of the neutron are almost
equal to 1 amu, we can write:

m=Nm +Zm = Namu+Zamu =

(N +Z)amu = Aamu



Nuclear Radius

By writing the equality between the two masses, we have:

4R’
3

Aamu = p

Solving for R®, we obtain

R® = A(i amuj
Ao



Nuclear Radius

Solving for R, by taking the cube root on both sides, we have:

R:?%/K:s\/ 3 amu

Ao

It turns out that:

3
Ao

3 amu =1.25x107"m

So:
R=1.25x10"" x i/x meters



Binding Energy

Since particles that constitute the nucleus stay together (held by
nuclear interaction forces), the total (rest) energy of the nucleus must

be lower than the total (rest) energy of the particles if they were
separated.

B = [(A_ Z)X Eneutron +Z X Eproton]_ E (ZAX)

This is called the Binding Energy

In the above, E denotes rest energy.



Binding Energy

Einstein’s energy formula translates into:

E =-m c*

neutron neutron

E -m._. c°

proton proton

E (zAX)= M (zAX)Cz (M is rest mass of the nucleus.)
B=|(A=Z)xm,unC2+Zxm_..c*|-M (2X k?

B=c?{(A-Z)xm -M (2X)}=c?A

neutron

—

+Z X rT‘proton]

neutron

The mass of the nucleus 1s smaller than the sum of the masses of its
constituents

The difference, A, is called the mass defect



Alternate expression for the mass defect

Using the nuclear mass to calculate the mass defect can be difficult
because, most of the time, what is given In tables is the mass of
neutral atoms, rather than the mass of their nuclel.

To use the atomic masses Instead of the nuclear masses, we can add
and subtract the mass of electrons. (We will also ignore the binding
energy of the electrons. However, that energy is much smaller that
the nuclear binding energy, so we can safely neglect it.) Hence:

A:\_(A_Z)xmneutron_l_ZmerotonJ_Ivl (;\X):
[(A_Z)X M eyiron + VA ><(mproton + M, )]_(M (;X)+ Z X me):
(A_Z)aneutron+ZXM (11H)_M (;X)

Where M*(2X) is the atomic mass of element 2X



Question Period

o Q:IfIclimb to the top of the CN tower (approximately 550 m)
will my body mass be larger?

* A: Yes, but not enough for people to notice.

2
_ mbottomC T mbottom gh -m —

bottom ~— 2 bottom

C
MyoomdN  70Kg x9.8m/ s x 550m

2

C (3><108m/s)2

m m

top

=4.2x10"*Kg




Nuclear Models



Shell Model - Potential Well

e We can picture the nucleons (protons and neutrons) as “living”
in a “potential well” created by the nuclear forces.

e The binding energy 1s the energy that needs to be
communicated to the nucleons to allow all of them to exit the
well.

&
-

e




More details on the potential well

e Nucleons can occupy different energy levels in the well, just
like electrons can occupy different energy levels in an atom.

e The state of the nucleus 1s given by the states (energy, spin,
parity) of all its nucleons.

e Pauli’s exclusion principle applies (No two nucleons can
occupy the same state).

A

E

05 1t
A

G _J) Average binding energy per
nucleon

o




More details on the potential well

* Depending on the “arrangement” of nucleons on energy levels inside
the well, the nucleus can have different binding energies.

» The lowest energy level of the nucleus (corresponding to the largest
binding energy) is called the ground level, and the corresponding state
is called the ground state.

 Higher energy levels are called excited levels, and the corresponding
states are called excited states.

A A . Efree
E E {
State 1 B
____________ (-~ State 2
(ground) @ @ (excited)
°® | [
) O
[ ¥ [ L
E,=0
Eexcited > Eground
Bground > Bexcited

M (? X excited )> M (g X ground )



Binding energy per nucleon (MeV)
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Liquid Drop Nuclear Model

« Attempts to express the binding energy as a function of nuclear
characteristics.
* Leads to a semiempirical formula.
— Shape of formula determined from the model
— Values of constants determined from measurement

2 2
B=a,A-a,A’-a, Z(Zl_l) —~a, (A_zzz)
A’ A

+8(Z,A)



Liquid Drop Model — Meaning of Terms

ay, — Volume effect — proportional to the “volume” of the nucleus, which can
be considered to be roughly proportional to A. This term was introduced
because 1t was observed that the binding energy per nucleon 1s almost
constant.

as — Surface effect — proportional to the “surface” of the nucleus, roughly
proportional to A*>. This negative term was introduced because the nucleons
situated close to the surface have fewer neighbors, and hence contribute less
to the binding energy.

a; — Coulomb effect — electrostatic repulsion between protons has a potential
energy Z(Z -1’ " Z(Z-1)

r A%

aa — Asymmetry effect. It vas observed that nucler with N=Z7 are more
stable, hence the binding energy is probably smaller if Z and N differ. This
term accounts for that effect.

sz.»n - Pairing term. Introduced because it was found experimentally that two
protons or two neutrons are bound stronger than a proton and a neutron. It is

zero for odd A, -a,-L- for both Z and N odd and +a,-'- for both Z and N even.

A2 A2




Liquid Drop Model Numerical values of coefficients

ay| 15.7 MeV
ag 17.8 MeV
ac| 0.71 MeV
an 23.6 MeV
ap 12.0 MeV




Radioactivity



Nuclear Stability
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Radioactivity

 Discovered first by Henr1 Becquerel (1852-1908).

* Becquerel discovered that a mineral containing Uranium would
darken a photographic plate even when the latter was wrapped in
opaque paper.

* In 1903 Becquerel shared the Physics Nobel Prize with Pierre
and Marie Curie, for their discovery and work on radioactivity.



Radioactive Decay

« Some nuclei are stable, while others are unstable.

 Unstable nuclei decay, by emitting a particle and changing into a
different nucleus.

* Most common types of decay (others possible too):

» Alpha (,@), Helium nucleus emission
* Beta (_? P), electron emission

 Beta plus (? f ) positron emission

« Gamma (,7), photon emission (no change in nuclear species)

 Electron capture (an electron 1s “captured” rather than
emitted)



Radioactive Decay

AX ATy TP
Ty
ed Particle)

(Parent Nucleus = Daughter Nucleus + Emitt

* Charge and number of nucleons are conserved.

* For gamma decay, technically the nucleus does not change into a
different one. Only its energy state changes.

 Electron capture (still classified as “decay”)

A
ZX+ e—, 1Y



Alternative Notation (no chemical symbol)

* General decay

(Z,A)—> (Z—n,A—m)+(n,m)
» Alpha

(Z,A) > (Z-2,A-d)+'a

« Beta minus

(Z,A) > (Z+1,A)+ B+D
 Electron capture

(Z,A)+e > (Z-1,A)
(Z,A)+_B—>(Z-1,A)



Characteristics of Radioactive Decay

* Nucle1 decay randomly.

— It 1s impossible to predict which nucler will decay 1n a given
period of time, and which not.

— It 1s impossible to predict when a particular nucleus will
decay.

* On average, for large mitial numbers of nuclei and for short
periods of time At, the number of nuclei that decay within At 1s
proportional to the time At, and to the original number of nuclei
present at the beginning of the time interval.



Derivation of the Law of Radioactive Decay

 Let N(t) be the number of X-type nucle1 present at time t.
* Let At be a short time interval.

« According to the second bullet on the previous slide, we have, on
average:

AN =-N{®)+ N(t+At) =-AxN({t)xAt 4,

« A 1s called the decay constant, 1s dependent on nucleus type, and
is measured ins™.



Derivation of the Law of Radioactive Decay

* The previous can be rewritten as:

AN
—=—AN(t
s N
* which, considering that At 1s small, yields:
N
d— =—AN (1)

dt (3)



Derivation of the Law of Radioactive Decay

Eq. (3) 1s an ordinary differential equation with constant coefficients.
Its solution 1s of the form:

—ﬂ,t+C Ce /1’[ C _ eC

The multiplicative constant C can be determined from the number of
nucle1 present at t=0.

N(0)=N,=Cxe ™ =C
It follows that the number of X-type nuclel is given at any time t by:

N(t)=N,xe™

Law of Radioactive Decay



Example

« At t=0, a sample of **Na weights 1.0 mg. How many beta
particles are emitted in an hour? (A =1.2836x107 s™)
 Solution
— The number of emitted particles equals the number of
decayed nuclei:

AN =N, —=N(t)=N, - N, xe* = N, x(1-e )
* The 1nitial number of Na nuclei 1s:
m :1.O><10‘6Kg :1.0><10-6X Kg _
M 24amu 24 amu

1.0x107° 1.0x10°°
X NA —
24

* Hence the number of emitted particles 1is:

AN =2.51x10" x (1 - e—l-zg“stx%m): 1.133x10"

N, =

x6.023x10” =2.51x10"



Half Life

e Definition

— The half life, T/, of a radioactive species 1s the time after
which the initial number of nuclei decreases to one half.

* Expression
— By definition:

N
N(T,,) ="



Expression of Half-Life

» The definition of half life is equivalent to:

—AxTy,, N()
N, xe =—

2
* Dividing be Ny we obtain:

e—ﬂ,le/z _

2
By taking the natural logarithm of both sides we get:

—AxT,, = 1n6j =—In(2)

 Finally, we can solve for T,:

In(2
Ty = Il()



Radioactive Decay and Half Life Important Notes

« Half life can be measured from any moment of time. The
number of nuclel left after T/, elapses will be half of those existent
at to.

e According to the radioactive decay law, the number of parent
nucle1 keeps halving every Tj,,, but never reaches zero. However,
it can become negligibly small.

* As the number of remaining nucle1 becomes small, deviations
from the law of radioactive decay start to appear, as the law of
radioactive decay 1s valid on average.

We cannot have 2.5 parent nuclei left. What such a number means
1s that we can have 2 or maybe 3 nuclei left in different
experiments, such that the average is 2.5
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Law of Radioactive Decay — Probabilistic Interpretation

* N(t) out of N nucle1 do not decay.

» It cannot be determined a priori which nuclei do not decay and
which do.

* The ratio N(t)/N, can be interpreted as the probability of one
nucleus not decaying after time t.

N (t)
NO :PND = @

» Conversely, the probability that a nucleus does decay after time t
1S:

—Axt

P, =1-P =1-e" ze™



Activity

 The rate at which a radioactive sample decays is called activity.
dN (1)

A(t)=—- "

* Equivalent definition

d

A =-AN() = -

N,e ™ = AN, e = AN(t)

e Units:
— 1 decay/second = 1 Becquerel (Bq)
—1 Curie =3.7x10" Bq




Average Life of a Nucleus

» At t=0 there are N, parent nuclei.

« At time t, there are N parent nucler left.

« At time t, A(dt=AN,e"dt decay in dt

* These nucle1 have “lived” t before decaying.

» To get the average life, we need to sum (integrate) over dt and
divide by the 1nitial number of nuclei.

[tA(dt  [taN e dt
0 0

T = =

NO NO
NoA[te dt
=— =/1]te"“tdt =
NO 0



Energy-Level Diagrams for Decay and Decay Scheme

c*M(Z,A)

Mass A
(Energy)

s Q

¢"M(Z-n,A-m)+ ¢*M(n,m)
(at rest)

* Q=[M(Z,A)-M(Z-n,A-m)-M(n,m)]c’
* Q>0 1n order for the decay to be energetically possible

* By convention, the lowest energy on this graph 1s taken to be
zero (Energy 1s expressed relative to the lowest value.).



Multimodal Decay

* Some nuclel can decay in more than one way

Parent

Mass -

(Energy) (100-a)%

a%




Branching factors

* Fraction of nuclei that decay 1n a certain mode
e Have to add up to 1. (100%)

» Consider a species of nucleus that can decay by either a reaction
1, or another reaction 2.

 Let dN be the total number of nuclei that decay in dt. The
branching factors are defines as:

dN,
f =
dN
_dN,
dN

f,+1,=1



Branching factors and derived quantities

* Partial decay constants

dN, 1
S I
A dN N !
12=sz ] it
dN N
AL+, =4

o Partial half-lives (What the half life would be if only that decay
mode was present).

r_In2
4

r_In2
12



Decay Chains
(Radioactive Families)

 Consider a nuclide whose daughter 1s also unstable and decays.
A A—m m
;Q—,_ R+ P

A—m A—-m-m’ m'ry/
N S+, P

Z—n-n’

 This 1s called a decay chain.

* Chains can have more than two members. We then talk about
radioactive families or series.



Nuclear Reactions



Nuclear Reactions

General Expression
2K X, Y 45,
Q value
Q=M (2%, J+M(2x, )M 5y, J-m (22, )
M are rest masses of nucler/particles

e Q>0 — exothermic reaction (provides energy to the outside)

e Q<0 — endothermic reaction (needs energy from outside in order
to proceed)



Conservation Laws

» The following quantities are conserved in a nuclear reaction
— charge
—number of nucleons
— energy
—momentum



Conservation Laws

* Conservation of charge
Ly+Lln,=L,+Z,
* Conservation of number of nucleons

Axl T sz — Ayl T Ay2



Conservation Laws
If additional particles enter or exit the reaction, their charge, number
of nucleons, energy and momentum need to be accounted for when

writing the conservation laws

Example

A, A, A A, , _
ZIX1X1+ZX22X2—>Zyy1Y1+Zy Y,+¢e

y2
Conservation of charge

L,+L, = Zyl +Zy2 —1

0
We can represent the electron as €



Conservation Laws

Conservation of momentum

— —

P(X1)+ IS(Xz): IS(Y )"' P(Yz)
Conservation of energy

— Expressed by the definition of the Q value
M (X )M xR =My JemZy, e+

— The liberated energy (Q) is found as kinetic energy of the
products [including all emitted particles (photons or other)]



Interaction of Radiation with Matter



Atom Density

 Also called number density.
* |s the Number of Atoms per Unit Volume
e Connection with (mass) density

—n = # of atoms in volume V

— M = atomic weight of each atom

— N = Atom density

m
>j>,0—v—7



Mechanisms of Interaction for Charged Particles



Heavy Charged Particles e.g. alpha particles

e Interact mostly with electrons (there are usually much more
electrons than nuclei) via Coulombic force

o Are much heavier than electrons

 Lose little energy in each individual interaction with any one
electron

 Eventually do slow down as a consequence of the many
Interactions

» Have straight-line trajectories

e Electrons are knocked out of their orbits and atoms become
lonized (Hence the name “ionizing radiation™)

» Behave like bowling bowls in a space filled with golf balls



Linear Stopping Power

g UE
dx
e Bethe’s formula
4 _ 72
5= 22" \p
m,V
B 2 2 2
B=2|In"0 —|n£1—v—2j—v—2
I I C C

e Range (tens of microns)




Fast Light Charged Particles (electrons)

e Interact mostly with electrons (there are usually much more
electrons than nuclei) via Coulombic force

 Are much of the same mass as electrons

e Can lose a lot of energy in each individual interaction with any
one electron

« Slow down quickly, after only few collisions.
» Have broken-line trajectories
» Can be backscattered

o Atomic electrons are knocked out of their orbits and atoms
become ionized (Hence the name “ionizing radiation’)

* When accelerated, incident electrons produce bremsstrahlung
(electromagnetic radiation — photons)

 Trajectory of an electron is a broken line (possible backscatter)
e Range (millimeters)



Mechanisms of Interactions for Neutral Particles



Photons

Can have several types of interactions (all depend on energy)
e Photoelectric effect
e Compton Scattering

e Pair production

0 A highly energetic (E>1.02MeV) photon is stopped (by
collision with a heavy nucleus) and its energy Is converted
Into an electron and a positron emitted in opposite directions

y —>e +e’



Neutrons

e Interact with nuclei via nuclear forces, since they have no charge,
hence they cannot interact electrostatically with electrons

 Possible reactions
— Elastic scattering
— Inelastic Scattering
—radiative capture (absorption)
—(n, 2n)
—fission



Neutron Elastic Scattering

A A
N+, X = n+,X
Kinetic energy Is conserved
KE, + KE, = KE' +KE',

mv: MV mv?® MV* ./
+ = + 5
2 2 2 2
¢

The incident neutron is slowed down by elastic scattering
Some of its kinetic energy Is transferred to the target nucleus




Energy Loss in Elastic Scattering Collisions - Moderation

gLl (AL E_“—“E
2 A+1 2

Scattering of heavy nucleus (“**U)- small energy loss (poor
moderator)

E':E 14+ — 234) E=0.99E
2 236

Scattering on light nucleus (*H) — large energy loss (good
moderator) — Water used as moderator because it contains H.

-
E':1 1+(9j E =0.5E
2 2




Inelastic scattering
N+,X — N'+2X

Kinetic energy Is not conserved any more (total energy Is)

KE, + KE, >KE' +KE', o

o

@

The incident neutron is slowed down by inelastic scattering



Radiative Capture

N+ X =Y +y

4

. @
.\

The incident neutron is absorbed (disappears) by radiative capture



Fission

N+,X >3 Y +72Y, + M+ B+ + neutrinos + approx. 200MeV

v = average number of neutrons = 2.5

(2 to 5 neutrons can be produced)

ST



Fission - Example
1, , 235
N+5,U = X +Y +neutrons

 Possible fission reactions
1., 235 140 94
N+, U7, Xe+5,Sr+2n
1., 235 132 101
oN+5,U —=>5Sn+,,Mo+3n
e Distribution of fragments

Fission
Yield

70 120 170 A



Attenuation of a Photon Beam



Photon Attenuation

Attenuation of a collimated (parallel) beam

e Consider a beam of photons of intensity |y that hits a target of
thickness X;, and a collimated detector that measures the intensity
of the beam emerging from the target. The fact that the detector
IS collimated means that only the particles that have not
Interacted in any way are detected.

e The intensity is defined as the number of photons that pass
through a surface S per unit time and per unit area.



Photon Attenuation

ﬂ—/ )
X
e The atom (number) density of atoms in the slab is N,. (humber of
atoms per unit volume)
» The area of the material surface perpendicular to the beam is
denoted by S.



Photon Attenuation

e Consider a thin “slice” of material, of thickness dx situated at
depth x in the material.

» Consider each atom can be represented as a hard ball of radius, r,
- and with a corresponding cross-section area o = 7,

o Also called “microscopic cross section”

« The number of atoms in the slice is dN = NaSdx
» where N, Is the atom density
« Consider the photons to be infinitely small (points)



Thin slice of material

X+dX




View of the dx slice from the photons’ perspective

O

O

O

O

O

O
®

Total area: S

Area "covered" by atoms: dN,xo




Attenuation of a collimated beam of photons

The probability that a photon “hits” an atom equals the ratio
between the area “covered” by atoms and the total area of the slice.
Let Np(x) be the total number of photons that enter the slice over a
time At

Np(X) = 1 (X)SAt
Let Np(x+dx) be the total number of photons that exit the slice dx
over atime At

Np(X+ dXx) = | (X + dx)SAt

The probability of a photon interacting with an atom is:

P _dnxo _ N, xSxdxxo _ N, xoxdx = uxdx

coll S S
Attenuation coefficient

u=N_,xo
(units of cm™)



Attenuation of a collimated beam of photons
Number of photons that interact and are therefore removed from
the beam
de — Np X Pc

Setting up the differential equation

« Account for the fact that the number of photons that interact
represent the change in the number of photons that exit the slice,
with a negative sign

— dNp(X) = Np(X) x 12 x dx

— NpXILleX

oll

e Solution
Np(X) = Npoe_ﬂx

* Npo Is the number of photons entering the material at x=0



Attenuation of a collimated beam of photons
Given that
— Np
T SxA

We also have
i
|(X) _ Np(X) _ Npoe
SxAt  SxAt
Where Np(x) 1s the number of photons that “make it” to depth x.

=1,



Exponential attenuation (of a collimated beam of photons)

Np(X)/NpO
or
1)1,

©

0.8

0.6

0.5 1

0.4 1

0.3 A

0.2

0.1 1

9,

10

20

30

40

50

60

70 80

90

100



Reaction (Collision) Rate

e For a thin slice of thickness dx, the volumetric reaction rate Is:

_ number of collisions

time x volume
dN _Np(x)xyde:

R=F

P

:Athde_ At x S x dx

- N,(X) _ 1(X)xsxAt

_Ath'u At xS

p=1(x)u




Attenuation of a Neutron Beam



Neutron Attenuation

e Same reasoning as for photons, but with specific features

— Instead of the density of atoms previously denoted by Na we
talk about the density of nuclei, denoted simply by N. That is
because neutrons interact with nuclel and not with atoms as a
whole.

e The product No is called macroscopic cross section (as opposed
to attenuation coefficient) and denoted by ~ (as opposed to # ).

>=No
(units of cm™)
Attenuation:

1 (x) =1,

Neutron Reaction (Collision) Rate
R=F =1(x)X



Neutron Beam Intensity

« Let n(x) be the neutron density (neutrons/cm?®)
« Consider monoenergetic neutrons (All have the same speed)
 Let v be the speed of neutrons.

e Consider a thin “slice” of beam of
thickness dx, that crosses surface S.

e There are dNn =nSdX neutrons in
this slice.

e |t takes the neutrons in the slice d

dt:dx

time =~ ", to cross surface S.

e The beam intensity Is therefore: -,
dN, nSdx \ -

| = N — =NV |
Sdt ¢ dx H ‘dx
T X
V




Microscopic Cross Sections and Reaction Rates for
Neutrons



Consider a single nucleus in a parallel beam of monoenergetic
neutrons

n/m?/s] \

Assume (for now) that scattering and absorption are the only
possible reactions.



Reaction Rates

F=R =R, +R,
Probability of a Certain Reaction Type




Microscopic Cross sections for Individual Reactions
R, =lo,
R.=RP,=loP.=loc, = o, =0,P,

=o,P

R,=RP, =1lo,P, =lo,; o, P,



The sum of individual microscopic cross sections equals the
total macroscopic cross section. In our simplified case

o,=o0,+o0,=0,P,+0,P,=0,(P,+P,)=o0,
For the general case:

c,=0,+0,+0,+0 +..




Microscopic Cross Sections as Measures of Probability

We can write:
Rt
Gt :T
R
o, =—-
I
5 R

e The microscopic cross sections can hence be interpreted
as the probability of interaction, per unit incident flux.



Energy Dependence of Microscopic Cross Sections

e The microscopic cross sections depend on the energy of
the incident neutrons. The nucleus appears larger or

smaller depending on how fast the incoming neutron is
moving!

Oy = 0y (E)
Where E is the Kinetic energy of a neutron

o, =0,(E)

o, =0,(E)
Reaction rate per nucleus
R(E) = lo(E)

The reaction rate depends on the energy (speed) of the
Incident neutrons.



Energy Dependence of Microscopic Cross Section
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Volumetric Reaction Rate for a Material
(Collision Density)

Consider a small piece of material placed in a beam of
monoenergetic neutrons.

R

F — single—nucleus X I\lnuclei S )
o \V — " 'single—nucleus

x N

Where N is the number density of nuclei.
F=loxN =1xX

WhereZ =0 x N s the Macroscopic Cross Section.

We have thus recovered the formula obtained in the previous
lecture using the attenuation of a collimated beam.



Volumetric Reaction Rate for a Material
(Collision Density)

Dependence on the energy of the incident neutrons

F(E)=1x0(E)xN =1xX(E)



Neutron flux

Q: What happens if we have a small piece of material
bombarded by two beams of monoenergetic neutrons (both

having the same energy)?
2 ////
H

/
=
Reaction (collision) Rate
F=loxN +LoxN =(l,+1,)% =
= (nV+n,V)E =nvE = ®F

Neutron flux for monoenergetic neutrons: O =nv



Alternative Interpretation of the Neutron Flux for
Monoenergetic Neutrons

Consider a small sphere at the intersection of two beams of
same-energy monoenergetic neutrons. The situation is
similar to having one nucleus bombarded by two neutron

beams.

Cross sectional area
2
of sphere: 7o v

"he number of neutrons crossing the sphere per second equals
the “reaction rate” for the sphere, due to both beams (which is
the sum of the reaction rates due to each beam).




Alternative Interpretation of the Neutron Flux for
Monoenergetic Neutrons

2

R =R +R =l xar®+Lxa?=(1+1,)xar’ =

=(nV+nV)xa?=nvxar’®=®dxar?

It follows that:

CI) — RCFOSS

7Z'r2

So the flux can also be interpreted as the number of neutrons
that cross a sphere per unit time, divided by the cross

sectional area of the sphere (ﬂr 2).



Neutron flux for monoenergetic neutrons

For the situation of more than two beams, all of the same
energy, the definition of the flux is the same:

O =nv
where n is the total neutron density due to all the beams.

The flux can still be interpreted as the number of neutrons
crossing a small sphere, divided by the cross section area of

the sphere. /
1
O

/ T~



Macroscopic Cross Sections for Mixtures

Consider a mixture of nuclei with number densities Ni.
The volumetric reaction rate density for each nucleus type |
IS:

F.=®og, xN, =0OX.

The total reaction rate density is:

F:ZFi:ZCI)JixNi:CDZO'ixNi:

=Q) 3, =X



Macroscopic Cross Sections for Mixtures

The total macroscopic cross section equals the sum of the
(partial) macroscopic cross sections for each nucleus species

2=Z;=qu

F =O0X



Neutron Intensity, Flux, Current and their Applications



Single Beam

Consider a beam of monoenergetic neutrons

»
»

The intensity 1s given by:

| =nv

The flux 1s a scalar quantity given by

O =nv

The current 1s a vectorial quantity given by:



Two intersecting beams of different-energy neutrons

Neutron Flux

O=nv +n,v, =0 +P,

Neutron Current

— —

J=nv +n,v,=J +J,



For many intersecting beams:

O=)nv,=>
J=Ynv,=> 1,



Usefulness of Neutron Flux

Consider a small sample of material placed at the intersection of
several beams of neutrons.

The total collision density in the sample is equal to the sum of the
collision densities due to the neutrons in each beam.

|

~ ==  F=YF

=



We rewrite the expression for the total collision density

F=> F=)3x®, =
=32» O, =3P

b = D.
Where ZI: !
So:

F =20

Regardless of how many beams we have (one or more).



Usefulness of Neutron Current

Consider a monoenergetic neutron beam that intersects a plane
surface.

AN
AN




We want to determine the rate at which neutrons cross this surface.
Per unit area.

AN
SAt

R

Where AN 1s the number of neutrons crossing the plate at time

Al through surface area S.



Before After (At elapsed)
(t=0) (t=At)

VAt//é S /

h
h=VAtcosd

—_

N is the unit vector normal to S. h — h N

V = SVAt cos &



The rate at which neutrons cross the surface in Atis given by the
neutrons in the marked region.

~ AN nAV nSvAtcos@
SAt  SAt SAt

= nvcos @ = Nvii = (V)i = Ji

R



Multiple Beams

The number of neutrons crossing the surface per unit time per unit
area 1S the sum of the neutrons in each beam that cross the surface
per unit time per unit area.

R=) R =) Jii=

() -
> J; Ai=Jn
R




Polyenergetic Neutrons

Consider now a parallel beam that has neutrons of different
energies (speeds).

n=dn/dE &

Dark Grey Area=
Neutrons with Energy
Between E and E + dE

[KE):jn(EUdE’

dn(E)
dE

n(E) =

Light Grey Area=
Neutrons with Energy
Between E; and E,

v

El dE E2



(volumetric) density of neutrons with energy less or equal to E.
n(E)
Neutron density spectrum

dn(E)
dE

N(E) =

(volumetric) density of neutrons with energy between E and
E+dE.

dn =n(E)dE



Beam intensity for neutrons with energy between E and E+dE
d1(E)=dn(E)x v(E) = n(E)v(E)dE

The above 1s the same as eq. 3.36 in the textbook but the textbook
does not use the underline.

Energy-dependent beam intensity (Beam Intensity Spectrum)

d1(E)
dE

I(E)= =N(E)v(E)

Energy-dependent Flux (Flux spectrum)

O(E) =n(E)v(E)



Energy Dependent Current (Current Spectrum)
J(E)=n(E)V(E)

Where n (number of neutrons with energy between E and E+dE,
divided by dE) per unit volume.
Total Reaction Rate for Reaction x

R, :jn(E)v(E)ZX(E)dE = TCD(E)ZX(E)dE

Subscript x can stand for total collisions, or just absorption, or
elastic scattering, etc.



Attenuation of a Neutron Beam from a Neutron Balance
Perspective



Neutron Attenuation Revisited
Parallel beam of monoenergetic neutrons

For such a beam

| = =]
s
:: \ | |

\dx
E




Neutron balance in the volume of thickness dx

J(X)S - J(x+dx)S =§(x)®(x)8d§

neutrons colliding
(reacting) in the
volume

neutrons
exiting the
volume

neutrons
entering the
volume




The neutron balance equation can be rewritten:
| (X)S — I (x+ dx)S = Z(x) 1 (x)Sdx

Dividing by SAX on both sides we obtain
| (X) — 1 (X + dX
= ) v (9100
X

Equivalent to:

dl (x) di (x)

= =2(X) 1 (X)

=2(X)1(X) <

If the macroscopic cross section is constant, then:



di(x)
o 21 (X)

Which can be integrated to obtain:

1(x)=1(0)e™™
Exactly what we obtained before using a different kind of
reasoning.

Moral: If assumptions are right and reasoning correct, the
results are the same regardless of the method used.



Mean Free Path

Neutrons that react (collide) between x and x+dx have had a
"free path" of length x.

To find the mean free path, we need to average over all the
neutrons that interact from x=0 to x=o0.



jxl (X)X dx _[xl (0)e X dx
ﬁ 0 0

o0

_ T | (X)Zdx j 1 (0)e™*Zdx

0

| (O)ZT xe " dx T xe " dx
0 0

| (O)ZTezxdx _ Tezxdx
0 0



The numerator Is integrated by parts to give

o0

jxe‘zxdx = Tx( e;X] dx =
0

0

sx \|T _3x
2 2
0 0
e\ 1
) st
0

(Since  lm(xe™)=0,




The denominator integrates as:

—2X

T
!ezdx_( s

It follows that:

J




Fission



Fission

oM+ X A+*B+V N+ je+y

v=2,3,45
on average v = 2.5

A & B = Fission Products (Fission Fragments)



Conservation Laws

Number of nucleons
A, +A =A, + A +Vv
A +1=A +A +v

Charge
Z,=2,+Z2,— i



Energy

c’[M(n)+M (X)|=c?[M(A)+ M (B)|+
+ve*M(n)+c’uM (e) + E,

M 1s the relativistic mass



Using the rest mass and Kinetic energy E, we have:

Cz[Mo(n)+ Mo(x)]+ E,
= c*[M, (A) + M, (B)]+
+1vC°M,(n) +¢° M, (e) +

+EB +E,+Eg +E; +E5

My 1S the rest mass



The above can be rewritten using the Q:

CZ[Mo(n)+ Mo(x)]+ E, =
= c?[M, (A) +M,(B)]+
+1vc’M,(n) +c’uM,(e) +Q+E

n

For fission, Q is approximately 200 MeV



Distribution of Energy From Fission

Carrier %I(]/Ieer\%/
Fission 168
Fragments
Beta 8
Gamma 14
neutrinos 12
neutrons 5
Total 207

Most energy Is taken by fission fragments and deposited
locally.



Fission Mechanism (simplified)

In reality, fission occurs through a compound nucleus which,
In turn, can decay very rapidly in several different ways.

oM X =X
(fast)
AcHy 1, = A+Bay (mode1-prompt y)
Zx - A+B+v.n  (mode 2 - promptn)

vp=2—3



Both A" and B' can be stable or further decay in several
possible modes:

2 5 A (A' was stable)
— 5 A+y (delayed y)
A — 5 A+ B (mode 3)
— 5 A+ B (mode 4)
1 (fast)
A+n  (delayedneutron)

If A" decays according to mode 4, it is called a precursor.
There are six possible types of precursor, and six possible
values for 4

A" is then called an emitter.



We cannot predict in advance which nuclei will be
precursors, but we can predict, on the average how many will
do so. This number is equal to the number of delayed
neutrons emitted, called the delayed neutron yield.

Lo # of delayed neutrons
; #of fissions

We cannot predict how many prompt neutrons will be emitted
In each reaction either. But we can predict how many will be

produced on the average. This is called the prompt neutron
yield.

_ #of prompt neutrons
#of fissions

Vo



On the average, the fission reaction can be written:
n+ X > A+B+v,n +vn, +e+y
The total neutron yield is defined as:
V=vy+Vv, =22

The delayed neutron fraction is:



Delayed Neutrons

Are emitted by emitters which result from the beta decay of
precursors.

There are 6 precursor (delayed neutron) groups, based on
their half-life.

Vg =V T Vg2 V43 T Vs T V45 T Vys

TABLE 3.5 DELAYED NEUTRON DATA FOR THERMAL FISSION IN 29U

Half-Life Decay Constant Energy Yield, Neutrons Fraction
Group (sec) (I;, sec™!) (ke V) per Fission Vd; (B

| 55.72 0.0124 250 0.00052 0.000215
2 22.72 (0.03035 560 000346 0.001424
3 6.22 0111 4005 (L00310 0.001274
4 2.30 0,301 45() 0.00624 0.002568
2 0.610 1.14 — 0.00182 (LODOT 4
6 0.230 3.01 (0.00066 L0027 3

Total yield: 0.0158
Total delayed fraction (f): 0.0065




Fission Products (Heavy Nuclel)

Mass is distributed asymmetrically.

10

=

0.01

Fission yield, %

0.001

0.0001
Ll

Mass number



Energy Dependence of Fission Cross Section for “*°U

m

10M3 1074

23U is fissile, i.e. undergoes fission with near-zero energy
neutrons with high probability.

1
ocEzoci

O;
V

lower energies



Energy Dependence of Fission Cross Section for “*°U

ectinn bams

Cross-3

- : r : T T
] 2 4 f & 10 12 14 16
Energy MeV

38 is fissionable, but not fissile, i.e. it can undergo fission,
but with higher energy neutrons and with low probability.



Energy Spectrum of Fission Neutrons

Energy Spectrum
E E
p(®)="5 - )
t j n(E)dE
0
It follows that:
Tz(E)dE=T NE) dE =~ : Tn(E)dEzl
0 0

n(E)JE  [n(E)dE

0

o —3



Energy Spectrum of Fission Neutrons

Prompt-neutron spectrum (Eaq=2MeV)

0.3 -

0.2

x(E), (MeV)

I I I I I
3 4 3 ]

E, MeV

Figure 3.14 The prompt neutron spectrum.

Delayed-neutron energies are slightly lower.



Important Facts

e Fission neutron energies are much higher than thermal
energies (0.025 eV), so they are not appropriate for
efficient fission in fissile materials.

e To achieve fission efficiently, the neutrons need to be
slowed down (their energy needs to be reduced). This
process is called moderation. It is achieved by elastic
collision with light nuclei (usually Hydrogen or
Deuterium)

e Reactors that use thermal neutrons for fission are called
Thermal Reactors.

e Special reactor designs can be conceived, where fast

neutrons are used for fission. These are called Fast
Reactors.



Fission-Related Parameters

Capture-to-fission ratio

For mixtures of fissile and non-fissile elements:

1
Uzz_aizvizﬁ



Nuclear Reactors — The Basics



Nuclear Reactors

¢ Can be of two Types:

» Thermal - fissions induced by thermal (E<1eV)
neutrons In fissile nuclel

»  Fast - fissions induced by fast (Ez1MeV) In
fissile/fissionable nuclel



Thermal Reactor Components

e Fuel - consists of nuclel that fission liberating energy

e Moderator - slows down fast neutrons resulting from
fission to thermal energies so they can fission fuel
nuclei

e Coolant - removes the heat

The three can be:
e mixed together - Homogeneous Reactor
e separated — Heterogeneous Reactor

Most reactors are heterogeneous.



Power Reactors

e Pressurized Water Reactors

e Pressurized Heavy-Water Reactors (CANDU)
e Gas-Cooled Reactors

e Other



CANDU Reactors
e Heterogeneous

e Fuel: Natural Uranium Oxide
0(UO, 0.7% **U, 99.3% **U)

e Coolant: Heavy Water (D,0)

e Moderator: Heavy Water (D,0O)



CANDU Reactor Schematic
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CANDU Reactor - How 1t Works

e Fissions take place in the fuel

e Most energy from fissions Is taken up by fission
fragments which stop in less that one micron.

e [N stopping, the fission fragments' kinetic energy
becomes heat, which raises the fuel temperature.

e The fuel is cooled by the coolant, which takes the heat
from the fuel to the steam generators.

e Neutrons are also produced from fission.

e Fission neutrons are slowed-down by elastic collisions
In the moderator and, to a smaller extent, in coolant.

e Once they become thermal, neutrons can induce new
fissions, keeping the chain reaction going.



CANDU Reactor - How it Works (cont.)

e Part of the neutrons get absorbed by radiative capture
or "leak™ out of the reactor. These do not induce
fissions.

e On the average, only one neutron per each fission
succeeds in inducing a new fission, so there Is a
uniform rate of fissions and not an avalanche of
fissions.



The CANDU Power Plant
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The CANDU Power Plant
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The Nuclear Steam Supply System

Steam to Turbine

Heat Transport System
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Fuel Bundle -




CANDU Reactor Fuelling
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Fuel Handling
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Primary Heat Transport System
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Steam Generator
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Secondary Heat Transport System
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Containment Building
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Neutron Diffusion and Moderation



Nomenclature



General Nomenclature

Consider a quantity, say the number of collisions N:
Rate

We call rate, the ratio between the amount of that quantity that 1s
found or produced between time t and time t+dt and dt. (i.e. the
collision rate 1s the ratio between the number of collisions that
occur between t and t+dt divided by dt):

— choII
coll dt




Spectrum

We call (energy) spectrum the ratio between the amount of that
quantity that 1s found or produced between energy E and E+dE and
dE (1.e. the collision spectrum i1s the ratio between the number of

collisions suffered by neutrons with energies between E and E+de
and dE ):

dN
F E — coll
(E) E



Density

We call (volumetric) density, the ratio between the total quantity
dQ existing or produced 1in volume dV and dV (i.e. the collision
density 1s the ratio between the number of collisions suffered by
neutrons in volume dV and dV )

F — choII
dv

We can have names that imply double ratios, e.g.

Collision density spectrum. - the ratio between the number of
collisions suffered by neutrons in dV with energies between E and

E+dE and dVdE

dN

F E — coll
(E) dVdE



Collision density rate:

F — choII
dvdt

Oftentimes, when talking about double ratios people omit to name
one of them, so you must pay attention to the context.

For example, one will often refer to the collision rate or collision
density, when, in fact, meaning collision density rate.

The same letter 1s sometimes used to denote different quantities.

Always look at the context.



Recapitulation of Important Concepts



Recapitulation of Important Concepts

Volumetric total reaction (collision) rate density for
monoenergetic neutrons

F=3®

or

F=Xnv



Reaction rate for neutrons with energies between E and
E+dE:

dF =2(E)xn(E)dE x v(E)

(Total) Reaction rate for neutrons of all energies:
F = j > (E)n(E)V(E)dE = j > (E)D(E)dE
0 0

where

®(E) = n(E)v(E)



Reaction Rates for Individual Reactions

Scattering reaction rate density:
F = sz(E)cD(E)dE
0

Absorption reaction rate density (number of neutrons
absorbed per cm’ per s):

F = Tza(E)cp(E)dE



Neutron Diffusion



Fick’s Law



Fick's Law (Diffusion Law)

e Will accept it without proof.
e Valid far from interfaces.
e Valid for materials with relatively low absorption.

(Gives the neutron current as a function of the neutron flux

Assume monoenergetic neutrons
Assume the flux only varies along the x axis:

J =-D dd(X)
dx

D = Difftusion Coefficient



In three dimensions (and monoenergetic neutrons):

J = -Dgrad® = -DV®

Definition of gradient:

of

dx

Vi(x,y,2)= ﬂ

of
dz




Number of particles crossing a surface of orientation N per
unit time per unit area (normal current):

J =J-i
Aot
D_3, (A Z)




Average of the cosine of the scattering angle

U =cosf

Neutron Nucleus




Diffusion Equation



Neutron Balance Equation (equation of Continuity) for
Monoenergetic Neutrons

Expresses the conservation of neutrons

[Rate of change in the number of neutrons in a small volume dV] =
= [Rate of neutron production in volume dV]—
— [Rate of neutron absorption in volume dV]—

[Rate of neutron leakage from dV |

R dV = dxdydz







Infinitesimal (i.e. very small) Volume

. DN C

! dV = dxdydz

: Z > dz
_______ Lo

/f/: (Xa Y, Z) B//{y
A - g _
dx
dx, dy, dz small-enough that:
D(X,Y,2) = D(X+dx,Y,2)
J(X,Y,2) = J(x+dx,Yy,2)

and similarly for y and z



Production
The number of neutrons being produced per unit time in volume
dV. (Neutron Source)

A |
Z I
|
! < Production Rate:
: SdV
|
I y e |
| s gz s(cm °s )
7 /
F=(X,Y,2) dy
— %
N
dx
-

Production Rate =5dV = Sdxdydz



Absorption

V4

[
»

X

Assume, dx, dy, dz are small enough that the flux ® varies
negligibly inside our volume

R, =2, @dV =% _ddxdydz



eakage Through Face BCC'B’

Dl

_ \
LK, =LK oo = J(x+ dx, y+d—2y, Z +d_22 -u, dydz
y
LK., = LKgeeq = J, (X +0dx, Y, z)dydz



eakage Through Face ADD'A'

Dl

LK, =LK, ou = J(X, y+d—2y, z+d—22j-(—ﬁx)dydz

LK, =LK, pon =—J,(X, Y, 2)dydz



Net Leakage Along X AXIsS

LK, = LK, +LK, =LKoo + LK yop 2
=J (x+dx,y,z)-J (x,Y,z)dydz

Let's remember that;

c’i;]x (x.y.2)= J (x+dx,y,z)-J,(x,y,z)dydz
X dx
Hence:

J (x+dx,y,z)-J (x y,z)dydz = %]XX (X, y,2)dx

LK, = J (x+dx,y,z)-J (Y, z)dydz =

= N, (X, Y, z)dxdydz
OX




Total Leakage out of dV

LK =LK, + LK, +LK, =

N oJ 0J
=—2(x,y,z)dxdydz + — (X, y, z)dxdydz + —
ax( y, z)dxdy ay( y, z)dxdy P

— X + + —~ dxdvdz = |divJ dxdydz =1V - J kdxdydz
( OX oy Oz ] y ( )d y ( )d y

(X,y,z)dxdydz=

xX,V¥,Z
Definition of divergence for a vector function T (XY, 2):

- - of
divf =V .- f 6fx+ y+afZ
dx dy dz




Rate of Change of Number of Neutrons in dV

_ #neutrons(t + dt)—#neutrons(t) n(t +dt)dV —n(t)dvV _
change = T o
dt dt

() =) g 0N s
dt ot

R




Neutron Balance Equation for dV

% dxdydz = sdxdydz — = ®dxdydz — V - Jdxdydz

Dividing by the volume dV =dxdydz we obtain:

@:S—Eacb—v-j
ot

Valid regardless of whether Fick's law holds true or not



Neutron Balance in the Diffusion Approximation

Assume Fick's Law to be true:

J=-DV®
Substitute into the neutron balance eq:

on
—=-V.(-DV®)-X D +s

ot

This is the time-dependent diffusion equation for monoenergetic
neutrons.

It Is iImportant because by solving it we find the flux and the flux
allows us to calculate all reaction rates, including fission rate -
which is really what we are after, by using R=2® .



If the diffusion coefficient is constant:

on

— =DV (VD)-Z D +5
ot

Remember the definition of the Laplacian:

2 2 2
Af(X,y,2)=V°f :v-(Vf)za I 9 I 9 I
ox® oy oz
The diffusion eq. can then be rewritten:
n
on_ DV’® -3 @ +5

ot



If we keep in mind that

d on oOo(d 1 do
Pp=NV=>N=—= —= =
V ot ot\V V dt
We obtain:
18¢ = DV‘®D - 2. D+S
V ot

Steady-State Situation (no time dependence)

DV’® -3 ®+5s=0

Steady-State diffusion equation for monoenergetic neutrons and
constant D



Dividing by D:

VD24 =g
D D

Introducing notation (Diffusion Length):



Interface Conditions for the Diffusion equation:
Continuity of flux: D, =Dy

Continuity of normal component of current Jar =8,

BN

Vacuum Interface

®(d) =0

Extrapolation distance d =0.714,

d =2.13D

1 1 1
Ay =— 2, =2,0-pu); D= = 2
D d=4) 3, 3D




The Concept of Infinite Homogeneous Medium

Medium is the same at any point
Hence, there Is no reason why the flux would be different an any

particular point
d(Xx,y,z) =D =const

The current is given by Fick's Law

o

OX 0|
J:vcbzai):ozo

2 0

| Lo

| 0Z |

The current is zero in an infinite homogeneous medium

>D=S; V®=0; cbzzi

a



The Concept of Homogeneous Half Space

v

Xe(—oo,oo)

ye(—oo,oo)
ze(a,o)

In such a configuration, since for the same z all points are
Identical, there is no variation in the flux with x ory

2
V2®:£O+O+a q)]

(D(X,y,Z) ICD(Z) : 0z°

0°d(z)
0z°

D -2 ®(2)+S(2)=0



The Concept of Infinite Homogeneous Slab

- finite In Z, but Iinfinite In X and Y directions
» X

= (— o0, oo]
| (x,y,2)| y €(~o0;00]
------- z e (a; b)

Because there is no change in the material properties in either X
or Y direction,

D(x,y,2) = D(2)



Energy-Dependent Diffusion



Differential Microscopic Scattering Cross Sections

Beam of monoenergetic neutrons

| =nv(E)

vy

vy

IIn/cnt /| | \

R, =lo (E)

Equivalently, we can write (using only macroscopic quantities that can
be measured):

Scattering rate:

o, (E) =



By scattering, neutrons lose energy.

Let AR, (E’) be the rate at which neutrons are scattered in energy range
E', E'+dE’

We have:

[dR,(E) =R,
0
Definition of the differential scattering microscopic cross section

dR, (E’)

E—>E)=
o5 )= e

Equivalently, we can write:
o (E —E')= dR.(E") R, _ R, dR,(E") ~ o (E) dR.(E")
IdE" R | R.dE’ R.dE’

S




Scattering Kernel

dR,(E') _ dP(E,E')

k(E > E') =
RdE' dE’

c(E—>E)=0k(E—>E

The scattering kernel can be interpreted as the probability density
function for a neutron of energy E to be scattered such that its final
energy Is between E' and E'+dE".

The differential and total scattering cross section satisfy:

JS(E):TJS(E—>E’)dE’



Differential Macroscopic Scattering Cross Sections
AN /
2. (E—>E)=No,(E—>E')
or, using the scattering kernel:

> (E = E") = No.(E)K(E — E) =
=3 (E)K(E — E")

Volumetric reaction rate at which neutrons scatter within energy range
(E, E+dE)

R(E—>E)=IZ.(E—E



Energy-Dependent Neutron Balance Equation



Balance Equation for Neutrons with Energy Between E and E+dE

[rate of change of number of neutrons in volume dV with energy
within range (E, E+dE)] =

[rate of production in volume dV of neutrons with energy within
range (E, E+dE)] +

[rate of scattering of neutrons in dV into energy range (E, E+dE)] -
[rate of absorption in dV of neutrons with energy in range (E,
E+dE)] -

-[rate of scattering of neutrons in dV outside of energy range (E,
E+dE)] -

[rate of leakage out of dV of neutrons with energy within range
(E, E+dE)]



F

n(E,t +dt)dEdV — n(E,t)dEdV

change(E) = =
dt

_ n(E,t+dt)-n(E,t) 4V — on(E)

dt ot

R

dEdV




—

R, (E) = s(E)dEdV

s(E) = number of neutrons produced inside dV with energies between E
and E+dE, divided by dEdV.



Rate at which neutrons with energy within (E'; E'+0E) scatter such that
their energy is within (E; E +dE)

R.(E'— E) = ®(E')dE'XE. (E'—> E)dEAV

Rate at which all neutrons scatter such that their energy is
within (E; E +dE)

R.(— E) = ch(E')xzs(E'—> E)dE’ [dEdV
0




—

R.(E) = ®(E)E x =, (E)dV = ®(E)x X, (E)dEdV



—

R.(E —) = ®(E)dE xX_(E)dV = ®(E)x X (E)dEdV

Note that:

> (E) = TzS(E 5 E')dE’



—

LK (E) =V -J(E)dEdV



Balance Equation for Neutrons with Energy Between E and E+dE

(E)=R,(E)+R,(— E)-R, (E)-R, (E ») - LK (E)

change

on(E)
ot

~®(E)x X, (E)JEAV —®(E)x X, (E)dEAV —V - J(E)dEdV

dEdV = s(E)dEdV +Dq>(E')xzs(E'—> E)dE’ |[dEdV —
0

Dividing by dEdV we obtain the energy-dependent neutron balance
equation (continuity equation):

on(E)
ot

—~®D(E)x2, (E)-D(E)x2 (E)-V-J(E)

_ S(E)+TCD(E')><ZS(E'—> E)dE' —




We can show the dependence on time explicitly:

on(E,1)
ot

—~®D(E,t)x2, (E)—D(E,t)xXZ (E)-V-J(E,1)

= s(E,t)+TCD(E',t)><ZS(E'—> E)dE' -

Definition of energy-dependent flux:

®(E) = n(E)V(E) = n(E) = %

Substituting the expression for the energy-dependent neutron density, we
obtain:

1 O®(E,t)
v(E) ot

—~®(E,t)xX, (E)-®(E,t)xZ (E)-V-J(E,1)

- s(E,t)+TCD(E',t)><ZS(E'—> E)dE’ —



Energy-Dependent Steady-State Neutron Balance Equation

O=S(E,t)+ICD(E',t)><ZS(E'—> E)dE' -
0
~®(E,t)xX, (E)-D(E,t)xZ (E)-V-J(E,t)
Diffusion Approximation (use Fick's Law)

J(E)=D(E)V®(E)

0= S(E,t)+TCD(E',t)><ZS(E'—> E)dE' -

~O(E,t)xZ, (E)-D(E,t)xZ, (E)+ V- (D(E)VD(E))



For position-independent diffusion coefficient:

0= s(E,t)+TCD(E',t)><ZS(E'—> F)dE' -

—~®(E,t)xZ_(E)-®(E,t)xZ (E)+ D(E)V’D(E)



Multigroup Formalism

Approximate treatment of the energy-dependent diffusion equation.



Energy Groups

Divide the energy domain (0, E...) into intervals called groups




(Energy) Group Flux

E, 4
D, = j ®(E)dE
Eg

CI)(E)A

Eg Eg.]_ E

Can depend on parameters such as position and/or time

D, (F) = gjlcp(r, E)dE

9



Group Current

Group Source



Group Reaction Rates

Reaction Rate for a single Nucleus
E,_ E,_

Ryem s = [R(E)JE = [ ®(E)o(E)dE
E E

9 g

Reaction Rate Density for a Material
Eqs E

R, = [ R(E)E = TCD(E)Z(E)dE

Eq

Can depend on parameters such as position and/or time

R, (F) = TR(r, E)dE = Tcp(r, E)S(F, E)dE

g g



Group Cross Sections

Microscopic Group Cross Sections
E

J-(D(E)U(E)dE single nucleus
_ By g
Oy = £ — .
g
j ®(E)dE
Eg
Macroscopic Group Cross Sections
Eq
j ®(E)x(E)dE
= E, — Rg

Y

Ey_y
j ®(E)dE :
Eg



Inter-Group Scattering (Transfer) Cross Sections

Microscopic

Eqa| Ega
jcp(E)as(E —s E')dE’ [dE
E.

g L "o _
O ) =

g—g g
j ®(E)dE
Eg
Macroscopic
Egs| Egos ]
j _[CD(E)ZS(E — E"dE' [dE
Eg | Eg’ _ /
Zgy = E g#4

TCD(E)dE

g



Intra-Group Scattering Cross Section

Microscopic

Eq-

jcp(E)aS(E — E")dE' |dE
E

I.I.I
(=]

9

Ogog = Eqs
j ®(E)dE
Eg
Macroscopic
Eqs| Equ ]
j jcp(E)zs(E —s E')dE’ dE
Eq B Eq B
2gg = E

gfcp(E)dE



Multigroup Neutron balance Equation

[rate of change of number of neutrons in volume dV with energy
within group g] =

[rate of production in volume dV of neutrons with energy within
group g] +

[rate of scattering of neutrons in dV Into energy group g] -

[rate of absorption in dV of neutrons with energy in group g] -
-[rate of scattering of neutrons in dV outside of energy group g] -
[rate of leakage out of dV of neutrons with energy within group g]



Multigroup Neutron balance Equation

®,dV -2, ® dV - O dV-V-J dV

$9'—g

G
Qngdv =s,dV + ) ¥
ot o

Dividing by dV:

o G -
ang =S, + lesg.ﬁgcbg. -2, 0, -, P, -V-J,
g:



Multigroup Neutron balance Equation

Multigroup Fick's Law:

—

J,=-D,VO,



Multigroup Diffusion Equation

a G
ang - Sg T lesg'—wq)g' _Zagq)g —ng(Dg +V'(ngq)g)
g'=

For constant diffusion coefficient:

o G ,
ang =S, + lesg.%gcpg. -2, @, -%,P, +D,V°O,
g:

Steady state (no time dependence)

-D,\V'® +3,, D +Z D, Zz =5

59—>9 9’ 9



Particular Cases of the Diffusion Equation



One-Group Diffusion Equation

The entire energy range 1s included 1n just one group

»
I "

E]ZO EO

Time-dependent:

%: S+XP-X O-3X D+DV'D

% =S-% ®+DV’® = one group D.E



One-Group Diffusion Equation

Steady State:
The steady-state multigroup diffusion equation

g-1
2
-D,V cDg—Z_leg.%ch A+, D, + Zzsg%g

g'=g+1

becomes:

-DV’®, +X, D, =5,
We can drop the group index to obtain:
-DV’O+Z D=5

9

=39S

9



Two-group Diffusion Equation

v

| |
E2:O El E()

Group 1 (fast group): g=1

% S, +(5, @+, ®,)-3, -3 O +DVD,

Where 251 - z51—>2 T ZSI—)I

M_s 45 @ +3. O, -3, -3, ® -3 @ +DV,

8’( SEN| Sas1 S1-2 S1-51

%r; S,—%, ®,—X, @, +D,VD,



Group 2 (Slow, thermal)

M5 43 @43 ®,-3 @, -3 ®,+DVD,
8t 152 22 2 2

Where S2 - zsz—n T Z52—>2

%Sm D, +3, D,-%, D, -5 B, -5, @, +DV

S152 Sy_s2 Sys1 SPI)

a;t =S, +3, ® -3, ®,+D,V’D,



Two-group diffusion equation

M5 -5, &, -5, @ +DV,
ot -

M _5,+3, @ -3, ,+D,V,
£l =

2. +2. =2

Y S1552 r  (Removal cross section)



Two-group diffusion equation

on

Steady state 5 0

(

-DV'®, +X @, =5
-D,V'®,+X, ®,=S,+X

D,

Sl—>2



Two-Group Diffusion Equation

We could have started directly with the steady-state
multigroup diffusion equation

CD+ZCD+ZZ

g'=g+1

s9'—9 sg—g' g

g-1
2
-D, V'O, - Z_z
Group 1 (fast):
-DV’®, +X D, +3
Group 2 (slow, thermal):
-D,V’'D, -X

CDIZSI

sl—>2

O +2 ,D,=5,

s1—>2

Two-group diffusion equations:
-DV’®, +3, D +3X
-D,V'®, -

sl—>2q)1 =3
(Dl + Zazq)z =3,

sl—>2



Solving the Diffusion Equation for Simple Cases



One Group, Infinite Homogeneous Medium, Uniformly
Distributed Source

~DV’O(F)+ X, D(F) =S

Infinite, homogeneous medium
O(r)=>d =ct

Vb =0
The equation becomes:
PROEE

Solving for the flux, we obtain:

="
¥, (constant)



Two Groups, Infinite Homogeneous Medium, Uniformly
Distributed Source

-DV’OD, +X D, +X
-D,V’®, -2

sl—>2q)1 =3
CI)1 + Eazq)z =S,

sl—>2

For an infinite and homogeneous medium with uniformly-
distributed source:

O (r)=0, =ct
D,(r)=0, =ct
VD, =0

VD, =0



The two-group equations become:

.0 +3
>

sl—>2q)l =3
sl—>2(D1 + Za2CD2 =3,

The first equation can be easily solved to yield:

Sy Sy

CIDI:Z
a T2

sl—>2 r

2, = removal cross section



The second equation can be rewritten as:

>, D,=5,+3%, 0,

sl—>2

2,,P, =0, =slowing down density

Using the expression found for the fast flux, we have:

Sl
sl—>2
z1‘r

2, D, =5 +2



The thermal flux 1s hence:

S

1
Sz + zs1—>2 Z—
"

D. =
i Za2

If there is no external thermal source(s, =0), then the solution
simplifies to:




One-group diffusion equation for a semi-infinite medium
(half space)

Surface Source

Medium

dz2 - Assume no volume sources



"t p 7Y
Z
=2
>, —> Diffusion Length
d’® . O
-—+——=0
dz L

Characteristic Equation



General solution 1s
Z YA YA

ae-+bet =bet
Finding the constant b:

Consider an infinite parallelipiped of cross section area A
and extending from zero to infinity in the z direction :




Express the equality between total absorption in the
parallelipiped and the source of neutrons coming in from the
boundary source S, at Z=0.

Absorption rate from 0 to © 1in a prism of cross-section area
A

IZaCD(z)dz A
| 0

Source rate

S, A



Equality between source and absorption:

S, A= IZ ®(z)dz |A

Sy = [ 2.9(2)dz :T e Lz = bje Lz
0

z—0

j e ldz=|—-Le | = —lin{ LeL] e =L

- dlo
Sy

S,=2,pbL=Db=
. L



"I T em?s



One Group Diffusion for an Infinite Planar Source
Situated in an Infinite Homogeneous Medium at x=0

S (n/em*/s

Equivalent to two half-spaces (left and right)

- DV?O(X,Y,2)+Z . D(X,Y,2)=0 forx =0



Because of the planar (y-z) symmetry, @ =®(X)

The equation becomes:

0’ D(X)
oD’ (X)

-D +2.D(x)=0

Using the diffusion length notation:

2
d g)— 12q>:0, X#0
dx L




This 1s a homogeneous second order linear differential
equation with constant coefficients. The general solution 1s
of the type:

—X

O(x)= Ael +Cet

Because the flux needs to be finite, we have C=0. Hence:

O(x) = Ae /-



The current 1s:

J(X) = —D%(Ae%) — A%e_%

To find A, we use the boundary condition:

S
lim J(x)==
(X) ,

X—>+0



The initial condition yields:

L 2 L 2 2D
The flux for x>0 1s hence:
d =t
2D
Analogously, the flux for x<O0 1is:
o St

2D



One Group Diffusion for a Point Source Situated in an
Infinite Homogeneous Medium

Use spherical coordinates with the source placed at the center
d’r=dV =r’drsind&g
dA=r’sinA&e =r’dQ

A

o]
1l
= | =

Z

do -2

v




Because the problem is symmetrical with respect to both ¢
and ¢ (spherical symmetry), the flux will only depend onr.

(X, y,2)= O(r,6,¢)
O =D(r)

Expression of Laplacian in spherical coordinates for a
function with spherical symmetry, 1(r).

1 d df
Vf(rn=——|r>"—
(") r? dr( drj



The diffusion equation becomes:

1 d (r dﬂj_i@ 0
r’ dr ar | L

This 1s a homogeneous second order differential equation with
constant coefficients.

The boundary condition 1s

Jdre? =S = &%) =i
A
S

lim r-J(r
r—>0( ( )) 472_

Rate at which neutrons exit a very small sphere of radius &,
surrounding the origin: S = J4ze’

This 1s equal to the rate at which neutrons are produced, because ¢
1s so small that absorption in this very small sphere can be 1gnored.



To solve the equation, we make the substitution:

r’dr| drir)| L°r
which yields:
d’w 1
——w=0
dr> L°
o
r Ae L
w=Ae t; =

Solution 1s: r



Following a similar treatment as for the plane source, we find:




One Group Diffusion for a Bare Slab with an Infinite
Planar Source Situated in the Middle

S (n/cm?/4

e

The problem 1s symmetric with respect to the source and also

has planar symmetry
O = O(X)



Diffusion equation:

2
d g)— 12613:0, X#0
dx L

Will treat the right half.

This 1s a homogeneous second order linear differential
equation with constant coefficients. The general solution 1s
of the type:

—X

O(x)=Ae' +Cet



The left boundary condition 1s, just as before:

. S
hInx—>+0 J (X) — 5
yielding:
J(x):-BAeT +2cet] =—2a+>c
L L |, L L




The right boundary condition 1s now a vacuum boundary
condition, that 1s the flux vanishes at the extrapolated
boundary.

S (n/cm?/s

v

—(a+¢§1) aﬂékd) :

where



The above yields:



The final solution is:




Neutron Moderation (two group treatment)
Two-group diffusion

Assume 2. =0 (good moderator)

~-DV’®, +3X
-D,V'®, -2

sl—>2(Dl =0
D, + Zazq)z =0

sl—>2

The two equations can be rearranged to:

-DV’0®, +%, ,0, =0

-DV®,+2 D, =3, O,

sl—>2



We make the following notations:

D, _ T. =age
=7, =
Zsl—>2
2—2 = L2 =thermal diffusion area
a2

L, = thermal diffusion lenght
With the new notations, the equations are written:

1

—V®, +—®, =0
IT
—v2q>2+i2c1>2= D, O,
L D,z;

These can be solved for different configurations.



Nuclear Reactor Theory



Multiplication Constant



Preliminaries - Neutron Fluence

Neutron fluence is defined as the time integral of the flux

cm?s

Where units for ¥ are and units for @ are

cm?



Fission Chain Reaction




Each fission produces 2-3 more neutrons which can, in
principle, induce new fissions in avalanche. This is not
desirable.

However, not all neutrons resulting from fission induce new
fissions. Some undergo gamma capture.

If two few neutrons (less than one per fission) induce new
fissions the fission reaction dies down. Not desirable either.

The trick is to only allow one of the secondary neutrons to
Induce a new fission and thus have a fission rate that is
constant in time. A reactor operating at a constant fission rate
IS said to be critical.



Infinite Homogeneous Reactor
(One-Group Diffusion Approximation)

Multiplicative medium (= > 0),

Non-Multiplicative medium (Zf - O).

The steady-state diffusion equation Is written:
~-DV®O+X =S

The source now consists of fission neutrons:
S=v2,0

So the equation becomes:
~DV*O+Z O =12, D



The flux Is constant in space because the medium is infinite
and homogeneous, so the equation becomes.

S D=2,

It 1S obvious that the above cannot be satisfied, unless

2, =V,

a

If that Is not the case, then the source is artificially divided by
a factor kK, just to balance the equation.

S 0 =15 @
k

a



K is called the multiplication constant (factor). For an infinite
medium, it is called the infinite multiplication constant and

denoted by k..

It Is obvious that, for the one-group homogeneous reactor
case:

It is also obvious that the value of the flux cannot be
determined because once the appropriate K Is used, any value
of the flux will satisfy the balance equation.

2.0 :infCD =2, 0= L vy @
k V2

w —_—

2

a



Interpretation of k

Since the balance equation is written:

2D = ivzfcp
K
We have:
. — V2, O _ production rate
BN loss rate

So k can be interpreted as the ratio of the neutron production
rate and the neutron loss rate.



The name "multiplication factor" is used because k represents
the ratio between the neutron density for one generation of
neutrons, divided by the neutron density for the previous
generation. This needs some explaining.

Consider a bare infinite homogeneous reactor. Initially there
are no neutrons present.

Now, assume some neutrons, with density ng are introduced
In the reactor. Let's call these "generation 0" neutrons. These
neutrons will fly around, producing a flux ®.(t) =ny(t)v which
will decrease as the neutrons are absorbed, until all neutrons
are eventually absorbed.



The time dependence of the zero-generation neutrons looks
something like this:

A

n




The flux, has a similar shape

()




As these zeroth-generation neutrons are absorbed, some of
them produce fissions. We consider the neutrons born out of
these fissions first generation neutrons. They are produced at
a rate:

V2 D, (1)
and are absorbed at a rate

2, @, ()



Overall, the number of first-generation neutrons that are
produced per unit volume Is:

o0

n, = [VE D, (t)dt =1z, jcb (t)dt =12,y

0

The total number of absorptions of first-generation neutrons
IS:

j >0, (t)dt=2, j @, (t)dt ==
0 0



Since, in the end, all first-generation neutrons get absorbed,
we have:

21 = Vi,
which yields:
V2,
V= Vo= K. W4

a

The first-generation neutrons, in turn, produce second
generation neutrons. Their number is:

N, =VE ¢y, =VE K W =K N



The process continues:

-
%)
|l

k_n,

and so on.

The number of neutrons in each generation is equal to the

number in the previous generation multiplied by k... Hence
the name multiplication factor.



Infinite Homogeneous Reactor
(Two-Group Diffusion Approximation)

Diffusion equations:

-DV’D, +X D, +3
~-DVD, -X

s152 Py = V2 Dy + 12, D,
O, +X ,0,=0

sl—2

Because the reactor Is infinite and the flux (both fast and
thermal) is constant in space, we have:

2 D, +2
>

O, =v2, O +1v2,,D,
O +2 ,D,=0

s1>2

s1>2



Attempt to solve the system:
Group 2 equation yields:

2
CDZ — 51_)2 (Dl
az2

Substituting into the group 1 equation, we obtain:

2
O, =X D, +12,, 2220,

sl—>2
2a2

D, +3



Obviously, the above is only satisfied If:
) 1
oA o =VE, VE,, 2 |
al s1—2 ( fl f2 Zaz ]k

which may not always be the case. This means that unless the
above Is satisfied, we cannot have a steady-state solution to
our diffusion equations.

To force the system of equations to have a (steady-state)
solution, we resort to the same trick as before: use a "fudge
factor" 1/k that multiplies fission productions.



Thus, our equations become:

1
2,0 +2 ,0, = k_(VZ (1D + V2, zq)z)
— zsl—>2(D1 T Zaz(:[)z =0
>

s1—>?2

.. D, =—==0, .
And, by substituting * % ' into the fast-group
eguation, we obtain:

1 2S —>
O, = E(VZHCI)l +V2,, Zlazz (Dlj

> D, +3

s1—>2



Dividing by the flux, we obtain:

1 >
> o+Y = V. vy, S22
al s1-52 kOOE f1l f2 232 j
We can now solve for k., .
>
VX VR, 22
z:a2

K, =
2+

s1-52



Choosing Kk, to have the above value ensures the system
admits a solution.
That solution is

We cannot find the fast flux explicitly.



A close look at the system of equations

1
2 D +2y ,0, = k_(‘/z 11Dy + V2 2(1)2)
— Zs1—>2(1)1 + Zazq)z =0

reveals that it is a homogeneous system of linear equations
which defines an eigenvalue/eigenvector problem. The

eigenvalue is 1/k,, and, as expected, the eigenvector can only
be determined up to a multiplicative constant which, in our

solution, IS ;.



K, can, in the two-group case be interpreted in three different
ways:

1. the eigenvalue that allows the system of equations to have
a solution

2. the ratio of productions over losses

3. the factor by which the number of neutrons gets multiplied
from one generation to the next



Criticality

K<1 - Subcritical
e Number of neutrons decreases form one generation to the next
e Rate of neutron production smaller than rate of neutron loss

K=1 - Critical
e Number of neutrons stays constant form one generation to the
next
e Rate of neutron production equals rate of neutron loss

K>1 - Supercritical
e Number of neutrons increases form one generation to the next
e Rate of neutron production larger than rate of neutron loss



Neutron Life Cycle, Four Factor Formula, Six Factor
Formula



The Four-Factor Formula

et us look at the group 1 equation in the two-group
approximation.

.0 +3

s1—>?2

@, =ki(vzf1c1>l+vzf2cp2)

o0

Solving for the multiplication factor, we obtain:

B V2 O +vx. 0,

k =
X0 +E, D,

sl—>2



The above can be processed as follows:

vz @ i, 0, vi @ +ve,d, v, 0,
) 2,0 +2 0 2D +2y LD 2D,
B V2 O, +v2,, 0, V2 ,D,
s, > D +3

K

s1—52

D,

sl—-2

By making the notation:

V2 P, +v2, 0,
E =
V2 ,D,



We obtain:

. V2 ,D,
: Zal(l) +2$1—>2(D
We can continue the processing:
k — £ VZfZCDZ EaZCDZ — ZaZCDZ VZfZCDZ
) Zalq)l + Zsl—>2(D1 ZaZCDZ zalq)l + Zsl—>2q)1 ZaZCDZ

Denoting:

>,
TS D, 43

D,

s1>2



We have:

Vi, ,d,
2,,D,

K, =&p

We can, moreover divide the thermal absorption cross section
Into the absorption cross section for fuel, and the one for
moderator.

v fuel moderator
Za2 o Za2 + Za2



With this, we can rewrite the formula for the multiplication
factor as follows:

VZfZ(DZ Z:cauzelq)z _ 6p22uzelq)2 szZ(DZ
2azq)z Z:cauzmq)z zazq)z 2jf;uzmq)z

K, =&p

Denoting:
i,
2aZCDZ
and
n = V2 ,D,

T« fuel
z“a2 CDZ



We obtain:

K, = &ptn

This 1s known as the four factor formula.



The names and interpretation of the factors are as follows:

Fast fission factor

vz O +ve, @,  total fission rate
V2,0, thermal fission rate

E

Resonance escape probability

— 2aZCDZ — Zsl—>2(1)2
> P +2, D, T D+

B rate of slowing down
rate of slowing down + absorptions

p o,

sl1>2 s1->2




Thermal utilization factor

> @, rate of thermal absorption in fuel

f = —
x. ., 0, total rate of thermal absorption s

n (number of neutrons produced per neutron absorbed in fuel)

v, D,
s,
_rateof neutron productionthroughthermal fission
rate of thermal absorption




Six Factor Formula

For a finite reactor, in addition to the processes we studied
above, fast neutrons, as well as thermal neutrons can leak out

of the reactor.

We define the following two factors to account for the
leakage:

a . = fast non - leakage probability
a, = thermal non - leakage probability

Our expression for k then becomes the six-factor formula:

Kt = ePfna; o,



One-Group Treatment of Finite Reactors



Diffusion Equation

DVZCD—ZaCD+%VZfCD =0

VD +%(—za +%vzf jCD =0

Notation:
(B is called Buckling)

B* :%(—za+%vzfj




The equation can be rewritten:
VO +B®=0

B depends on k. It turns out that B cannot take just any value.

It has to be equal to the value imposed by the geometry,
called the geometrical buckling.

2 2
B? = B



Then:
i(—z +1vzfj =B’
k

offers an equation for k.

_ v
B:D+Z,

K

Where ByD is the leakage.

Things will become clearer by showing an example.



Infinite Slab Reactor

A @

(@/2+d) (a/2+d)

o) -0

where
a=a+2d



We then have:
+B*®=0

dx?

Boundary conditions:

{948

The symmetry of problem implies:

do

1 =0
dx |, _,




General Solution:

d(x) = Acos Bx + Csin Bx

dd(x) — [— ABsin Bx + CBcos BX]=
dX x=0
-CB=0=C=0

Hence:

d(x) = Acos Bx



Vacuum B.C.

Implies:
cos(ﬁj =0
2

Ba -2 i kn

2 2

Ba=r+2kr=02k+D)zr=nx
Yields:

n
B =— B =2

a a



Fundamental solution
TIX
®(x) = AcosB,x = Acos(fj
a

B, is the geometrical buckling

A cannot be determined from the diffusion equation. It can
be determined from the condition on the reactor power.

i
P=E.X, [d(x)dx
%



2aE X Asin(ﬂéj
p_ 2a

T

D(x) = i cos(ﬁj
2aE. Y, a

V2 Vs

k

T BID+3, (ﬂ
a

2
j D+2,



Spherical Reactor

w = @r (change of variable)
d*w
dr?
w(r) = Asin Br + C cos Br

+Bw=0

(r) =¥




We have, In sequence:

%irzdg+ B°® =0
r-dr dr

D — Asm Br +CcosBr
r r

Because the flux has to be finite at r=0, we have:
C=0

sin Br
r

O=A




®(R)=0
BL. R=R+d
2
T
(%)
sin 7/~
o SR
r
The total power can be used to find A.
P=E.X, [®(r)dV dV = 47zr2dr

> sin(g)

D = 2
AE.Y . R r




Infinite Cylinder

)

Z
I~
2 AP
.
X o ,
P

Cylindrical coordinates



We have In sequence:

1 d dCD
rdr dr

+B“d=0

2
d ?+Ed£+BZCD=O
dr r dr

Bessel’s Equation:

Our equation is Bessel’s equation for m=0.



Solution: Bessel functions of first and second kind:

® = AJ,(Br)+CY,(Br)

J — Bessel Function
Y- Modified Bessel Function

[N x
\

Yo(X) “

Yo infinite at origin hence C=0

® = AJ, (Br)



B.C.

®(R) = AJ,(BR) =0

- —
- ~ -~

Jo(X) |

\\
\
\
\
\
\
1
1
]
1
]
/
/
, X1 N

~
~_——-



Final Solution

BR=x,=>B=2
R
(3]
" \R R
@ZAJO(ZAé)Srj



Finite Cylinder
Zn
<
N

Y
)/ ‘‘‘‘‘‘‘‘‘‘

2 2
d ?+£8¢+6 ?+BZ¢:O
or: ror oz




B.C.
d(R,z)=0

H
d(r,—)=0
( 2)
Separation of Variables
®(r,z) = R(r)Z(2)

R

82_0 oR _
or

— = 0
or ,



2
Zli( 8Rj+RaZ+B RZ=0
ror\ or 07°

11d aR 1 0°7
Rr@r or Zaz

— _B?

11d 8R ,
Rrar A —Br; R=AJ,(Br)

16°2
— 5z =5 Z = Acos(B,z)




Solution:

2.405rj 7l
R H

D(r,z) = AJO( ~— |COS—

®(r, z) = AJ,(B,r)cos(B,z)



Point Kinetics



Point Kinetics Equations

part 1: all neutrons emitted in a fission are assumed prompt



Static One-energy-group diffusion equation

o time-dependent diffusion (results from neutron balance)

ang;,t) =VZO(F,1) + DV*O(F, 1) - Z,0(F, t)

o If sources are exactly equal to sinks, then the static equation
results (no time dependence)

0=12, O(F)+DV°D(F) -2, D(F) < -DV°D(F) +Z,D(F) =1X , D(F)

 To keep the static form of the diffusion equation even when the
sources do not exactly equal the sinks, we introduced K,

(multiplication factor) to artificially adjust the sources.

0= %vz D(F)+DV?O(r) -2, ®(F) © -DV?O(F) + X, D(F) = %vz (D(T)




Time — dependent one-energy-group diffusion equation

* Now, we will not use k any more, but rather concentrate on the
time-dependent equation
« Time-dependent one-energy-group diffusion equation

8ngl,t) = VX O(F,t) + DV?D(F,1) -2, O(F, 1)
e But let’s remember:
B ()
O=nvesn=—
V
* SO:
on 1o0d

ot Vv ot



Time-dependence of the neutron flux and neutron density

* We can now write the time-dependent diffusion: in two separate
ways
— concentrate on the flux

1 0D (F,t)

a_— VX O(F,1) + DV?O(F,t) - D(F, 1)

— concentrate on the neutron density

on(r,t)

P VvZ, Vn(F,t)+ DV*Vn(F,t) -, Vn(F,t)




Some assumptions

o Static one-energy-group diffusion equation for a critical reactor
~DV?O(F)+2,D(F) =1Z , ®(F)

e It can be rewritten as:
VO(F) +B*®(F) =0

* Where
Vi — 2

D
o Assume that the equation satisfied by the time-independent flux
In a critical reactor is also satisfied, at any time t, by the time-
dependent flux in a non-critical reactor.

VO(F)+ B°D(F) =0
VZO(F,t) + B°D(F,t) =0 < V°O(F, 1) = —B° (T, 1)

 This Is equivalent to assuming that the spatial shape of the flux
does not change with time

a:BZ



Back to the time-dependence of the neutron flux and neutron density

 \We can now write the time-dependent diffusion
— for the flux

1 0d(F,t)

a—_— VX (7, 1) — DB?@(F,t) — X, D(F,1)

— for the neutron density

on(r,t)
ot

=X Vn(F,t) - DB*Vn(F,t) - = _vn(F,t)



Time-dependence of the neutron density

on(r,t) _ SR G on(r,t)
~ —(VZf — DBV Zav)n(r 1) < ~ =on(r,t)
e Where
a=(Z, -DB2-3 N
on(r,t) _ an(F 1)
at ]

o Integrating over the entire reactor we obtain:

Ian(r’t) d°F = [ en(F,t)d°F
y ot Y,

d
— | n(F,t)d°F = | n(F,t)d°F
dtJ( ) aJ( )

d*r =dV



Time-dependence of the total neutron population

 Total neutron population

n(t) = j n(F,t)dF

Vv

e Equation governing the time behavior of the total neutron
population

%n(t) = an(t) < n(t) = an(t)

e solution

n(t) = n,e”



Time dependence of the neutron flux

LOOLY _ s (7 1) DB2O(F, 1) -3 d(F 1)
vV ot

1 60(F 1) 2

= =1z, -DB2 -3, Jo(F 1)

oD (T, 1) oD(r,1)

=1z, - DB2 -3, Nob(F' 1) = = o®(F 1)

ot ot



 The results are analogous to those for the neutron density.
e Integrating over the volume of the reactor:

j ol t)d?’*zjaq)(r,t)d?’r

Vv

4 j O(7,1)d°F = o[ (T, t)d

V

a¢(t) = a¢?(t) = ¢?(t) — a¢?(t) N ¢?(t) _ ¢?Oe“t

e Where:

#(t) :J O(F.04T s the volume-integrated flux



Observations

 The total neutron population and the volume integrated flux obey
the same equation.

» The relation between the volume integrated flux and the total
neutron population is the same as that between the flux and
neutron density.

O(F,t) = n(F, 1)V

j (7, 1)d°F =V j n(F,1)d°F < @(t) = n(t)V



Point Kinetics Equation without Delayed Neutrons

« Just a special way of arranging the coefficients.

o Usually written for the neutron population, but similar equation
can be written for the volume-integrated flux.

e Multiplication constant

229
keff = 5
2.+ DB
e Reactivity
_k-1 01

Pk K

e We can write:
2, -DB*-%,

o=z, -DB*-3, V=12,V - _

VX DB®+X
vzfv( P T alzvzfv[l—kl

=2,V
1229 VX eﬁ) e



e Notation:

e |t follows that:

* The equation for the neutron population can then be written

dt A = Point kinetics eq. w/o delayed neutrons

« A similar equation can be written for the volume-integrated flux.

dg(t) p -
dt _A¢m




Alternative Processing Leading to the Point Kinetics Equation
)vvzf -DB* -3,
DB’ +X,
%) DB’ +%
DB’ +% 2 | =|DB*+X_ (k-1
( )v[DBZ+z DBZ+ZJ ( a)v( )
« New notation

l = . ‘

(DB2+3, v

« With the new notation the point kinetics eq. can be written (a less
common form):

dn(t) _ K _1n(t)
dt 14
* and, for the volume-integrated flux:

dg(t) k-1
it ; o(t)

=(vx, -DB?-3, Jv=(DB? +




Point Kinetics equation(s)

 Nomenclature — called point-kinetics because the reactor is
reduced to a point — no accounting for spatial or energy
dependence.

« Can be derived starting from a more general, space and energy
dependent, flux.



Names and interpretations of symbols

« Neutron generation time

e Interpretations
— Average time between two neutron births In successive
generations
— Time It would take to generate the current number of neutrons
at the current generation rate.
— Average “age” of neutrons in the reactor. (Note that this Is a
time, and not the Fermi age).



* Neutron life time
1 1
{=— >
v +DB
 For an infinite reactor:
il
VY,
e Interpretations
— average time between the birth and death of a neutron
— Time necessary to lose all the neutrons in the reactor at the

current loss rate.
— Average life expectancy for neutrons in the reactor.




Important Notes

e For a critical reactor the generation time and neutron lifetime are
equal.

e For a supercritical reactor, the generation time is shorter that the
neutron lifetime. Neutrons live longer than the time it takes a
new generation to appear. The neutron population increases.

e For a subcritical reactor, the generation time is longer that the
neutron lifetime. Neutrons live less than the time it takes a new
generation to appear. The neutron population decreases.



Point Kinetics Equations
part 2: Accounting for Delayed Neutrons



Point Kinetics with Only One Delayed Neutron Group

(Equivalent to assuming that all precursors have the same half life)
» \We make the same assumptions about the buckling staying
constant as in the case with no delayed neutrons.
* We write directly the equation for the entire reactor (volume-
Integrated quantities)
e Some neutrons are emitted directly from fission
e Some neutrons come from the decay of precursors.



Neutron Balance Equation for the Entire Reactor
e Sources
— Prompt neutrons from fission

[V @) T =v,2, [OF)dT =v,2 4= (v-v,)Z,p=v(I- B)Z 4

— Delayed neutrons from the decay of precursors
AC (C = total number of precursors in the reactor)

C(t) :jc:(r,t)d?’r

e Sinks
— Absorption
[Z. )T =2, [D(F)d°T =20
V V
— Leakage

| DB®(F)d°F = DB’ [ ©(F)d°F = DB
Vv \



Precursor Balance Equation for the Entire Reactor

e Source
[vyZ @A =v, 2, [DF)T =v I §=1p2 ¢
e Sink
AC

Neutron and Precursor balance Equations
 Neutron Balance

$zvpzf¢3_za¢3_oszqz+zé
e Precursor Balance
% = defé_/lé(t)

* \We now have a system of two (coupled) differential equations.



Point Kinetics Equations with One Group of Delayed Neutrons

 Rearrange the first equation in a few steps

?z[v(l—ﬂ)&c 3, -DB’}p+4C
dn(t) _— [V(l_ﬂ )Zf -x,—-DB ]&4_16
dt V2
dn@® _ {vzf -%,-DB _ﬁvszﬂé
dt VX V2. |V
antt) _sz{l—Z“DB —ﬁ}gmé
dt VY V



» Rearrange the second equation

dC(t)

dt :defé_/lé(t)

dC(t)

T=Vﬂ2f¢—ﬁc(t)

FaN e\

O _ s, 2- 28
dt V



Make the same notations and observations as for the case with no
delayed neutrons

é(t) =n(t)vV < n(t) = @

VX 1_2a+DBZ
>, +DB* k )




e Neutron Balance Equation

an(t) =VVZ, {1— 2 + DB -p }g+/1 C
dt VY Y
an®) _P=F )+ 8
dt A
 Precursor Balance Equation
O _ s, 2228
dt V
dC(t) _p :
=—n(t) - AC(t
A (t) - AC(t)
 Final form of Kinetics equations using the neutron population
In®) _P=8 hiy+ 46
dt A

dC(t) B .\ .4
— =N -AC()



 Final form of the point Kinetics equations using the volume-
Integrated flux

&(t) =n(t)vV< n(t) = @

WO _p=h dgt) _p-p - 1 -
dt A (1) +VAC < - — i)+ = e
dC(t) dC(t)

Tqt ﬂ1¢(t) AC() & —2

a. AV = BVE, $(t) - AC(1)



Point Kinetics Equations with Six Groups of Delayed Neutrons

« Equations using the neutron population
(7 coupled differential equations)

antt) _ p ;ﬂ 1+ 46,

dt

dC, (1)
dt

:ﬂAk n(t) - 4C, (1), k=1..6

 Equations using the volume-integrated flux
(7 coupled differential equations)

dgt) _p=B 2y o, o L APt) _p-B o 1 & s
e ¢(t)+v§ﬁkck© A ¢(t)+Asz§ﬂ«Ck
dC () B 1o\ A dC,(t) PR
dt —Av¢(t) AC (1) & dt =BV P(t) - 4,C, (1)



Inhour Equation



Inhour Equation

Start with the point kinetics equation

dn(t) o-p ST
= nt)+ > A4.C
o A (t) kZ; C

dC, (1)
dt

:ik n(t)- 46, (1), k=1..6

This is a system of seven coupled differential equations with
constant coefficients.

Solutions are of the form




Substituting the above form we obtain:

B 6
on="- 'Bn+Zikck
A =i

p

@C, :Xn—/lkck, k=1...6

Solving for ¢y In the precursor equations, we obtain:

B,
— - k=1..6
A4
B,

6
=Aw+[-)> 1
1% o+ [ kZ:; k(a)-l-ﬁk)




Ao+ f

We can solve graphically for @ by plotting the RHS and

Intersecting it with a horizontal line at y

Reactor Period:



Discussion
If =0

w, =0->¢e" =1

@,..0,<0—>e"

n(t)=a, +a,e” +...=a, +a,e " +...

n(t) — after a long time n becomes constant

If p<0

w <0; k=12,...7

nit)=ae " +a,e " +a,e ..ae "

as t—oo; nt)—0



n(t) |

:
n(t) = ae™ [1+ Zﬂe(“’k“’”tj
=2

For large t

t
n(t)~ae™ =ae’

Asymptotic behavior of the neutron population. Here is where
the reactor period comes in.



if P >0

@, >0
o, >0 k=12,..7

nit)=ae" " +a,e

7
n(t) =ae™ (1+ Zﬁe(“’k“’mj
k=2 4

t —~1

+a.e " ...a,e

For large t

ant

n(t) ~ ae™ =ae’
1

T=—
w,
The asymptotic behavior of the neutron population is governed
by the reactor period.



Fission Product Poisoning



Fission Product Poisons

e Poisons are 1sotopes with large absorption cross sections
for thermal neutrons

e Some poisons are introduced intentionally to control the
reactor, such as B or Gd.

e Some poisons are produced as fission products during
normal operation of the reactor.

e X¢ and Sm are the most important of these
e We will only study Xe 1n detail



Effects of Poisons on Reactivity

For a homogeneous reactor, in a one-energy-group
formalism:

If we add a poison (say Xe) with a uniform concentration
(number density) X, we have:

ZaX — XGaX

Za — ZaO + ZaX



It follows that:

V2 V2

k. =
“ % +DB* 3 +3,, +DB’

The 1nsertion of the poison induces a change 1n reactivity:

1 1 11
Ap=p—p,=|1-——|-|1-—F|=——
L keff) { keOffJ keoff keff

If we assume the initial reactor to be critical (2o =0) | then the
reactivity of the reactor with poison is:




1 1 X,+DB° X +Z,+DB* X,  Xoy

=Ap = — = — —
p=os kS K D VE Vv, Vv

In order to calculate the reactivity inserted by the poison, we
need to be able to calculate the concentration of poison
nuclei, X.




Effects of Non-Uniform Poison Concentration

In the case of non-uniform poison concentration we need to
apply the perturbation formula for reactivity:

:CI)z(F)éZa(F)dV

[ 02(F)z,, (F)dV j DA(F)X (F)o, dV

V

[ D2(F)Z, (F)dV

\Y

(D(PZ(NAV [ ©7(F)vE, (F)dV

Vv

It 1s easily seen that for a uniform distribution of poison, we

IcCover.

>, [@X(F)dv

v 2ax

. 123
vz, [ ®*(F)dV f

\



Xe Production and Destruction

absorption of a neutron

0

T T T

fiss fiss fiss

Simplified Xe production/destruction

absorption of a neutron

T
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Finding the Xe Concentration

To find the number density of Xe nucle1, we first write the
balance equation for Iodine nuclei:

dl
=N =4

Where 7 is called the fission product yield and equals the
average number of I nuclides created per fission.

Next, we write the balance equation for Xe nuclei

dX
E:ﬂ“ll +yy 2P — Ay X =00 X



| Concentration for Equilibrium (Steady-State)
Conditions

:7/|2f¢
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Xe Concentration for Equilibrium (Steady-State)

Conditions

Al +v
X = | 4 f¢
Ay T 050
X :(7/1+7/X)2f¢
) Ay T 059

Note that both I and Xe concentrations depend on the flux
level.



Xe Absorption Macroscopic Cross Section

_ (V1 +7x )2 O

Yy =X
Ay +Ox @

00 JaX

By making the notation:

ﬂ’X

O ax

=0.770x10"cm*sec™

Dy =

We can rewrite the Xe macroscopic cross section as:

:(7/1+7x)2f¢

ZaX
Py + 9




If Xe i1s Assumed Uniformly Distributed:

2y 1 (n+7x)2: ¢ :_(7/1+7/X) %

p:— —
Vo VX Oy +¢ v Oy + ¢

r+7e) @
Vo gt
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For @ >>®, we have:
Vit Y
V
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For ® <<®, we have:
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Xe After Shutdown-Reactor Dead Time

Shutdown means @ =0

[odine

() =1,
Xe

ﬂ’l IO (e—ﬂxt _e—ﬁ,,t)

X(t)= X e+
(1)=X, PR




If Xe Is assumed to be uniformly distributed:

_ N _
,0 _ _l (7/| 7/X )¢ e_gxt n ¢ (e _,1| )
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Xe Oscillations

D, >,
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Tilted flux shape
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Consequence of X>X

I o I

o

@, <®, =>Overtime: X, <X,
Consequence:
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N
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In CANDU Reactors the liquid zone controllers are used to
dampen Xe oscillations.



