UNENE Graduate Course Reactor Thermal-Hydraulics Design and Analysis McMaster University Whitby March 19-21, April 23-25, May 2, 2004

Design Requirements

Dr Nik Popov

General Principles

- Nuclear reactor generates power using the concept of a heat engine
 - Direct cycle
 - Indirect cycle
- Most important features of a reactor are:
 - ♦ Fuel
 - Coolant
 - Moderator
- Basic neutron cycle and the role of the moderator
 - Thermal nuclear reactor
 - Fast nuclear reactors

Nuclear Fuels

Thermal reactors can use the following fuels:

- U^{235} only 0.7% in natural uranium
- U^{233} from Th²³²
- $Pu^{239} from U^{238}$
- Most thermal reactors use:
 - Enriched uranium with U^{235} (up to 3%)
 - ◆ Natural uranium with 0.7% U²³⁵

Heat Transfer Considerations

- Most important for a nuclear reactor is to provide heat sink at all times
- Heat transfer is proportional to the surface area
- Designs with high ratios of area to volume best suitable for heat transfer
- Possible geometries of fuel assemblies (cross-section)
 - Circular
 - Rectangular
 - Annular
- Considerations
 - Uranium enrichment
 - Manufacturing cost
 - Heat transfer features

Uranium Fuel Forms

Desirable Fuel Properties

- ◆ Low cost constituents and fabrication
- Good neutron economy
- Good corrosion resistance to coolant
- Physical stability under effects of irradiation, temperature, pressure
- ♦ Safeguards production of Pu

Fuel Materials

- Uranium metal
- Uranium / other metal alloy
- Ceramic uranium dioxide
- Uranium carbide
- Uranium silicide

Fuel Claddings

Desirable Cladding Properties

- Corrosion resistance to coolant
- Mechanical durability
- High operating temperature capability
- Good neutron economy
- Low cost base material and fabrication
- Impermeability to fission products
- Low reprocessing cost
- Fuel Cladding Materials
 - Aluminum
 - Magnesium (Magnox)
 - Stainless steel
 - Zirconium
 - Ceramics

Control Materials

Desirable Control Material Properties

- Corrosion resistance to coolant
- Mechanical durability
- High absorption capability which is controllable with operating time
- ◆ Low cost base material and fabrication
- Stability in high pressure and temperature (fluid or solid)
- Fuel Cladding Materials
 - Hafnium (4 isotopes)
 - Silver-Indium-Cadmium alloys
 - Rare-Earth oxides (samarium, europium, gadolinium)
 - Gadolinium nitrate
 - Boron-containing materials (boron alloys, boron carbide)
 - Boric acid solutions

Reactor Coolants

- Desirable Coolant Properties
 - High heat capacity
 - Good heat transfer properties
 - Low neutron absorption
 - Low neutron activation
 - Low operating pressure at high operating temperature
 - Non-corrosive to fuel cladding and coolant system
 - ♦ Low cost
- Reactor Coolant Materials
 - CO_2 gas
 - Helium
 - Ordinary water
 - Heavy water
 - Organic fluids
 - Liquid metals

March 2004

UNENETH Course – Nik Popov

Reactor Moderators

Desirable Moderator Properties

- High moderator efficiency
 - High logarithmic energy decrement
 - High cross section for neutron scattering (slowing down)
 - High moderation ratio
- Low neutron absorption
- Low neutron activation
- Resistance to damage (irradiation and corrosion)
- Low cost (raw material, manufacture, installation)
- Reactor Coolant Materials
 - ♦ Graphite
 - Ordinary water
 - Heavy water

Moderating Arrangements

- Integral with coolant
 - Coolant and moderator are integrated
 - PWR and BWR reactors use this concept
- Integral with fuel
 - Fuel and coolant are imbedded into the moderator (graphite)
- Integral with moderator
 - Fuel and moderator separate from coolant
 - Pebble bed reactors
- Separate
 - Fuel and coolant are in separate channels (separate from moderator)
 - CANU reactors use this principle

Reactor Core Arrangements

Core lattice arrangements

- ♦ Square
- Hexagonal
- ◆ Triangular

 Fuel assembly arrangements (in order of most area for given perimeter)

- Circular
- Hexagonal (best)
- ♦ Square
- ♦ Triangular

HTS Design Requirements

- HTS main objective is to provide heat transfer at high thermal efficiency
 - Continuous coolant flow must be provided
 - Cost should be minimized
 - Layout should minimize radiation exposure and enable fast construction
 - Provide pressure and inventory control
 - Ensure sufficiently reliable system (minimize down time)
 - Ensure high process efficiency
 - Enhance constructibility
 - Meet safety and licensing requirements
- Design involves fine balance and trade off in design features (and occasionally conflicting requirements)