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Introduction

A pumped system is often employed for flow mediums
circulation and transportation

All piping components in the flow system reduce the
system pressure

Pressure reduction can be minimized but is not always
feasible

Pump capacity must be matched properly with the
system requirements

For design calculations, the pump size has a large
impact on the system cost.
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Applications

e General applications:
— Optimize pump capacity requirement
— Optimize pump energy requirement

e CANDU nuclear reactor applications:
— Determine coolant-flow rate in primary circuit
— Determine local conditions in bundles and subchannels

— Determine flow rate across parallel interconnected
subchannels in fuel bundles
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CANDU Applications
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Conservation Equations

o Mass-balance (continuity) equation
e Momentum-balance equation
e Energy-balance equation

e Cases:

— Steady-state flow in channel of uniform flow area in axial
direction

e Assumptions
— Negligible variation of fluid properties over the control volume
— Homogeneous or separated flow

Pg 6



ogsinodzA |22

Pg7



Basic Equations for Homogeneous-Flow Assumption
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Basic Equations for Separated-Flow Assumption
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Pressure Gradients

e Friction

— Between fluid and channel wall

— Primarily affected by tube diameter, velocity gradient and viscosity
e Acceleration

— Change in fluid momentum between locations

— Significant in channel with varying flow area and fluid temperature
o Gravity

— Change in hydrostatic head

— Only in vertical channel
o Others

— Flow blockages: valves, orifices, bundle junction, appendages, etc.

— Change in flow direction: elbows, etc.

— Change in flow area: sudden contraction, sudden expansion, etc.
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Single-Phase Friction Factor

e Tubes (

L 1o &/ Duse 251
— Colebrook-White equation /7. 737 T Re

e Bundles

— Based on hydraulic-equivalent diameter approach with the
tube-based equation

— Correction for geometry effect (differences between tubes and
bundles)

— Correction for eccentricity effect (differences between
concentric and eccentricity bundles) in crept channels

— Correction for channel shape effect (converging and
diverging channels) in crept channels

— Correction for surface heating effect
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Bundle Correction Factor
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Eccentricity Effect

e More fluid tends to flow in the open region (less
resistance)

e Non-uniform velocity distribution
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Single-Phase Loss Coefficients

e Sudden contraction A"
_ Based on flow-arearatio (1 ) A—oj

e Sudden expansion 4
— Based on flow-area ratio P (1 - A_fj

e Bends
— Based on angle

e Junction and appendages in bundles
— Based on data obtained with production bundles
— Correction for eccentricity effect
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Fuel String Pressure Drop

e Part of the overall pressure drop between headers
e Separated into single-phase and two-phase regions

e Pressure-drop components
— Friction
— Bundle junction, spacers, buttons, and bearing pad planes
— Acceleration
— End fittings
e Simplified evaluation approach for bundles

— Combined friction and form losses into a bundle loss

coefficient

2 2
G~ | JBundieLBundi G
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2py Dpy, 20
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1 ZIRCALOY BEARING PADS
2 ZIRCALOY FUEL SHEATH
3 ZIRCALOY END SUPPORT PLATE
4 URANIUM DIOXIDE PELLETS

S INTER-ELEMENT SPACERS

6 PRESSURE TUBE
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Aligned Bundles Misaligned Bundles
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Water Pressure Drop Test Results
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Freon Pressure Drop Test Station
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on Pressure Drop Test Results
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37-Rod Bundle
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Onset of Significant Void (OSV)

e Determined from axial pressure distributions along the
full-scale bundle simulator in reference and aged
channels

o A linear relation over the single-phase region in
uncrept channel and a parabolic equation over the two-
phase region

o The intersecting point of these two equations is
considered as the OSV

Pg 28



11700

Axial Pressure Distribution

11600 -

11500 ~

11400 -

11300 ~

Pressure (kPa)

11200 ~

11100 ~

11000 -

Start of heated length

OSV point

End of heated length

10900

0 1 2 3 4 5 6
Axial Distance (m)

Pg 29



Sy

OSV Correlations
e Saha-Zuber correlation for tubes qDC,
XOSV:_ 00022
— Peclet number (GD Cp / k) <70,000 kr H g
— Peclet number 2 70,000
XOSV=—154 G gf
4

e Modified Saha-Zuber correlation for bundles
— Update empirical coefficients using full-scale bundle data
— Proprietary information
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TP Frictional Pressure Drop

e The two-phase frictional pressure drop is calculated
with
2 2
APy tp =¢L APr . or APy 1p =910 APt 10

(I)%O = (|>%(1 — Xa)z_b where f = a Re_b

d)% — APf, . based on only sin gle — phase liquid in the channel

(I)%O — APy 1 o based on total flow as sin gle — phase liquid
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Two-Phase Multiplier

Two-phase multipliers, $? or ¢? ,, are empirical factors
based on experimental data

Expressed in the form of graphs or correlations (large
uncertainty due to scatter among data)

Depends mainly on quality and pressure

Mass-flux effect primarily observed at low flows (flow-
regime dependent)

Surface heating has a strong impact (near-wall effect)
on two-phase multiplier in tubes and annuli, but not in
bundles (compensating effect)
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Homogeneous Two-Phase Multiplier

e The simplest form

b
0 f P1—P
02 = TP 91:1+Xa g (Hlj
fi prp Po TP

L _Xa + =X, McAdam et al.
HTp Hg H1
HTp = XaHg +(1—X5) by Cicchitti et al.

X 1—
Wrp = pTP[ aPe (=X,) Mlj Dukler et al.
Pg P1

wrp = f(flow — pattern) Beattie
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TP Multiplier in Separated Flow

Martinelli and Nelson Graph
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Friedel Correlation

e Complex formulation
e Based on over 25,000 data points

o Uncertainty: +26%, +32% and +25% for single-
component upward, horizontal and downward flow

e Recommended by many studies
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Surface-Heating Effect

e Changes in near-wall velocity gradient due to bubble
formation, hence two-phase pressure drop

e Sharp variations due to liquid-film thinning, liquid-
surface contact or vapour-surface contact

e Depends strongly on critical heat flux
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TWO-PHASE MULTIPLIER, ¢

Effect of Surface Heating
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~ Two-Phase Multipliers in Pre- and Post-Dryout Regions

TWO-PHASE MULTIPLIER
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Local Pressure Drop

o Two-phase local pressure drop is calculated with
AP = ? AP
local, TP — YLO, local local, SP
P1—P g

Pg

Homongeneous two — phase multiplier

2
(I)LO, local = 1+X,
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Axial Power Profile in Water Tests
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Flow Tube Inner Diameter (mm)

Axial Flow Tube Diameter Variation
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Pressure Drop (Pa)
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“Pressure Gradient Along Flow Channel
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Summary

e Pressure drop is one of the main thermal-hydraulics
parameters in flow re-circulation systems

e Pressure drop depends on flow conditions, flow
regimes, and surface heating

e Four main components in the overall pressure drop:
friction, acceleration, gravity, and form

e Two-phase pressure drops due to friction and local
disturbances are expressed in terms of two-phase
multipliers

o A large number of correlations are available for two-
phase multiplier; uncertainty remains high due to large
scatter among data
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