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Background

Two-phase flow is encountered in many engineering
systems of chemical, process, power generation, and
petroleum industries

Typical examples are oil-gas pipelines, boilers, heat
exchangers, refrigeration equipment, evaporators,
nuclear reactors, etc.

In a simple way, two-phase flow is an extension of
single-phase flow

In reality, two-phase flow is much more complex due to
the uncertainty in various interfacial parameters

Correlations are often applied in design calculations
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e Two-phase flow
— Simultaneous flow of liquid and vapour of a single substance

— Examples: reactor fuel channels, steam generators, kettle on
a hot stove

— Also referred to as “Single-component two-phase flow”

e Two-component flow
— Simultaneous flow of liquid and gas of two substances
— Examples: oil-gas pipelines, beer, soft drink
— Also referred to as “Two-component two-phase flow”
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Two-Phase Flow in Primary HTS
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Analytical Parameters

e Primary parameters
— Thermal: power

— Hydraulics: pressure, mass flow rate, fluid temperature, pressure
drop

— Geometry: flow and heated areas, hydraulic and heated equivalent
diameters

o (Calculated parameters commonly used in analyses
— Mass flux, heat flux
— Quality: mass, equilibrium, thermodynamic
— Void fraction
e Fluid properties
— Density, viscosity, enthalpy, thermal conductivity, heat capacity
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Key Definitions

Void fraction is ratio of area occupied by vapour/gaseous phase
to total flow area

A
o=—3: (1_(1):&
A A

Mass quality is ratio of vapour mass flow to total mass flow
Wg _ W (1-x)= N _ Wi

X = = ; =
W W+ W W Wi+ W,

Mass flux is mass flow rate per unit flow area

W u
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Volumetric flux (or superficial velocity) is volumetric flow rate

over the total flowarga ~~  q, Qf
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Phasic Velocity Definitions

e Vapour phase velocity

Qg . GX
PgAg Ag Pgo

o Liquid phase velocity

Wf :Qf:G(1—X)
piAs  As pr(1-a)

Us =

e Slip ratio = (vapour velocity)/(liquid velocity)

Ug:WngAf:( X j P (1—(1}
ur  Wipg Ag \1-x){ pg )\ «
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Quality Definitions

e Mass quality
— Direct measurements of vapour and liquid flow
— Varies from 0 to 100%

Wo Wy

TW T W W
e Thermodynamic quality
— Based on enthalpy balance
— Varies from negative to positive values greater than 100%
L _h-h

e Equilibrium quality
— Thermodynamic quality at equilibrium conditions
— Same as mass quality (varies from 0 to 100%)
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Model Assumptions

e Homogeneous flow model

— The two-phase flow is assumed to behave as a single-phase flow
with mean fluid properties

e Equal vapour and liquid velocities
e Thermodynamic equilibrium between these phases
e Separated flow model

— The two phases are considered separate with different fluid
properties
e Constant but not necessarily equal velocities for the two phases
e Thermodynamic equilibrium between these phases
o Flow-regime dependent model

— Between homogeneous flow and separated flow assumptions

— Complex

— Requires good flow-pattern transition criterion
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Flow Patterns

o Distribution of phases inside a confined area
o Depend strongly on liquid and vapour velocities
e Channel geometry

— Minor effect for simple channel with no interconnected subchannel

— Complex for channel with interconnected subchannel (such as
bundle) due to flow and quality distributions

e Surface heating

— Influence near-wall flow patterns resulted in an internal void
gradient

— Wrap-around dry-wall flow patterns not encountered in adiabatic
conditions

e Appendages
— Homogenize the flow pattern at downstream locations
— Transit back to basic pattern at locations far away
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Flow Pattern Map for Vertical Flow
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Boiling

e Vapour formation (nucleation)
— Liquid superheating (at the surface)
— Homogeneous (molecular dynamic within the fluid)

— Heterogeneous (requires nucleation sites in the fluid or at the
surface)

e Bubble detachment

— Balance of dynamic, buoyancy and surface tension forces

o Types
— Pool boiling
— Convective boiling
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Definitions for Transition Points

e Onset of nucleate boiling
— Transition point between single-phase and boiling heat transfer
e Onset of net vapour generation (or significant void)

— Transition point between single-phase and two-phase flow (mainly
for pressure-drop calculations)

e Saturation point

— Boiling initiation point in an equilibrium system
e Critical heat flux point

— Transition point between nucleate boiling and transition/film boiling
e Minimum film-boiling point

— Transition point between transition boiling and film boiling
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Void Fraction

Ratio of vapour flow area to total flow area
Depends strongly on pressure, mass flux, and quality

Applied to calculate the acceleration pressure drop in
steady-state homogeneous code

Large number of correlations proposed
— Homogeneous equation is the simplest
— Chexal correlation is the most complex
— Armand-Massina correlation is applied in the NUCIRC code

Solved from the conservation equations in two-fluid
reactor safety codes
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Effects of Pressure and Quality
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VOID FRACTION OR QUALITY
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Subcooled Void Measurements
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Void Fraction in Bundles

e Void-fraction database
— Tube, annuli, and bundles (from 3 to 37 elements).
— Covered a wide range of flow conditions.
— Uniformly heated (axial and radial)
— A bundle in various sizes of flow tube.
o Effect of bundle geometry on void fraction is small.
o Effect of mass flux is strong.
o Changes in flow-tube size and heat flux affect mainly
the low-quality region (change in onset of significant
void).
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Bundle Geometry Effect

Pressure: 5 MPa, Mass Flux: 0.5 to 1.6 Mg.m'z.s'1,
Heat Flux: 0.1 to 0.98 MW.m*
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Effect of Flow Tube Size

Pressure: 9.8 MPa, Mass Flux: 2 Mg.m?s™', Heat Flux: 0.8 MW.m™
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Void Fraction Correlations

e Homogeneous equation

Xa Vg

B (1—Xa) vf + X5 Vg
e Armand-Massina correlation

_ (0.833+0.167 X5) X5 vg
(1—Xg) vf + X3 Vg
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Specific Applications

o Critical Flow

e Pump operation

e Natural Circulation (thermosyphoning)
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Summary

Two-phase flow terminologies and definitions
presented

Homogeneous and separated-flow models
assumptions described

Flow patterns and transition boundaries presented for
vertical and horizontal flows in unheated and heated

tubes
Convective boiling and heat-transfer modes described

Void fraction data and correlations illustrated
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