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Background

Two-phase flow 1s encountered in many engineering
systems of chemical, process, power generation, and
petroleum 1ndustries

Typical examples are oil-gas pipelines, boilers, heat
exchangers, refrigeration equipment, evaporators,
nuclear reactors, etc.

In a sitmple way, two-phase flow 1s an extension of
single-phase flow

In reality, two-phase flow 1s much more complex due
to the uncertainty in various interfacial parameters

Correlations are often applied 1n design calculations



Terminologies

* Two-phase flow

— Simultaneous flow of any two phases (liquid-
gas/vapour, solid-gas, liquid-solid) of a single
substance

— Examples: reactor fuel channels, steam generators,
kettle on a hot stove

— Also referred to as “Single-component two-phase flow™

* Two-component flow
— Simultaneous flow of liquid and gas of two substances
— Examples: oil-gas pipelines, beer, soft drink
— Also referred to as “Two-component two-phase flow”



Two-Phase Flow 1in Primary HTS
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Analytical Parameters

e Primary parameters
— Thermal: power

— Hydraulics: pressure, mass flow rate, fluid temperature,
pressure drop

— Geometry: flow and heated areas, hydraulic and heated
equivalent diameters

» (alculated parameters commonly used in analyses
— Mass flux, heat flux
— Quality: mass, equilibrium, thermodynamic
— Void fraction

e Fluid properties

— Density, viscosity, enthalpy, thermal conductivity, heat
capacity



Key Definitions

Void fraction i1s ratio of area occupied by vapour/gaseous phase
to total flow area

A
a="9; (1-q)="1
A A

Mass quality 1s ratio of vapour mass flow to total mass flow

W, W
X = g _ g (1 _ X) Wf Wf
W W+ W, W Wi+ W,
Mass flux is mass flow rate per unit flow atea
W u
G———pu——; Gy=G6x; G =G(1-x)

Volumetric flux (or superﬁc1al velocity) 1s volumetric flow rate
over the total flow area



Phasic Velocity Definitions

* Vapour phase velocity
W Qg B G X

_ "9 _
Pghg Ag Pg

Ug

* Liquid phase velocity

us = Wf :Qf:G(1—X)
ptAr  Ar pr(1-0)

 Slip ratio = (vapour velocity)/(liquid velocity)
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Quality Definitions

* Mass quality
— Direct measurements of vapour and liquid flow

— Varies from 0 to 100%

Wo _ Wy

X = =
W W+ W,

e Thermodynamic quality
— Based on enthalpy balance

- Variﬁs fgom negative to positive values greater than 100%
_ T

hig

« Equilibrium quality
— Thermodynamic quality at equilibrium conditions
— Same as mass quality (varies from 0 to 100%)



Model Assumptions

 Homogeneous flow model

— The two-phase flow 1s assumed to behave as a single-phase
flow with mean fluid properties

» Equal vapour and liquid velocities
e Thermodynamic equilibrium between these phases
* Separated flow model

— The two phases are considered separate with different fluid
properties
« Constant but not necessarily equal velocities for the two phases
* Thermodynamic equilibrium between these phases

* Flow-regime dependent model
— Between homogeneous flow and separated flow assumptions

— Complex
— Requires good flow-pattern transition criterion



Flow Patterns

Distribution of phases inside a confined area
Depend strongly on liquid and vapour velocities
Channel geometry

— Minor effect for simple channel with no interconnected subchannel

— Complex for channel with interconnected subchannel (such as
bundle) due to flow and quality distributions

Surface heating

— Influence near-wall flow patterns resulted in an internal void
gradient

— Worap-around dry-wall flow patterns not encountered in adiabatic
conditions

Appendages
— Homogenize the flow pattern at downstream locations
— Transit back to basic pattern at locations far away



Flow Patterns in Vertical Flow
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Flow Patterns in Horizontal Flow




Flow Pattern Map for Vertical Flow
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Flow Pattern Map for Horizontal Flow
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Boiling
* Vapour formation (nucleation)
— Liquid superheating (at the surface)

— Homogeneous (molecular dynamic within the fluid)

— Heterogeneous (requires nucleation sites in the fluid or
at the surface)

 Bubble detachment

— Balance of dynamic, buoyancy and surface tension
forces

* Types
— Pool boiling

— Convective boiling



Flow Patterns in Vertical Heated Channels
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Flow Patterns in Horizontal Heated Channel

L

--...__‘- L
-

-

intermittently dry Tube wall dry

-3 ‘
Single | Bubbl Plug | Slug Wavy
phagse flowli" flow flow + flow %Annularflow
liquid
x=1

x=0




Flow Pattern Map 1n a Heated Channel
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Definitions for Transition Points

Onset of nucleate boiling
— Transition point between single-phase and boiling heat transfer
Onset of net vapour generation (or significant void)

— Transition point between single-phase and two-phase flow
(mainly for pressure-drop calculations)

Saturation point
— Boiling 1nitiation point in an equilibrium system
Critical heat flux point
— Transition point between nucleate boiling and transition/film
boiling
Minimum film-boiling point

— Transition point between transition boiling and film boiling



SURFACE HEAT FLUX
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Void Fraction

Ratio of vapour flow area to total flow area

Depends strongly on pressure, mass flux, and
quality

Applied to calculate the acceleration pressure drop
in steady-state homogeneous code

Large number of correlations proposed
— Homogeneous equation is the simplest
— Chexal correlation 1s the most complex

— Armand-Massina correlation 1s applied in the NUCIRC
code

Solved from the conservation equations in two-
fluid reactor safety codes



Effects of Pressure and Quality
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Subcooled Boiling

Uniform Heat Flux
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Subcooled Void Measurements

o '9 P I
Homogeneous ¢ “Martinelli- _ —
7 | Nelson_|

-~

08 - ?o/g/ :0//
g e

Ao
g / A///M

/ /
i/ )

-

. / 4
s j /
= 0
8 o4 <
.'g / / Mass velgcity
= AN, kg/m’s Freon 22
03 ! 4 83 5 —
/ ressure
/ /a ° 130 1115 bar
5 + 213 b,
O' 2 / [a) 325 E = 25 —
/ A o 480 TJube dia =1cm
/ , vertical-heated
01 +
P
/%
/ /
0 Q40
-0-2 -01 0 01 02 03 04 05

Thermodynamic vapour quality x



Void Fraction in Bundles

Void-fraction database
— Tube, annuli, and bundles (from 3 to 37 elements).
— Covered a wide range of flow conditions.
— Uniformly heated (axial and radial)

— A bundle 1n various sizes of flow tube.

Effect of bundle geometry on void fraction 1s
small.

Effect of mass flux is strong.

Changes 1n flow-tube size and heat flux affect
mainly the low-quality region (change in onset of
significant void).



Bundle Geometry Effect

Pressure: 5 MPa, Mass Flux: 0.5 to 1.6 Mg.m'z.s'1,
Heat Flux: 0.1 to 0.98 MW.m*
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Effect of Flow Tube Size

Void Fraction

Pressure: 9.8 MPa, Mass Flux: 2 Mg.m?2.s™', Heat Flux: 0.8 MW.m?
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Void Fraction Correlations

 Homogeneous equation

Xg Ug

e Armand-Massina correlation

_ (0.833+0.167 x3) X5 vg
(1—Xa5) vf + X5 Vg




Specific Applications

* Critical Flow
* Pump operation

* Natural Circulation (thermosyphoning)



Summary

Two-phase flow terminologies and definitions
presented

Homogeneous and separated-flow models
assumptions described

Flow patterns and transition boundaries presented
for vertical and horizontal flows in unheated and
heated tubes

Convective boiling and heat-transfer modes
described

Void fraction data and correlations illustrated



Questions?
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