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Critical Heat Flux
• Critical heat flux (CHF)

– A phenomenon corresponding to the point where a continuous 
liquid contact cannot be maintained at the heated surface

– Strictly speaking, this particular term refers to the heat flux 
corresponding to the occurrence of the phenomenon

– Other terms often used: burnout, dryout, boiling crisis, and 
departure from nucleate boiling (DNB)

• Applications
– Chemical, mechanical, and nuclear industries
– Nuclear reactors and heat exchangers (boilers and condensers)
– This presentation focuses on nuclear reactor applications



Consequences of exceeding CHF
• Heat transfer rate between surface and 

coolant drops suddenly
– Small increase in heat flux leads to large 

increase in surface temperature for a heat-flux-
controlled surface (e.g., electric heaters)

– Small increase in surface temperature leads to 
decrease in heat flux for a temperature-
controlled surface (e.g., steam condensers)

• Surface may overheat and become damaged
• Corrosion may occur in CHF region
• Reduction in operating efficiency
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CHF Mechanisms

• Pool Boiling
– Countercurrent flow (helmholtz) instability
– Micro-layer evaporation (highly subcooled

conditions only)
• Flow Boiling

– Collapse of liquid sub-layer
– Bubble crowding
– Film depletion
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Flow Boiling CHF Mechanisms
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Variation of Film Flow Rate
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Transition of CHF Mechanisms
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CHF Experiments in Simple Geometry
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Measurements of Temperature Rise
• Stationary thermocouples

– Burnout/dryout at specific locations
– May not represent initial CHF value
– No information on subsequent CHF and drypatch

spreading
• Moveable thermocouples

– Provide coverage almost over the entire heated 
sheath

– Provide initial CHF, subsequent CHF and drypatch
spreading

– More conservative
– Time consuming (scanning of the entire area)



Temperature Traces in Tube CHF Test
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Bundle Simulators

• 6-m (20 ft) long full-scale 
bundle strings with 
junction and appendages

• Non-uniform axial and 
radial power distributions

• Sliding thermocouples 
inside rods at several 
downstream bundles in the 
string
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Axial Flow Tube Diameter Variation
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Moveable Thermocouples
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Applications of CHF Data
• Licensing submissions of nuclear reactors

– Mainly full-scale bundle data
– Quantification of impact of separate effects

• Understanding the phenomenon
– Fundamental and bundle specific studies
– Parametric and separate effects

• Developing correlations and models
– Ad hoc equations for specific applications
– Generalized methods for wide range of applications

• Validating correlations, models and reactor 
safety codes
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Parametric Trend of CHF
• CHF experiments based on constant inlet-flow 

conditions (outlet pressure, mass flow rate, and 
inlet-fluid temperature)

• Constant geometric factors (hydraulic diameter 
and heated length) in each test series

• Measurement of CHF power is the prime interest
• CHF locations (both axially and radially) are also 

needed
• Other measurements of interest

– Circumferential CHF location
– Subsequent CHF
– Pressure drops



Effect of Inlet Temp. and Mass Flux

Mass Flux
940 kg.m-2.s-1

1670 kg.m-2.s-1

2650 kg.m-2.s-1

Pressure: 138 bar
Diameter: 7.7 mm
Heated Length: 45.7 cm

6

5

4

3

2

1

0
500 750 1250250 1000
Inlet Subcooling (J.kg-1)



Effect of Outlet Pressure
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Effect of Tube Diameter
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Effect of Heated Length on CHF
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Local CHF Condition Analyses
• CHF values based on inlet-flow conditions are limited 

to a specific channel geometry and heated length
• Problem lies in the difference in local CHF conditions, 

mainly thermodynamic quality (or enthalpy)
– Low quality (or enthalpy) for short heated length
– High quality (or enthalpy) for long heated length

• Thermodynamic quality evaluated with inlet-flow conditions and 
power

• Reactor safety analyses employ the local conditions 
approach, based on local pressure, mass flux and 
quality to predict local CHF
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Quality Effects on Local CHF
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Tube Diameter Effect on Local CHF
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CHF Prediction Methods

• Analytical Models
• Empirical Correlations
• Look-up Table Method
• Scaling Methods



Analytical CHF Models
• Analytical models have more academic appeal, but are 

usually limited to narrow range of conditions of data base 
for which constitutive relations are measurable 

• Annular Film Dryout Model (e.g., Hewitt, Whalley and co-
workers)
– Accounts for evaporation, entrainment and deposition
– CHF occurs due to liquid film depletion

• Bubbly-Layer Model (Weisman and co-workers)
– CHF occurs when near-wall void reaches 82%

• Equations based on Helmholtz instability
– Pool boiling: CHF occurs when countercurrent flow (liquid in, 

vapour out) becomes unstable

CHF = K Hfg ρg
1/2 (σ g [ρl-ρg])1/4



Correlations
• More than 500 correlations available for water 

flow inside tubes
– Overall power hypothesis
– Local conditions hypothesis

• Accurate over range of database
• Each correlation has a limited range of application
• Correlations are empirical - extrapolation not 

recommended
• Generally, empirical correlations apply to one 

fluid only.



Overall Power Correlations
• Critical power expressed in terms of system parameters 

(i.e., pressure, mass flow rate, inlet temperature or inlet 
subcooling, heated length, and diameter)

Critical Power = f ( P, W, ∆Hin, Geometry )

• Reference formulation based on the linear trend of critical 
power (or CHF) with inlet temperature (or subcooling)

• Additional terms included for separate effects (such as 
axial and radial heat-flux distributions)

• Good prediction accuracy
• Examples

– The Bowring correlation for tubes
– The EPRI-2 correlation for bundles



Limitations of Overall Power Correlations

• Applicable for reactor design calculations
– Sensitivity analyses with minor variations in inlet-flow 

conditions
– Quick calculations (no iteration required)

• Valid only for a specific geometry, heated length, heat-flux 
profiles, and the range of conditions of the database
– Any variations may affect the CHF location and hence power

• Extrapolation is not recommended
– Incorrect asymptotic and parametric trends

• Axial and radial CHF locations cannot be predicted



Local CHF Correlations
• CHF expressed in terms of local parameters (i.e., pressure, mass

flux, thermodynamic quality, and diameter)
CHF = f ( P, G, XDO, Dhy )

• Reference formulation based on the linear trend of CHF with 
critical quality (transformed from the linear trend of critical 
power with inlet subcooling)

• Additional terms included for separate effects (such as axial and 
radial heat-flux distributions)

• Larger prediction scatter than the overall power correlations
• Apply together with the heat-balance equation to determine 

critical power and CHF location (require iterations)
• Examples

– The Biasi correlation for tubes
– The Becker correlation



Limitations of Local CHF Correlations
• Applicable for design and safety calculations

– Sensitivity analyses with minor variations in inlet-flow 
conditions

– Quick calculations (no iteration required)
• Valid only for a specific geometry, heat-flux profiles, and 

the range of conditions of the database
– Any variations may affect local flow and enthalpy distributions 

and hence CHF
– Generalized methods available to extend the applications

• Extrapolation is not recommended
– Incorrect asymptotic and parametric trends

• Radial CHF location cannot be predicted



CHF Look-Up Tables
• Normalized CHF data banks for reference channels

– Tubes
– Triangular-array bundles
– CANDU bundles of natural-uranium fuel in a nominal channel

• Generalized correlations applied to develop the base table
• Experimental data implemented to improve accuracy and 

update parametric trends
– Statistically extended to table matrix conditions

• Currently being used extensively in design and safety 
analyses

• Used as look-up table or computer-code subroutine
• Applicable for other geometries or flow conditions via 

modification factors



Tube CHF Look-Up Tables

• Present CHF values for uniformly heated, 
vertical, tubes of 8 mm inside diameter, 
cooled with upward flow of water

• Cover the widest range of flow conditions 
(all possible CHF regimes)

• Exhibit correct asymptotic and parametric 
trends (smooth transition between various 
CHF regimes)

• Detail prediction uncertainty available at 
sub-region levels



Database for Tube CHF Table
• Database (28014 Light-water CHF data from 46 data sets)

– Ranges of test conditions:
• Pressure    0.1  to 21.2 MPa
• Mass Flux   0.006 to 24.27 Mg.m-2.s-1
• Critical Quality -1.65 to 1.57
• Diameter   0.62 to 92.4 mm
• Heated Length 0.011 to 20 m
• Inlet Subcooling -1211 to 2711 kJ.kg-1

• Range of data included in development (21904 points)
• Pressure 0.1 to 20 MPa
• Mass Flux 0 to 8 Mg.m-2.s-1
• Critical Quality -0.5 to 1
• Diameter 2 to 32 mm
• Length/Diameter Ratio > 80
• Inlet Quality < 0
• Vertical upwards flow only



Section of CHF Look-up Table
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Prediction Accuracy of Tube CHF Methods

6.80-0.23131291995 Tube CHF table
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General Applications of Tube CHF Table
• Reference CHF is assumed for a uniformly heated vertical 

tube of 8 mm inside diameter and cooled with upward flow 
of water

• Extension to other cases using modification factors
• Simplification

– all separate effects are mutually independent

• CHF correlation

CHF = CHFTABLE K1 K2 K3 K4 K5 K6 K7 K8 K9

K1 to K9 are modification factors to account for subchannel specific
effects (e.g., element gap size, subchannel equivalent diameter,
adjacent heated/unheated surface, upstream spacer, etc.)



CHF Modification Factors
CHF correction factor Ki = 1 for

K1 – Tube diameter factor Dhy = 8 mm

K2 – Bundle geometry factor Open bundle

K3 – Spacer-effect factor Large spacer pitch

K4 – Heated-length factor Length-to-Diam. Ratio > 80

K5 – Axial-flux-shape factor Uniform AFD

K6 – Circumf.-flux factor Uniform CFD

K7 – Horizontal Flow factor Vertical flow

K8 – Low-flow factor Mass Flux > 50 kg.m-2.s-1

K9 – Transient-effect factor Steady state



Diameter Effect

• Depends on CHF 
regimes
– CHF seems to increase 

with increasing 
diameter at highly 
subcooled conditions

– CHF decreases with 
increasing diameter at 
positive quality regions

• Simplified correlation 
representing the 
overall effect

where Dhy is the hydraulic diameter in 
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CHF Ratio with respect to 8-mm Tubes
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Bundle CHF Methodologies
• Empirical bundle CHF prediction methods 

– Require extensive data base on bundles of interest
– Suitable for design and CHF power evaluations
– Applicable only within the range of the database

• Subchannel codes 
– Predict enthalpy and flow at each subchannel
– Require subchannel CHF prediction method (tube based) and 

spacer mixing/enhancement model

• Enthalpy imbalance approach 
– Enthalpy imbalance, in terms of thermodynamic quality, between 

critical subchannel and bundle cross-sectional average values 
– Apply the tube-data-based CHF prediction method with a modified 

thermodynamic quality accounting for the enthalpy imbalance



CHF Correlations
• Mainly for critical channel power calculations
• Based on full-scale bundle data
• Flux-corrected local CHF correlation for uncrept channels

• Boiling-length-average CHF correlation for uncrept and 
crept channels
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Prediction Errors in Channel Dryout
Power of Bundle CHF Correlations
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Bundle CHF Table
• Applicable over a wide range of flow conditions:

– Pressure: 0.1 to 20 MPa
– Mass flux: 0 to 8 Mg.m-2.s-1

– Critical quality: -0.5 to 1.0
• Table entries based on a generalized bundle CHF model, 

providing correct asymptotic and parametric trends.
• Experimental data were implemented to improve the 

prediction accuracy.
• Modification factor have been derived to account for the 

creep effect
• Transformation factor is provided to convert tabulated 

BLA CHF values to local CHF values for transient 
analyses.



Prediction Errors in Channel Dryout
Power of Bundle CHF Table
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Other Bundle Effects
• Spacing devices

– Enhancement of CHF
– Apply the correlation previous described

• Radial power distribution
– Groeneveld defined a bundle imbalance factor with reference to 

the optimal 37-element bundle
– Dryout occurs simultaneously at all rings in the optimal bundle
– The same technique has been extended to other bundles

• Transient effect
– Slow flow and power transients
– Transient CHF is either the same or higher than steady-state 

CHF at the same local conditions



Application of CHF prediction methods
• To set the operating power with a comfortable margin to avoid 

CHF occurrence 
– Margin expressed as 

• MCHFR – at constant pressure, mass flux, and critical quality, 
• MCHFPR – at constant pressure, mass flux, and inlet fluid temperature
• MCPR – at constant pressure, pump characteristic, and inlet fluid temperature 

• To evaluate the maximum sheath temperature during LOCA, 
LOFA or LORA
– Usually occurs first at initial CHF location (low overpowers)

• To evaluate the thermalhydraulic and neutronic responses to 
CHF occurrence in a reactor core
– Requires knowledge of how CHF spreads in the reactor core
– Requires best-estimate predictions of average CHF and/or area in 

dryout as a function of power. 



CHF in Reactor Analyses
• Establish reactor power under normal operating conditions

– Common licensing criteria:
• No burnout/dryout during operation (at all conditions of interest, 

including uncertainty)
• Sheath temperature below a preset value (e.g., 600oC)
• Fuel centreline temperature below the melting value

– Burnout/dryout is the limiting criterion
– Operating margin (minimum 20% plus uncertainty and operating 

flexibility)
• Determine sheath and fuel temperatures in transient analyses

– CHF is considered as the reference point for post-dryout analyses
– Postulate accident scenarios: loss-of-regulation, loss-of-flow, loss-

of-Class-IV-power, loss-of-coolant (small and large breaks), etc.



Operating Margin



Terminology
• Dryout (or critical heat flux, CHF)

– Fuel sheath can no longer maintain a continuous liquid contact
– Current licensing criteria: no burnout/dryout at any locations in the 

fuel string
• Critical power (CP)

– Critical power corresponding to the first CHF occurrence (at 
constant pump head)

– Require knowledge on various disciplines (physics, fuel, fuel 
channel, thermalhydraulics, etc.)

• Critical power ratio (CPR)
– Ratio of CP to operating power

• Regional Overpower Protection (ROP)
– Prevent burnout in any fuel assembly during a slow LOR event
– Full-core analysis of all possible scenarios
– Establish trip setpoints for various detectors



Critical Channel Power
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Thermal-hydraulic Parameters
• Pressure drop

– Establish channel flow
– Components outside of the core are independent from fuel bundles
– Pressure drop components

• Friction, form losses due to spacing devices, acceleration, gravity
• Geometry dependent

• Critical heat flux
– Establish critical power (based on pressure, flow and inlet-fluid 

temperature)
– Bundle design dependent
– Depend on many parameters: local flow conditions, spacing 

devices, axial and radial heat-flux distributions, bundle 
eccentricity, and others.



CHF Margin Definitions
• CHF ratio is defined as

at constant thermodynamic 
quality

• Critical power ratio is 
defined as

• at constant inlet-fluid 
temperature

powerOperating
PowerCriticalRatioCP =

poweroperatingatq
CHFRatioCHF

local
=

Minimum
CHF Ratio

Thermodynamic
Quality

CHF

qlocal at 
critical
power

Critical
Quality

qlocal at
operating
power

Inlet
Quality

Constant pressure, mass flux and inlet quality



Uncertainties in Reactor Calculations
• Uncertainties in CHF measurements using bundle simulators

– errors in flow, power, pressure and inlet temperature measurements
– inadequate CHF detection methods
– variations in flux distribution across/along bundle
– geometric tolerances

• Prediction uncertainties of CHF correlations or subchannel codes
• Uncertainties in reactor conditions

– reactor flow, pressure and temperature (from system safety codes)
– reactor power measurements (from detectors)

• Uncertainties in extrapolation to in-reactor conditions
– electrical vs nuclear heating
– flux tilts across elements, bundle, and core
– reactor aging effect (creep, fouling of pipes, etc.)



Reactor Operating Margins
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CHF Margin/Error Propagation

ε=±6%

ε=±2%

ε=±12%

Channel Power

Critical Flow

CHF Power Curve

Pump Characteristic

Critical Power

Critical Quality

Inlet-Fluid Temperature

ε = ± 12%

ε = ± 6%

ε = ± 2%

• Experiments are conducted with 
constant inlet conditions (pressure, 
mass flow rate and inlet-fluid 
temperature)

• Reactors operate with constant pump 
curve and constant pressure and 
inlet-fluid temperature

• Propagation of uncertainties: 
– 12% error in CHF (constant local critical 

conditions)
– 6% error in CHF power (constant inlet-

flow conditions)
– 2% error in critical power (constant 

pump curve)
• Applies similarly to margins to CHF 

occurrence



Uncertainty in CHF Correlations
• Most developers of CHF prediction methods apply the 

following approach to quantify the uncertainties 
– Direct substitution method (DSM) or constant dryout

conditions approach
– Heat-balance method (HBM) or constant inlet conditions 

approach
• Uncertainty based on the heat-balance method is used 

in establishing the operating power
– No prior knowledge of critical quality (or CHF location) and 

hence direct substitution method is not applicable
• Uncertainty based on direct substitution method is 

applicable for safety analyses
– Sensitivity analyses examining the impact of CHF 

uncertainty on maximum sheath-temperature predictions



Prediction Error Definitions
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Application to Accident Analyses
• Effect of transient on CHF

– Slow transients, cycle>10s, no significant effects
– Fast transients, cycle<1s, significant effect on CHF is likely 

• Thermal-hydaulic and neutronic responses to CHF 
occurrence (partial bundle dryout)
– Depends on how well we can predict the spread of dryout
– CHFavg can be much higher than CHFinitial at some cross-section 

locations
• e.g., CHF just downstream of grids/spacers may be 200% higher than 

CHFinitial

– Subchannel codes are the most promising tool for the analyses



PDO Temperature Variations in Bundles
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Summary
• CHF mechanisms in pool and flow boiling 

have been examined
• CHF experimental techniques have been 

described
• Parametric trends of CHF data have been 

illustrated
• Prediction methods have been presented for 

CHF in tubes and bundles
• Applications of CHF in design and safety 

analyses have been provided



Questions?
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