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Introduction
• A pumped system is often employed for 

flow mediums circulation and transportation
• All piping components in the flow system 

reduce the system pressure
• Pressure reduction can be minimized but is 

not always feasible
• Pump capacity must be matched properly 

with the system requirements
• For design calculations, the pump size has a 

large impact on the system cost.



Applications
• General applications:

– Optimize pump capacity requirement
– Optimize pump energy requirement

• CANDU nuclear reactor applications:
– Determine coolant-flow rate in primary circuit
– Determine local conditions in bundles and 

subchannels
– Determine flow rate across parallel 

interconnected subchannels in fuel bundles



CANDU Applications
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Conservation Equations
• Mass-balance (continuity) equation
• Momentum-balance equation
• Energy-balance equation
• Cases:

– Steady-state flow in channel of uniform flow 
area in axial direction

• Assumptions
– Negligible variation of fluid properties over the 

control volume
– Homogeneous or separated flow



Force-Momentum Balance within a 
Control Volume



Basic Equations for Homogeneous-Flow 
Assumption
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Basic Equations for Separated-Flow 
Assumption
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Pressure Gradients
• Friction

– Between fluid and channel wall
– Primarily affected by tube diameter, velocity gradient and viscosity

• Acceleration
– Change in fluid momentum between locations
– Significant in channel with varying flow area and fluid temperature

• Gravity
– Change in hydrostatic head
– Only in vertical channel

• Others
– Flow blockages: valves, orifices, bundle junction, appendages, etc.
– Change in flow direction: elbows, etc.
– Change in flow area: sudden contraction, sudden expansion, etc.



SP Pressure-Drop Equations
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Single-Phase Friction Factor
• Tubes

– Colebrook-White equation
• Bundles

– Based on hydraulic-equivalent diameter approach with 
the tube-based equation

– Correction for geometry effect (differences between 
tubes and bundles)

– Correction for eccentricity effect (differences between 
concentric and eccentricity bundles) in crept channels

– Correction for channel shape effect (converging and 
diverging channels) in crept channels

– Correction for surface heating effect
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Bundle Correction Factor



Eccentricity Effect

• More fluid tends to flow in the open region 
(less resistance)

• Non-uniform velocity distribution



Eccentricity Correction Factor



Single-Phase Loss Coefficients

• Sudden contraction
– Based on flow-area ratio

• Sudden expansion
– Based on flow-area ratio

• Bends
– Based on angle

• Junction and appendages in bundles
– Based on data obtained with production bundles
– Correction for eccentricity effect
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Single-Phase Pressure Distribution over a Square-
Edged Orifice



Fuel String Pressure Drop
• Part of the overall pressure drop between headers
• Separated into single-phase and two-phase regions
• Pressure-drop components

– Friction
– Bundle junction, spacers, buttons, and bearing pad planes
– Acceleration
– End fittings

• Simplified evaluation approach for bundles
– Combined friction and form losses into a bundle loss coefficient
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Appendages in a CANDU Fuel Bundle



Bundle Junction Alignment

Misaligned BundlesAligned Bundles



Single-Phase Pressure Distributions over Aligned and 
Misaligned Bundles



Water Pressure Drop Test Station



Water Pressure Drop Test Results
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Freon Pressure Drop Test Station 
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Hydraulic Characterization Test
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Freon Pressure Drop Test Results
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Misaligned Junction Signatures
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Onset of Significant Void (OSV)

• Determined from axial pressure 
distributions along the full-scale bundle 
simulator in reference and aged channels

• A linear relation over the single-phase 
region in uncrept channel and a parabolic 
equation over the two-phase region

• The intersecting point of these two 
equations is considered as the OSV



Axial Pressure Distribution
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OSV Correlations
• Saha-Zuber correlation for tubes

– Peclet number (G D Cp / k) < 70,000

– Peclet number ≥ 70,000

• Modified Saha-Zuber correlation for bundles
– Update empirical coefficients using full-scale bundle 

data
– Proprietary information
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TP Frictional Pressure Drop

• The two-phase frictional pressure drop is 
calculated with
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Two-Phase Multiplier
• Two-phase multipliers, φ2

L or φ2
LO, are empirical 

factors based on experimental data
• Expressed in the form of graphs or correlations 

(large uncertainty due to scatter among data)
• Depends mainly on quality and pressure
• Mass-flux effect primarily observed at low flows 

(flow-regime dependent)
• Surface heating has a strong impact (near-wall 

effect) on two-phase multiplier in tubes and 
annuli, but not in bundles (compensating effect)



Homogeneous Two-Phase Multiplier

• The simplest form 
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TP Multiplier in Separated Flow
Martinelli and Nelson Graph



Friedel Correlation

• Complex formulation
• Based on over 25,000 data points
• Uncertainty: ±26%, ±32% and ±25% for 

single-component upward, horizontal and 
downward flow

• Recommended by many studies



Surface-Heating Effect

• Changes in near-wall velocity gradient due 
to bubble formation, hence two-phase 
pressure drop

• Sharp variations due to liquid-film thinning, 
liquid-surface contact or vapour-surface 
contact

• Depends strongly on critical heat flux



Effect of Surface Heating
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Two-Phase Multipliers in Pre- and Post-
Dryout Regions



Corresponding Surface-Temperature 
Variations



Local Pressure Drop

• Two-phase local pressure drop is calculated 
with
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Two-Phase Pressure Distribution over a Square-
Edged Orifice 



Two-Phase Pressure Distributions over Aligned and 
Misaligned Bundles



High Pressure Water Test Station
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Axial Power Profile in Water Tests
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Axial Flow Tube Diameter Variation
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Onset of Significant Void
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Pressure Gradient Along Flow Channel

Dimmick et al., Proc. 6th Int. Conf. on CANDU Fuel, Niagara Falls, Canada, September 26-30, 1999
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Summary
• Pressure drop is one of the main thermal-hydraulics 

parameters in flow re-circulation systems
• Pressure drop depends on flow conditions, flow 

regimes, and surface heating
• Four main components in the overall pressure drop: 

friction, acceleration, gravity, and form
• Two-phase pressure drops due to friction and local 

disturbances are expressed in terms of two-phase 
multipliers

• A large number of correlations are available for two-
phase multiplier; uncertainty remains high due to large 
scatter among data



Questions?
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