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Introduction

A pumped system 1s often employed for
flow mediums circulation and transportation

All piping components 1n the flow system
reduce the system pressure

Pressure reduction can be minimized but 1s
not always feasible

Pump capacity must be matched properly
with the system requirements

For design calculations, the pump size has a
large 1mpact on the system cost.



Applications

* General applications:

— Optimize pump capacity requirement

— Optimize pump energy requirement
 CANDU nuclear reactor applications:

— Determine coolant-flow rate in primary circuit

— Determine local conditions in bundles and
subchannels

— Determine flow rate across parallel
interconnected subchannels in fuel bundles



CANDU Applications
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Conservation Equations

Mass-balance (continuity) equation
Momentum-balance equation
Energy-balance equation

Cases:

— Steady-state flow in channel of uniform flow
area 1n axial direction

Assumptions

— Negligible variation of fluid properties over the
control volume

— Homogeneous or separated flow



Force-Momentum Balance within a
Control Volume
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Basic Equations for Homogeneous-Flow
Assumption
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Basic Equations for Separated-Flow
Assumption
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Pressure Gradients

Friction
— Between fluid and channel wall
— Primarily affected by tube diameter, velocity gradient and viscosity

Acceleration
— Change in fluid momentum between locations

— Significant in channel with varying flow area and fluid temperature

Gravity
— Change in hydrostatic head

— Only in vertical channel

Others

— Flow blockages: valves, orifices, bundle junction, appendages, etc.
— Change in flow direction: elbows, etc.

— Change in flow area: sudden contraction, sudden expansion, etc.



SP Pressure-Drop Equations

Friction

Acceleration

Gravity

Form
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Single-Phase Friction Factor

* Tubes
. . 1 __ 6'/Dmbe 251
— Colebrook-White equation T 210%[ 37 Jf RGJ

 Bundles

— Based on hydraulic-equivalent diameter approach with
the tube-based equation

— Correction for geometry effect (differences between
tubes and bundles)

— Correction for eccentricity effect (differences between
concentric and eccentricity bundles) in crept channels

— Correction for channel shape effect (converging and
diverging channels) in crept channels

— Correction for surface heating effect



Bundle Correction Factor
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Eccentricity Effect

* More fluid tends to flow 1n the open region
(less resistance)

* Non-uniform velocity distribution




Eccentricity Correction Factor
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Single-Phase Loss Coeftficients

Sudden contraction

— Based on flow-area ratio K. =05 (1 - A—j
Sudden expansion 2
— Based on flow-area ratio  Ke» = (1 B A—)
Bends

— Based on angle

Junction and appendages 1n bundles
— Based on data obtained with production bundles

— Correction for eccentricity effect



Single-Phase Pressure Distribution over a Square-
Edged Orifice

Unrecoverable
116.8 1 IOSS

116.6+

116.4 -

PRESSURE (kPa)

40% BLOCKAGE-AREA RATIO
116.2 { MASS FLUX (kg.m2s)
WATER: 592

AIR: 0

116.0 . . . .
0.0 05 10 1.5 20 25

AXIAL DISTANCE (m)



Fuel String Pressure Drop

« Part of the overall pressure drop between headers
« Separated into single-phase and two-phase regions
e Pressure-drop components
— Friction
— Bundle junction, spacers, buttons, and bearing pad planes
— Acceleration
— End fittings
« Simplified evaluation approach for bundles

— Combined friction and form losses into a bundle loss coefficient
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Appendages in a CANDU Fuel Bundle

1 ZIRCALOY BEARING PADS
2 ZIRCALOY FUEL SHEATH
3 ZIRCALOY END SUPPORT PLATE
4 URANIUM DIOXIDE PELLETS

S INTER-ELEMENT SPACERS

6 PRESSURE TUBE




Bundle Junction Alignment

Aligned Bundles Misaligned Bundles



Single-Phase Pressure Distributions over Aligned and

Misaligned Bundles
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Water Pressure Drop Test Station
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Water Pressure Drop Test Results
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Freon Pressure Drop Test Station
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Hydraulic Characterization Test
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Freon Pressure Drop Test Results
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Misaligned Junction Signatures

37-Rod Bundle
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Onset of Significant Void (OSV)

* Determined from axial pressure
distributions along the full-scale bundle
simulator 1n reference and aged channels

* A linear relation over the single-phase
region 1n uncrept channel and a parabolic
equation over the two-phase region

* The intersecting point of these two
equations 1s considered as the OSV



Axial Pressure Distribution
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OSYV Correlations

e Saha-Zuber correlation for tubes
— Peclet number (G D Cp / k) < 70,000

DC
xogy=—0.0022 12~/
kp H p
— Peclet number > 70,000
q
XOSV=—154
GHy

 Moditied Saha-Zuber correlation for bundles

— Update empirical coefficients using full-scale bundle
data

— Proprietary information



TP Frictional Pressure Drop

* The two-phase frictional pressure drop 1s
calculated with

2 2
APp 1p =L APpy  or APp 1p =910 APr 10
(|>%o = 4)%(1 - Xa)z_b where f =a Re_b

d)% — APf, . based on only sin gle — phase liquid in the channel

(I)%O — APy 1 o based on total flow as sin gle — phase liquid



Two-Phase Multiplier

Two-phase multipliers, ¢p?; or ¢?| ,, are empirical
factors based on experimental data

Expressed in the form of graphs or correlations
(large uncertainty due to scatter among data)

Depends mainly on quality and pressure

Mass-flux effect primarily observed at low flows
(flow-regime dependent)

Surface heating has a strong impact (near-wall
effect) on two-phase multiplier in tubes and
annuli, but not in bundles (compensating effect)



Homogeneous Two-Phase Multiplier

* The simplest form

b
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TP Multiplier in Separated Flow

Martinelli and Nelson Graph
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Friedel Correlation

Complex formulation
Based on over 25,000 data points

Uncertainty: £26%, £32% and £25% for
single-component upward, horizontal and
downward flow

Recommended by many studies



Surface-Heating Effect

* Changes in near-wall velocity gradient due
to bubble formation, hence two-phase
pressure drop

* Sharp variations due to liquid-film thinning,
liquid-surface contact or vapour-surface
contact

* Depends strongly on critical heat flux
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Two-Phase Multipliers in Pre- and Post-

TWO-PHASE MULTIPLIER
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Corresponding Surface-Temperature

Variations
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Local Pressure Drop

* Two-phase local pressure drop 1s calculated
with

2
APloc:al, TP — (I)LO, local APlocal, SP

2 P1—P
(I)LO, local — 1+Xa[ gj
Pe

Homongeneous two — phase multiplier



Two-Phase Pressure Distribution over a Square-
Edged Orifice
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Two-Phase Pressure Distributions over Aligned and

Misaligned Bundles
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High Pressure Water Test Station
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Axial Power Profile in Water Tests
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Axial Flow Tube Diameter Variation
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Onset of Significant Void

Pressure Drop (Pa)
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Pressure Gradient Along Flow Channel
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Summary

Pressure drop is one of the main thermal-hydraulics
parameters in flow re-circulation systems

Pressure drop depends on flow conditions, flow
regimes, and surface heating

Four main components in the overall pressure drop:
friction, acceleration, gravity, and form

Two-phase pressure drops due to friction and local
disturbances are expressed in terms of two-phase
multipliers

A large number of correlations are available for two-
phase multiplier; uncertainty remains high due to large
scatter among data



Questions?
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