UNENE Graduate Course **Reactor Thermal-Hydraulics Design and Analysis** McMaster University Whitby March 11-12, March 25-26, April 8-9, April 22-23, 2006

Design Requirements

Dr. Nik Popov

General Principles

- Nuclear reactor generates power using the concept of a heat engine
 - Direct cycle
 - Indirect cycle
- Most important features of a reactor are:
 - Fuel
 - Coolant
 - Moderator
- Basic neutron cycle and the role of the moderator
 - Thermal nuclear reactor
 - Fast nuclear reactors

Nuclear Fuels

- Thermal reactors can use the following fuels:
 - U²³⁵ only 0.7% in natural uranium
 - $U^{233} \text{from Th}^{232}$
 - $Pu^{239} from U^{238}$
- Most thermal reactors use:
 - Enriched uranium with U^{235} (up to 3%)
 - Natural uranium with 0.7% U^{235}

Heat Transfer Considerations

- Most important for a nuclear reactor is to provide heat sink at all times
- Heat transfer is proportional to the surface area
- Designs with high ratios of area to volume best suitable for heat transfer
- Possible geometries of fuel assemblies (cross-section)
 - Circular
 - Rectangular
 - Annular
- Considerations
 - Uranium enrichment
 - Manufacturing cost
 - Heat transfer features

Uranium Fuel Forms

- Desirable Fuel Properties
 - Low cost constituents and fabrication
 - Good neutron economy
 - Good corrosion resistance to coolant
 - Physical stability under effects of irradiation, temperature, pressure
 - Safeguards production of Pu
 - Environmental aspects (radiological and non-radiological)
- Fuel Materials
 - Uranium metal
 - Uranium / other metal alloy
 - Ceramic uranium dioxide
 - Uranium carbide
 - Uranium silicide

Fuel Claddings

- Desirable Cladding Properties
 - Corrosion resistance to coolant
 - Mechanical durability
 - High operating temperature capability
 - Good neutron economy
 - Low cost base material and fabrication
 - Impermeability to fission products
 - Low reprocessing cost
 - Environmental aspects (radiological and non-radiological)

• Fuel Cladding Materials

- Aluminum
- Magnesium (Magnox)
- Stainless steel
- Zirconium
- Ceramics

Control Materials

- Desirable Control Material Properties
 - Corrosion resistance to coolant
 - Mechanical durability
 - High absorption capability which is controllable with operating time
 - Low cost base material and fabrication
 - Stability in high pressure and temperature (fluid or solid)
 - Environmental aspects (radiological and non-radiological)
- Fuel Control Materials
 - Hafnium (4 isotopes)
 - Silver-Indium-Cadmium alloys
 - Rare-Earth oxides (samarium, europium, gadolinium)
 - Gadolinium (nitrate)
 - Dysprosium
 - Boron-containing materials (boron alloys, boron carbide)
 - Boric acid solutions

Reactor Coolants

• Desirable Coolant Properties

- High heat capacity
- Good heat transfer properties
- Low neutron absorption
- Low neutron activation
- Low operating pressure at high operating temperature
- Non-corrosive to fuel cladding and coolant system
- Low cost
- Environmental aspects (radiological and non-radiological)
- Reactor Coolant Materials
 - CO₂ gas
 - Helium
 - Ordinary water
 - Heavy water
 - Organic fluids
 - Liquid metals

Reactor Moderators

- Desirable Moderator Properties
 - High moderator efficiency
 - High logarithmic energy decrement
 - High cross section for neutron scattering (slowing down)
 - High moderation ratio
 - Low neutron absorption
 - Low neutron activation
 - Resistance to damage (irradiation and corrosion)
 - Low cost (raw material, manufacture, installation)
 - Environmental aspects (radiological and non-radiological)
- Reactor Coolant Materials
 - Graphite
 - Ordinary water
 - Heavy water

Moderating Arrangements

- Integral with coolant
 - Coolant and moderator are integrated
 - PWR and BWR reactors use this concept
- Integral with fuel
 - Fuel and coolant are imbedded into the moderator (graphite)
- Integral with moderator
 - Fuel and moderator separate from coolant
 - Pebble bed reactors
- Separate
 - Fuel and coolant are in separate channels (separate from moderator)
 - CANDU reactors use this principle

Reactor Core Arrangements

- Core lattice arrangements
 - Square
 - Hexagonal
 - Triangular
- Fuel assembly arrangements (in order of most area for given perimeter)
 - Circular
 - Hexagonal (best)
 - Square
 - Triangular

HTS Design Requirements

- HTS main objective is to provide heat transfer at high thermal efficiency
 - Continuous coolant flow must be provided
 - Cost should be minimized
 - Layout should minimize radiation exposure and enable fast construction
 - Provide pressure and inventory control
 - Ensure sufficiently reliable system (minimize down time)
 - Ensure high process efficiency
 - Enhance constructibility
 - Take into account aging effects
 - Meet safety and licensing requirements
- Design involves fine balance and trade off in design features (and occasionally conflicting requirements)

Questions?