UNENE Graduate Course **Reactor Thermal-Hydraulics Design and Analysis** McMaster University Whitby March 11-12, March 25-26, April 8-9, April 22-23, 2006

Flow Instabilities

Dr. Nik Popov

Flow Instabilities

- Understanding flow instabilities is instrumental to ensuring good understanding of thermal-hydraulics system behavior
- Scale-based grouping
 - Microscopic instabilities (occur locally)
 - Macroscopic instabilities (involve entire system)
- Process-based grouping
 - Static instabilities (unstable equilibrium states)
 - Flow excursions (Ledinegg instability)
 - Relaxation instabilities (flow pattern transitions, nucleation instabilities, bumping, chugging, and geysering)
 - Dynamic instabilities
 - Density wave oscillations
 - Pressure wave oscillations
 - Acoustic oscillations

Flow Instabilities - Background

Mass Flow Rate _ m

Flow Instabilities - Background

Mais Flow Rate, m

Flow Instabilities - Background

Flow Excursion Instability

Case 1 – positive displacement pump

Case 2 – parallel channel situation

Case 3 – centrifugal or jet pump situation

Fig. 7-1. Excursive instability.

Questions?