Graduate Study UNENE Course UN0804

Reactor Thermal-Hydraulics Design and Analysis Test

Student:		Test
Date:	21 April 2006	

1. Design Requirements

- Explain the requirements for materials for fuel sheath, list the usual materials used, and discuss how they meet the requirements.
- List and explain which design features are mostly influenced by the selection of reactor coolant.

2. <u>Power Reactor Types</u>

• Explain the refueling sequence and difference between CANDU and PWR reactors.

3. <u>Process Design Evolution</u>

 Capture the most important changes in the evolution of the CANDU reactor heat transport system.

4. Flow Instabilities

• Draw the flow instability diagram and explain the criteria of instability. Explain the impact of instability on in single channel configuration and parallel channel configuration.

5. Thermal Efficiency

• Define the thermal efficiency of NPPs and explain the factors of influence.

6. Fuel-Coolant Heat Transfer

• Draw a diagram of temperature distribution across the fuel element and coolant in radial direction, and explain the change of rate of heat transfer across different components.

7. <u>Two-phase Flow</u>

- State all possible boiling heat-transfer modes encountered in a heat-flux-controlled system with increasing heat flux from single-phase liquid flow at the same local flow conditions (i.e., pressure, mass flux and quality). What would be the difference in having a temperature-controlled system.
- Explain the most important features of homogeneous approach, separated approach, flow regime dependent approach, in modeling two-phase flow.
- List flow patterns that are possible in vertical flow in a channel, and explain relevance to heat transfer modeling.

Graduate Study UNENE Course UN0804

Reactor Thermal-Hydraulics Design and Analysis Test

Student:		Test
Date:	21 April 2006	

8. Film Boiling

• Identify the heat transfer media and heat transfer directions in film boiling.

9. Basic Conservation Equations for Two-Fluid Models

• What is the basic principle of conservation of a field variable?

10. CATHENA Computer Code

• Explain the most important features of the CATHENA heat transfer model (which models are available, which parameters are calculated, linkage to hydraulics, correlations etc.)

11. CHF and Safety Margins

 Explain difference between CHF, dryout, burnout and DNB (Departure from Nucleate Boiling)

12. <u>Heat Transport Pumps</u>

• Explain the operation of heat transport pumps in four quadrants

13. Thermodynamics Laws

• State the three laws of thermodynamics

14. Pressure Drop

- Explain the major sources of friction and associated pressure drop in CANDU heat transport system.
- Draw a diagram of pressure change along a pipe with three-step change of diameter (D1 > D2 < D3).