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ABSTRACT

Inferentid sendng is a method which can be used to evauate parameters of a physica
system based on a set of measurements related to these parameters. The most common method
of inferentid sensing uses mathematical models to infer a parameter vaue from correlated sensor
vaues. However, snce inferentia sengng is an inverse problem, it can produce inconsstent
results due to minor perturbations in the data. This research shows that regularization can be
used in inferentia sendng to produce conggtent results. The important example of monitoring
nuclear power plant feedwater flow rate is given using data from Florida Power Corporation's
Cryga River Nuclear Power Plant.

1. INTRODUCTION

Inferentid sensing isthe prediction of a plant variable through the use of correlated plant
variables. A correct prediction of avariable can be used to monitor sensors which measure that
vaiable, for drifts or fallures making periodic insgrument cdibrations unnecessary.  This move
from periodic to continuous monitoring permits condition based maintenance that can reduce
cods and increase the rdliability of the indrument. Having accurate, religble measurements is
important for 9gnds that may impact safety or profitability. One of these sgnds in nuclear
power plants (NPP) is feedwater flow rate which is directly involved in the estimation of the
thermal power of a reactor. Both PWRs and BWRs use venturi meters to measure feedwater
flow rate to the seam generator and the pressure vessdl, respectively. These meters are
sengitive to measurement degradation due to corrosion products in the feedwater. Measurement
error due to feedwater fouling, results in feedwater flow rate overestimation. Consequently, the
therma power of the reactor is also overestimated, and the reactor must be derated to stay
within regulaory limits.

To overcome this problem, an inferentid sensing system is being developed a the
Universty of Tennessee to infer the "true' feedwater flow rate. This sysem infers values of



complex process variadles by integrating information from multiple sensors. A leest squares
model (linear or nonlinear) can be "trained” to map gppropriate input variables to the desired
output. Because inferentid sensing is an inverse problem, it is often an ill-posed problem. 1lI-
posed problems suffer from lack of uniqueness and/or sability of the solution due to smal
perturbations in the data This fact raises concerns about the consstency of inferentia
measurements. This paper shows that regularization techniques can be effectively used to
provide a gtable solution for inferentid sensing, thus providing a stable, condgtent estimation of
feedwater flow rate. This estimation can then be used in the calculation of reactor therma power
to avoid unnecessary derating.

2. FEEDWATER FLOW MEASUREMENTSIN U.S. NUCLEAR POWER PLANTS
AND FOULING PROBLEM.

In the United States, a nuclear power plant’s operating limit is directly related to its
thermal power production. The smplified energy baance equation can be written as (Chan and
Ahluwdia, et d., 1992):

Q. = my* (hs — hyy) + Losses, @)

where Q. is core therma power, hy and hy, are enthapies of steam and feedwater, respectively,
and my, isfeedwater flow rate.

Since the enthalpies of steam and feedwater can be determined accurately, uncertainties
in therma power estimation often come from feedwater flow rate measurements (Chan and
Ahluwdia, et d., 1992). The mgority of PWRs and some BWRs utilize venturi meters to
measure feedwater flow rate because of their ruggedness and precision. However, these meters
are susceptible to measurement drift due to corrosion products in the feedwater building up on
the meter's orifice. This increases the measured pressure drop across the meters, which results
in an over-esimation of the flow rate. Consequently, the reactors therma power is dso
overestimated (Chan and Ahluwdia, et d. 1992). A schematic drawing of a venturi meter and
its fouling zone, or region of corroson product buildup, is shown in Figure 1.

To gay within regulatory limits, reactor operators are forced to derate their plants.
According to Chan and Ahluwdia, e d. (1992), venturi meter fouling is "the sngle most
frequent cause” for derating in PWRs. The amount of derating, according to the report, varied
from inggnificant to 3% of full power. On average, the derating was between 1% and 2% of full
power. A derating of 2% in an 800 MWe unit will cost the utility approximately $20,000 per
day given the cost of dectricity is $0.05/kWh.
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Fig.1 Schematic of aventuri meter

The most common practice at PWRsiis to ingpect and clean the venturi meters between
fuel cycles. A mgor problem with this technique is that deposits can regppear as quickly as a
month after achieving 100 % reactor power (Chan and Ahluwdlia, et d., 1992). To overcome
this fouling problem, some utilities have developed a fouling coefficient or a correction factor to
offset the degradation in the measurements accuracy, and assume a linear increase for the first
severd months. Currently, ultrasonic flowmeters are consdered to be a competitive dternative
to venturi meters because they do not suffer from this fouling problem. However, they need
further development to improve their accuracy and rdiability.

The primary god of this paper is to show how inferential measurements can be used to
estimate feedwater flow rate, and how regularization can be used to make this estimation robust
and congstent.

2.1 Inferential M easurementsfor Feedwater flow estimations.

Despite the susceptibility of the venturi meter to fouling, it is dill the most common flow
measurement indrument used in nuclear power plants. The University of Tennessee's Nuclear
Engineering Department has been researching the development of inferentid measurement or
inferentid sensing systems since the late eighties. These inferentid systems Utilize Satigtica or
artificia intelligence based methods for predicting variables that are difficult or expensve to
measure. One paper that dedt with venturi meter fouling was published by Kavaklioglu and
Upadhyaya (1994). The development of an inferentid sendng system congsts of collecting
training and testing data, preprocessing the data to remove outliers, and scaling the data to alow
the use of gatistical signal evaluation techniques. Once the data is collected and preprocessad,
the inferentid modd is developed and tested. Severa predictive modeling techniques can be
goplied to inferential senaing including linear techniques such as regression, principa component
regression, ridge regression, and partid least squares; and non-linear techniques, such as non-
linear regression, non-linear partia least squares, and artificial neural networks,



Inferentid measurements should not be confused with classicd prediction where a
parameter valueis estimated at time t+1, based on information about other parameters at time
t. In inferentia measurements, a parameter is estimated at time t based on information about
other parameters o at time t. Thus, the unknown vaue is “inferred” at the same time stamp.
However, this does not make inference an easer problem than prediction. In fact, inferentia
measurement is often an ill-posed problem which requires special considerations.

3. ILL-POSED PROBLEMS

In 1923 the French mathematician Hadamard introduced the notions of  well—posed
and illposed problems, (Hadamard, 1923). Hadamard defined a well-posed problem as a
problem which satidfies the fallowing three conditions:

1. Thesolution for the problem exigts (existence)

2. Thissolution is unique (uniqueness)

3. This solution is sable or smooth under smdl perturbations of the data, i.e smdl
perturbations in the data should produce smal perturbations in the solution (dability).

If one of these conditions is not met, the problem is said to be ill-posed and requires
specia condderations. The exigtence of the solution can be enforced by enlarging the solution
gpace. An example is the solution of polynomid equations. It isawell known fact from the basic
theorem of dgebrathat any polynomia equation of order n has exactly n roots, red or complex.
However, not dl polynomia equations have solutions in the red domain, but they do have
solutions in the complex domain. Thus, to guarantee the existence of the solution we have to
enlarge the space within which we are seeking the solution.

Nor—uniqueness usudly arises when some of the information about the underlying
mode is lacking. Neura networks provide an excellent example of such non-uniqueness. Neurd
networks are essentialy devices for building modds from afinite amount of data. Due to the use
of nonlinear transfer functions, neurd network's error surfaces may contain many loca minima.
Assuming random weight and bias initidization, neurd network training agorithms can provide a
number of solutions (sets of weights), each of which fits the training data very well. Each
possible solution will correspond to a different minima in the error surface, and thus, neurd
network's error surface presents a set of non-unique solutions. From this set of non-unique
solutions, we must complete the difficult task of choosing a solution which adequately represents
the modeled system.

Ungtable solutions usualy result when we are trying to reverse cause—€ffect relaionships
where the forward operator (the operator which solves the forward problem) is a smoothing
operator. A smoothing operator attenuates high frequency oscillations in the input data. If the
forward operator is a smoothing operator, then it is natura to expect that the inverse operator
would be a"roughening” operator. A "roughening” operator amplifies high frequency oscillations,
thus providing an ungable solution. An example of solution ingability can be found in
convol ution—-deconvolution relations. Convolution is a smoothing operator, hence deconvolution



isa'roughening” operator. Deconvolution is aclassic ill-posed problem which is very difficult to
tackle without specia methods. In practica applications the last issue of stability is the primary
concern, as the first two conditions are usually postul ated.

3.1 Inferential sensingisan illposed problem

In inferentia sengng, none of the conditions for a well-posed problem may be satisfied.
Firg of dl, the parameters related to feedwater flow may not provide al of the information
which is necessary to estimate a true value of feedwater flow. Second, different parameters can
provide different information about the true vaue of the feedwater flow rate, and findly,
feedwater flow estimation can be unstable due to smdl perturbations in the input data or due to
different preprocessng techniques. In the current study we assume that the plant variables
Ssdected to infer atrue value of the feedwater flow rate do provide information about this vaue.
We dso assume that this information is full, and unambiguous, thus podulaing existence and
uniqueness of the solution for the feedwater inferential senang problem. Our primary concern in
the current study is the stability of the feedwater flow rate estimation, and we shdl show that the
problem of ingtability can be solved by regularization.

3.2 Instability of inferential sensing for feedwater flow evaluation

To demondrate the difficulties caused by ill-posed problems, twenty-four variables
were selected as predictor variables. These variables are listed in Table 1. These variables were
selected based on engineering judgement and on their high correlation with feedwater flow. A
linear regresson modd was then condructed usng the predictor variables to estimate the
feedwater flow rate'. The "training" region for the linear regression model was chosen to be the
plant sart-up and the first few days of the fud cycle, when the venturi meter was assumed to be
free from corroson product fouling. Between fud cycles the venturi meter is removed, acid
cleaned, and cdlibrated; therefore, at the beginning of the fud cycle, the measured flow rate
coincides with the actud flow rate. The fouling during the operation of the NPP increases the
pressure drop across the meter. This pressure drop increase results in an overestimation of the
feedwater flow rate and thus, overestimation of the reactor's therma power. The difference
between the "true”’ (estimated) flow rate and the measured flow rate, referred to as drift, can be
quantified by using aregresson model. In addition, the actud (estimated) flow rate can be used
to cdculate the actud therma power of the reactor, dlowing the reactor to operate a full
licensed power. To evaluate the drift, a check point a a time gpproximately 6 months into the
fud cycle was chosen.

! Linear regression was chosen for this demonstration because it is Smple to use and illustrates
the issues associated  with ill-posed problems. The same issues arise in non-linear models,
including neurd network models.



Table 1 Ligt of 24 variables used as predictor variables to evaluate feedwater flow.

Var. Num. Description Range Units
1 FWP Speed 0-7500 RPM
2 ‘A" OTSG EFIC HIGH LEVEL 0-100 | PERCENT
3 FEEDWATER PUMP A SPEED 0-7500 RPM
4 LINEAR POWER CH NI-6 0-125 | PERCENT
5 HEATER 3A INLET COND TEMP 40-300 DEGF
6 HEATER 3B OUTLET COND TEMP. 40-350 DEGF
7 DEARATOR INLET COND TEMP 40-350 DEGF
8 HEATER 6A INLET FW TEMP 40-500 DEGF
9 FWP A DISCHARGE TEMP 40-500 DEGF
10 FWP A SUCTION TEMP 40-500 DEGF
11 HEATER 5B OUTLET FW TEMP 40-500 DEGF
12 STEAM GEN B INLET FW TEMP 40-600 DEGF
13 HEATER 6B OUTLET FW TEMP 40-600 DEGF
14 STEAM GEN A LEVEL (OP) 0-100 | PERCENT
15 STEAM GEN A LEVEL (FULL) 40-640 | INCHES
16 STEAM GEN A LEVEL (START UP) 0-250 | INCHES
17 STEAM GEN B INLET FW TEMP 0-500 DEGF
18 STEAM GEN B LEVEL (START UP) 0-250 | INCHES
19 STEAM GEN A INLET FW TEMP 40-600 DEGF
20 STEAM GEN B INLET FW TEMP 40-600 DEGF
21 REHEATER A COLD REHEAT PRESS. 0-200 PSIG
22 REHEATER D COLD REHEAT PRESS. 0-200 PSIG
23 REHEATER C COLD REHEAT PRESS. 0-200 PSIG
24 NO. 2A EXTR LP TURB PRESSURE 0-20 PSIA

Prior to any datidtical evauation of the data, a number of preprocessing techniques
should be applied to the raw data to ensure consstency of the results. The most common
preprocessing techniques are filtering and scding. It is a well-known fact that least squares
modds are very sendtive to outliers. To reduce measurement noise we used a median filter with
different window sizes Median filtering has wel known outlier rgection and fast digitd
implementation properties. We are aware of the non-linear nature of median filtering, and
precautions have been taken so that correations between the sgnas are not changed
sgnificantly. Unfortunately, the sze of the filter window changes the inferred vadue of feedwater
flow, thus indicating inconsistency of drift evduations using an ordinary least squares model.
The dependence of the drift estimation, at the 6 month check point, on filtering window length is
shown in Table 2. Due to different median filter window szes, the inferred drift can change up

to 8 %.




Table 2 Drift dependence on filter window size

Window length, data points Drift at check point, klb/hr
0 (no filtering) 39.50
3 39.50
5 39.46
7 36.13
11 38.72

The second preprocessing technique used was data scaling. It is a well known fact that
scading can change both the ordinary least squares solution, and the regularized solution, for a
given problem (Lawson and Hanson, 1974). In the current study we used only column scaling
of data matrixes. Each of the 24 predictor variables was scded based on its maximum
anticipated vaue. These maximum anticipated vaues are shown in table 1 in the column entitled
"Range’. For example, the data of variable 1 (feedwater pump speed) were divided by 7500,
which is the maximum anticipated speed of the pump in norma regimes of operation. Prior to
scding, dl variables were zero meaned to guarantee an unbiased least squares solution.

After scaing and filtering, the data can be used to build a predictive mode to infer
feedwater flow rate. In the current study we used the common multivariable linear regresson
method to develop a predictive model. The 24 variables were regressed on to the response
vaiable (feedwater flow rate) usng data from severd days at the very beginning of the fue
cycle. Having been estimated, these regression coefficients were used to infer the true vaue of
feedwater flow during the first 7 months of the fud cycle. The data points were sampled in 30
minute increments. Unfortunately, as it was found out, the vaue of the drift is very much
dependent on the number of data points used to caculate the regresson coefficients, agan
pointing to incongstency of inference. This dependence is shown in Table 3.

Table 3 Drift dependence on the number of data points used to estimate regression coefficients.

Number of data points Drift, ki/hr

200 (approximeately 4 days of operation) 25.08
300 16.25
400 9.82
500 11.98
600 39.46
700 42.86
800 42.02




900 (approximately 18 days of operation) 39.00

As can be seen from this table, the drift value depends dragtically on the number of
"traning" points used to edimate the regresson coefficients. This is one more source of
inconsggtency in inferential measurements, which can lead to incorrect inferences about the true
vaue of feedwater flow rate.

The last source of inconsstency in inferentid sensing is the data perturbations or noise.
Under some conditions the noise can make inferentid sengng extremey ungtable. The inferentia
measurement of feedwater flow rate sensor drift is based on the inferred value of the actua
feedwater flow rate. The actud flow is inferred based on its relationships to other correlated
plants parameters. The problem with using these parameters as predictors is that they are not
only highly correlated with feedwater flow rate, but they are dso correlated with each other. If
this degree of correaion is quite high, the data matrix becomes ill-conditioned and we face the
problem which is commonly referred to in satisticd literature as “collinearity”. Two variables
are collinear if the data vectors representing them lie on the same line (i.e, subspace of
dimension one). More generaly, k variables are collinear if the vectors that represent them liein
a subspace of dimendon less than k; that is, if one of the vectors is alinear combination of the
others. In practice, such “exact collinearity” rarely occurs due to noise. A broader notion of
collinearity is therefore needed to ded with the problem as it affects datistical estimation. A less
drict definition would be that two variaoles are collinear if they lie dmogt on the same line, or if
the angle between them is amdl. In the event that one of the variables is not congtant, this is
equivaent to saying that they have a high degree of correaion between them.

To evduae the consgency of the inferentid drift estimation sysem under smdl
perturbations in the data, a bootstrap technique was used (Efron, 1982). The bootstrap
technique is a atigtica method used for evauating the precison of the regression coefficients or
fitted vdues. If we have n training data samples , the bootstrap technique randomly selects n
vaues from both predictor and response variables with replacement, thus providing a bootstrap
sample of gze n but with some origind vaues duplicated and some missing. This bootstrap
sample is usad to regress predictor variables onto the response variable using the same fitting
procedure as for the origind sample. When the method is repested a large number of times, the
bootstrap procedure provides a set of fitted vaues whose variability can be estimated and
whose sampling didtribution can be plotted. This grgphica representation demondtrates the
precison of the evaluated Statistical parameter.

In this study the input data matrix X is of sze 600x24, where 24 is the number of
predictor variables and 600 is the number of data samples. The output vector y is of gze
600x1, containing 600 corresponding samples of the response variable (feedwater flow rate).
The condition number (the ratio of largest to smdlest sngular values) of the input data matrix is
705 which indicates ill-conditioning, or collinearity of the data. Most well-conditioned matrices
have condition numbers well below 100. To check the stability of drift inference, 100 bootstrap




samples were generated from the originad data For each bootstrap sample, the regresson
coefficients were estimated using ordinary least squares and test data were used to infer the drift
value at a check point gpproximately 6 months into the fud cycle. The predicted drift values
were used to caculate a probability dendty function (PDF) of the drift estimates and ther
standard deviation.

The PDF for the drift estimates is shown in Figure 2. The PDF for the drift vaue has a
large variance, and even worse, it is multimoda. We can see that estimated drift values range
from 20 up to nearly 60 kib/hr with a standard deviation of 6.51 kib/hr. These results indicate
the ingtability of the solution using ordinary least squares, and the resulting inconsstency of the
drift etimation. This inconastency is due to the high sengtivity of the ordinary leest squares
solution to smdl perturbationsin the data, which isadirect result of the ill-conditioned nature of
the problem. To dahilize the drift prediction, a method of regularization should be used to
dleviate the ill-conditioning problem.

Bootstrap estimation of a drift value in a check point
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Drift value in a check point, KLB/HR

Fig. 2 Ingtability of drift esimation due to perturbationsin the data.
4. REGULARIZATION

Prior to considering regularization we have to understand what causes the ingtability of
the ordinary least squares solution. To understand the essence of ill-posed problems for drift
detection, let us consider the linear least squares problem. The objective of linear least squares



Isto find a linear combination of predictor variables that provides an accurate estimation of the
response variable. Hence, we minimize the square of the difference between Xw andy, i.e.

min [Xw - y||§ XT R™ m3n 2

With respect to the current gpplication, X is a data matrix containing predictor variables related

to feedwater flow rate, y is a vector of measured values of feedwater flow rate and w is a
vector of regresson coefficients. A very vauable tool in the analyss of ill-posed problems is

singular value decompasition (SVD) (Golub and Van Loan, 1996). The SVD of data matrix X

can be written as.

n
X=USV'=§ ujs;v] ®3)
i=1

The components y and v are the left and right Sngular vectors of X, and s; are the singular
vaues of the matrix X. Assuming that matrix X has afull rank of n in terms of the SVD, the
solution for problem (2) can be written as:

n oyl

Wis= § ——V; 4

i=1 Si

Equation (4) gives ingght into the essence of ill-conditioning. The divison by smdl sngular
vaues results in the amplification of high-frequency oscillations of the right sngular vectors of the
data matrix X. To ded with ill-conditioned problems severd methods have been developed
which essentialy damp or filter out these high frequency oscillations. These methods are called
regularization methods because they regularize or smooth potentidly ungable leest squares
solutions.  The smplest regularization method is the truncated SVD (TSVD) method. This
method truncates the sum in equation 4 & some vaue k<n, diminating smal sngular vaues from
the denominator. The two heurigtics used in this method of regularization are asfollows:

1. The dngular vdues have a digtinct gep in their spectrum. The location of this ggp on the
sngular values curve can be anatura choice for the truncation parameter k.

2. Theleft and right angular vectors y and v; tend to have more Sgn changes in their dements
astheindex i increasss, i.e., ass; decreases (Hansen, 1997).

Heurigtic 2 is only guaranteed to hold for totaly postive matrices (Hansen, 1995). A
matrix is totdly pogtive if dl of its minors of any order are pogtive (Gantmacher, 1959).
Matrices that arise in mogt practica applications are usudly totaly postive, but it isimportant to
verify this property prior to the application of any regularization method based on heurigtic 2.
TSVD regularization is especidly appropriate for ill-conditioned problems which have a large
gap (say two orders of magnitude) between two consecutive sngular values s; and s+1. These



kinds of problems are said to have a well-determined numerical rank. Not dl red world
problems have a well-determined numerica rank. If the singular value spectrum has no digtinct
gap, then the problem has an ill-determined numerica rank, and the choice of the truncation or
regularization parameter is not as evident as in the former case. But as it was stressed in
Hansen (1989), the success of TSVD depends on the satisfaction of the Discrete Picard
Condition (DPC) (which assures that the regularized solution exists ), (Hansen, 1990) and not
on the existence of a distinct gap in the singular vaue spectrum of the data matrix X. To ded
with ill-conditioned problems having ill-determined numerica rank, the method of regularization
proposed by Tikhonov (1963) can be used. In this method, the minimization problem (2) is
replaced by the following augmented functiond:

min( [Xw - |2 +12|Lw]2) (5)

The regularizetion parameter | , controls the trade-off between the smoothness of the solution
and its fit to the data. L is a well conditioned matrix; for example, a discrete gpproximetion of
the derivetive operator. The main assumption behind Tikhonov regularization is that the solution
should be smooth or non-oscillating.  In the case of L=I, where | is identity matrix, the
Tikhonov's functiond (5) is said to be in standard form and is known in Satisticd literature as
“ridge regresson” (Hoerl and Kennard, 1970). In this case, we can write the regularized
solution as

n u_Ty
w =3 fi <V (6)

The components y and v; are the left and right singular vectors of the data matrix X, s; are the
2

S

sngular values of this matrix and f; :2—'|2 are thefilter factors. Therole of filter factors is
S+

|

to suppress the contribution of minor components to the solution, thus providing a more stable
non-oscillating solution. In Tikhonov regularizetion the filter factors for large s; are close to 1
and for amdl s; they tend toward zero, thus providing necessary filtering of minor components.
In Tikhonov regularization heurigtic 2 is the same as was previoudy dated for the TSVD
method, thus ensuring the smoothness or sability of the regularized solution. However, heurigtic
1 now dtates that the singular value spectrum decays to zero without any particular gap in the
sngular vaues.

It should be noted that in any practical Stuation the sngular value spectrum does not
decay to zero but levels off a some index "i" due to unavoidable measurement errors or
indrumentation noise. The noise levd in both the right and left parts of Xw =y is a crucid
factor for satisfaction of the Discrete Picard Condition and thus for the existence of a "good"
regularized solution which is a reasonable gpproximation to a desired true solution.



With these theoretica congderations in mind we will now tackle the problem of drift
detection in feedwater flow ingrumentation. This problem of inferentid or virtud measurements
IS an inverse problem, where the aim is to recover or "infer" about unknown parameters of a
physica system from other correlated parameters which are corrupted by measurement noise.
In this paper alinear approach to the drift detection problem was adopted because it dlows a
clear analysis of the regularized solution. Nonlinear methods, such as neura networks, are much
more difficult to regularize due to the abosence of a consgent, unifying theory of nonlinear
regularization.

4.1 Regularization of feedwater flow evaluation

A standard form of Tikhonov regularization, known in gatistics as ridge regresson, was
used to regularize the problem. Prior to goplying this form of regularization, the regularization
parameter | must be chosen to resolve the subtle compromise between the smoothness of the
regularized solution and the solution bias. This biasing towards smdl regresson coefficients is
the "price" paid for the smoothness of the regularized solution. We want to obtain the smoothest
solution possible, without Sgnificantly biasing our solution.

Severa methods were proposed to determine the optimal regularization parameter. The
principle of discrepancy by Morozov (1966), requires the knowledge of the right hand side
error e of the equation Xw=y+e. When a good estimation of e is available, this method yields a
good regularization parameter. Two other highly regarded methods for regularization parameter
selection do not assume any knowledge about the error level, but are based on the extraction of
information from the data The generdized cross-vdidaion method, (Golub, Heath and
Wahba, 1979) is based on the assumption that if an arbitrary element y (of the right-hand side
y) is removed, then the corresponding regularized solution should predict this observation well
(Hansen, 1994). However, the most common method of determining the regularization
parameter is the L-curve method (Hansen, 1992). This method proposes that the optimal
regularization parameter occurs a the "corne™ of a plot of solution norm vs. residud norm.
After evaluating the above methods, we found the L-curve to be the most reliable and smple
and it was adopted as the method for choosing the regularization parameter in our study. The
truncated SVD regularization was dso used to assure tha different regularization methods
provide smilar regularized solutions.

The L-curve for theill-posed problem of drift detection is plotted in Figure 3, for a data
matrix containing 600 data points. It should be noted that Figure 3 is alog-log plot because the
sngular vaues span three orders of magnitude. An andysis of the curve shows that the best |,
corresponding to the "corner of the L-curve, is 0.1275. It should be pointed out that the proper
choice of regularization parameter is a tough problem, and the "optimd" vaue provided by an
L-curve should not be taken blindly. We found that for the drift detection problem the L—curve
provided a dightly underregularized solution, so we used a dightly higher vaue of the
regularization parameter than that prescribed by the L-curve. We want to dress that the
regularization parameter is afunction of the data matrix and should be recalculated each time the
training data matrix is changed. The filter factors for | =0.1275 are shown in Figure 4. As can



be seen from this figure, the contribution of minor components will be heavily damped through
filter factor weighting, alowing only the first principa component to remain unfiltered.

1 L-curve, Tikh. corner at 0.1275
10 T
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Fig.3 L-curve for Tikhonov regularization
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Fig.4 Filter factors as function of the angular vaues of the data matrix X.

Having chosen the optima regularizetion parameter we can now caculate the
regularized solution, and repeet the tests we performed on the unregularized solution; namely,
check the drift dependence on the size of the median filter window, the number of training points
and data perturbations. The drift dependence on median filter window Sze after regularization is
shownin Table 4.



Table 4 Drift dependence on filter window Size after regularization

Window length, data points

Drift at the check point, klb/hr

0 (no filtering) 39.68
3 39.68
5 39.68
7 39.90
11 39.82

This table should be compared with Table 2 where drift dependence on filtering window
for the unregularized solution is shown. Comparison of these tables shows that regularization
decreased the variability of drift estimation. The changes after regularization are even more
dramatic for the drift dependence on the number of training points and on data perturbations.
The drift dependence on the number of training pointsis shown in Table 5.

Table 5 Drift dependence on the number of training points for two regularization methods.

Number of data | Ordinary least Tikhonov Regularization | Truncated SVD
points squares solution | regularization | parameter | for | regularization,
(no drift, kilb/hr Tikhonov regularization
regularization), regularization parameter k=1,
drift, kib/hr Kib/hr
200 25.08 39.73 0.2 40.53
300 16.25 39.65 0.25 39.99
400 9.82 39.41 0.25 39.98
500 11.98 39.13 0.35 39.11
600 39.46 39.68 0.35 39.50
700 42.86 39.68 0.35 40.07
800 42.02 39.23 0.35 39.74
900 39.00 39.06 0.35 39.69

For convenience, in the second column we show the results of drift inference without

regularization. Andyds of Table 5 reveds that

regularization dradticaly reduced the drift

edimation's variability due to usng different numbers of training points to caculate the regresson
coefficients. In fact, regularization made the drift evauation consstent and invariant under




changes in the number of training data points. Based on the unregularized solution (column
two), it is practicaly impossible to draw any conclusion about the inferred drift value. On the
other hand, the regularized solutions provide highly consstent results. It should be pointed out
that both regularization methods give Smilar results indicating that the true drift vaue can be
inferred based on the current data.

To show how regularizetion works to dabilize drift measurements under data
perturbations we repesat the bootstrap test for the regularized solution. The results of the
gpplication of the bootstrap technique using regularization are shown in Figure 5. As can be
seen from this figure, the standard deviation of the drift estimation was reduced more than 40
times. The gability of the regularized drift is clearly seen from the unimoda nature of the PDF.
This figure should be compared with Figure 2. The mean vaue of the regularized drift was found
to be 39.48 kib/hr.  This corresponds to 0.73 % drift in the first ix months of operation. This
value coincides with previous studies of feedwater flow rate drift estimation and is reasonable
from an engineering point of view. The measured and estimated feedwater flow rates are shown
in Figure 6. The measured feedwater flow is the upper curve which is maintained sationary to
be within regulatory limits. The lower curve is the inferred feedwater flow which is dealy
decreasing, indicating fouling of the venturi meter. The true vaue of feedwaer flow rate is
represented by this lower curve, which shows that the reactor is losing some power due to
derating. Knowledge of this true vaue would alow the operator to avoid derating and still be
within regulatory sefety limits.

Bootstrap estimation of a drift value in a check point
T T T T

Probability density function
o o o o o o o
N w = (3} (2] ~ ©
T T T T

o
-

o
o

20 40 60 80 100
Drift value in a check point, KLB/HR

Fig. 5 Regularized estimation of drift vaue at the check point



Drift in feed water flow rate
6000

5800

Check point
5600

Measured feedwater flof

o
T 5400 2 -
a r Estima ]feedwi*er fibw
* 5200
o
8
= 5000
2
£ 4800
S
®
$ 4600
4400 ;1 i f ]
4200

4000
1000 2000 3000 4000 5000 6000 7000 8000 9000

Time, 1/2 hour interval (the whole scale ~6.6 months)

Fig.6 The measured and estimated regularized feedwater flow rates.
5. CONCLUSIONS

Inferential senaing is an ill4posed problem which suffers from solution ingtability when
gpplied to feedwater flow rate estimation. This ingability is caused by the ill-conditioning of the
data matrix and manifests itsdf as a non-smooth least squares solution, which is overly senstive
to noise in the data. Regularization is a method which can be used to provide a stable and
congstent drift estimation that does not depend on the noise in the data. The regularized solution
aso remainsinvariant when different preprocessing techniques are gpplied, and when different
data sets are used to build the predictive modd. Thus, the use of regularization in inferentid
measurements provides an inexpensve, competitive dterndive to exising methods for the
accurate evaluation of the feedwaeter flow rate.

NOMENCLATURE

Q. coretherma power

my, feedwater flow rate

hy steam enthdpy

hy, feedwater entha py

X datamatrix of predictor variables

y response variable (feedwater flow)

w vector of regresson coefficients

U matrix of |eft egenvectors of datamatrix X
V matrix of right eigenvectors of data matrix X
S diagond matrix of angular vaues of data matrix X
u left angular vector

Vi right Sngular vector



S; sSngular vdue

| regularization parameter for Tikhonov regularization
fi filter factors

e noise

L well—conditioned matrix

PWR pressurized water reactor

BWR boiling water reactor

Subscripts

C core

S steam

fw feedwater

LS least squares

| - regularized least squares solution using regularization parameter |
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