
FOUNDATION FOR A VISUAL REACTOR
SIMULATION TOOLKIT

David Gilbert, Department of Electrical and Computer Engineering
McMaster University, Hamilton Canada

gilbert@mail.cas.mcmaster.ca

ABSTRACT

The current research goal is to implement a well
structured object based simulation system, for use
by the scientists, operators and engineers at the
McMaster Nuclear Reactor. Neutron flux, poison
buildup, and coolant flow are modeled using finite
difference equations. A Cartesian grid with vari-
able resolution, is used to represent the model’s
geometry. Each grid may directly represent an
array of partial differential equations or may be
composed of sub-grids, each being treated inter-
nally as a separate computational object. The final
project will handle model configuration, integra-
tion of related simulations, code generation, exe-
cution, and output rendering. The simulation tool
kit is not yet complete, this paper represents a de-
scription of the preliminary status of the project.

I. INTRODUCTION

The purpose of the current project is to develop
a programming tool for physics models capable of
simulating neutron flux, poison buildup, and water
fluid flows within the McMaster Nuclear Reactor

(MNR) a small light water moderated research re-
actor located on the McMaster campus. During
early conversations about the form of the design
several goals were identified.

1. Model’s physics must be fully configurable.

(a) Physical laws should be expressed in a
mathematically natural way.

2. Model’s geometry must be fully config-
urable.

(a) A Cartesian mesh with variable granu-
larity is used.

3. Libraries should be easy to edit and extend,
and should help the beginner not limit the ex-
pert.

4. Physical laws and geometrical structures
should have a natural or 1:1 association.

5. The model should be capable of running in
real time, so that it will provide a virtual win-
dow into the reactor at all times.

Twenty Sixth Annual CNS-CNA Student Conference
Toronto, Ontario, Canada. June 10-13, 2001
__

1 of 8

mailto:gilbert@mail.cas.mcmaster.ca

Along with these very general goals additional
requirements include input and output mecha-
nisms which can work over the Internet, so that
scientists may rely on a central server to share
their information. Model states must be check-
pointed from time to time, to build up a history
database, and the model must be able to commu-
nicate with standard codes approved by the AECL,
already in use at the MNR, including CATHENA,
3DDT, WIMS and ASSERT [1].

Many general purpose fluid flow packages are
already available (Fluent [2] for example). Com-
mercial and industrial packages have several dis-
advantages which prevent the MNR from using
them. Many computational fluid dynamic pack-
ages are designed to solve a specific set of prob-
lems, and are not generic enough for modeling
a multi-group neutron diffusion problem. Since
commercial packages are sold for profit, source
codes to the packages are not always available.
Without source codes fine tuning the problem and
code verification is impossible.

At the opposite extreme general numerical li-
braries are available for the efficient solution of
sparse matrices. Netlib[3] is an excellent repos-
itory of libraries and numerical solving tools, al-
though these libraries require a great deal of pro-
gramming in order for the user to take advantage
of them. A problem’s specification may be more
difficult to organize than the code which is used to
generate the solution.

Several general packages for the specification
of reactor models already exist. The Modular
Modeling System (MMS) [4] is an example of a
nodal system which allows the user to draw on
a library of prebuilt objects (pumps, valves and
pipes for example) constructing a reactor cooling

model in a schematic fashion. A modeling sys-
tem described by Nilsson [5] follows the same
object oriented approach. Both models use Mi-
crosoft Windows front end editors to organize the
reactor components, and both models are written
in specialized modeling languages, MMS is writ-
ten in ACSL, and Nilsson’s model components are
written in an object-oriented modeling language
called OMOLA. The Modular Modeling System is
described in [4] as a more accessible supplement
to codes like TRAC, RELAP and RETRAN [6],
rather than a replacement. Many reactor monitor-
ing and analysis jobs do not require the complexity
of codes like RETRAN, and are either being done
with the overly detailed codes, or not being done
at all because of the great expense involved.

The MARS [7] project aims to combine two
standard codes (RELAP and COBRA-TF) into a
single multi-dimensional fluid flow analysis tool.
Dynamic memory allocation features of FOR-
TRAN90 were used, and a graphical user interface
was added to the final code combination to make
it easier for engineers to work with the codes.

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)

2 of
Figure 1: Cell editor
8

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)
View Output with
Netscape or IE

Equation Library

Previous Models

Materials Library

Parts Library

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + + Model Config

File
Equation Translator

Model Generator

Base C++
Classes

Model Specific
C++ Classes

Build Executable

gcc on Linux

Model Executable
Filter Data Through
Plotting Package
Generate .gif files

Telnet Session

Output Posted on Web

Cell / Code Editor
Text Menu Based

of Model with

Based PC

Open

Help

About

Man

File

Exit

Edit

Options

Config

D
View

K
P

Generates Data
Snapshots while
Running

Figure 2: Model data flow overview
At this time the codes used for licensing the
MNR (CATHENA, WIMS) do not have an easy
to use interface, and there is also no general pur-
pose code in use at the MNR to perform routine
or experimental analysis. The proposed simulator
aims to fill this need. The interior of the prototype
model is exposed to the user, in the form of partial
differential equations to allow maximum flexibil-
ity. A front end editor organizes the equations for
the user and associates them with a geometry sim-
plifying the job of model configuration, the cell
editor is shown in Figure 1.

Internally linked cell structures are represented
as objects with uniform interfaces. Objects are
always a collection of linked cells. Objects are
merged one at a time by the model designer into
hierarchical maps. Each group of objects commu-

nicates with its neighboring group by being placed
close enough so that a cellular interface is made.

II. DESIGN OVERVIEW

A simple text menu based cell and code editing
tool is used to configure the simulation. The menu
is designed to launch geometry and code editors,
similar to the fashion of the classical Borland C
editors which produced code for DOS computers.
The text menu based implementation was chosen
over a graphical implementation for two reasons:
it runs easily over a telnet session, allowing scien-
tists to work remotely, and it is easier to implement
than a full graphical user input (GUI) system. If
time permits an X based GUI may be designed to
replace the text menus, which would also allow
remote access, with the addition of a more sophis-

3 of 8

ticated geometry input mechanism.

For the front end editor to produce an efficient
executable model, it first writes a configuration file
which is passed through the model generator (see
Figure 2). The model generator reads information
about the constants, geometry and physics of the
model as specified by the configuration file and
checks that the model’s design is internally con-
sistent. The information in the configuration file is
translated into a collection of C++ classes specif-
ically tailored for the current simulation. The
model specific C++ classes inherit general fea-
tures from the base modeling class and the final
code is passed to gcc for compilation.

online database, so that a user may interactively
view the simulator’s history.

III. CARTESIAN EMBEDDED MAPS

All maps are rectangular grids belonging to one
of two types. A map is either a map of simple
cells, where each cell computes physical proper-
ties based on its constants and the constants and
properties of its neighbors as defined by its partial
differential equation, or a map has other maps as
its cells, effectively sub-maps as shown in Figure
4.

Cell maps solve for variable properties (flux,
temperature etc.) as defined by the modeler.
Maps may be grouped with adjacent maps which
use a different formula basis, and which solve
for a different set of variables. Maps may have
any dimension, and may be nested at any level.
All maps use identical interface functions, like
Read_Element(), Output_State(), Import_State(),
and Solve_Map_SOR().

By default when maps share their values with
bordering maps, if a variable is not defined by both
adjacent maps, then the numerical value is mir-
rored at the edge. This way a quantity of interest
(poison buildup for example) may be defined for
only a small region of the geometry if it does not
apply to the entire model. Memory is conserved,
and the modeler need not be concerned with the

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)
Figure 3: Netscape used to view output
While the simulator is running, it generates pe-
riodic data snapshots of some area of interest.
Snapshots are automatically rendered by gnuplot,
a batch driven scientific data plotting program, and
the rendered output files are copied to the users
web directory so they can be remotely viewed (see
Figure 3). The data snapshots will be stored in an

details of the implementation.

Inheritance in C++ is used to merge the map
specific data structures and formulas with generic
functions so that each map may have a uni-
form interface. If a map has sub-maps, then
the top level Solve_Map_SOR() function calls the
Solve_Map_SOR() function of its children, each

4 of 8

in tur
equil

IV. A

On
a mo
it me
imag
struct
signe
in the
ble w
think
other
lect p
haust
to wh
of, as

Th
these

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)
Import_State()
Output_State()

Grid Data
Physical Laws
Material Constants

Map Identifier

Top Level Geometry Specification Map

Submap for Refined Submap Containing
a Further Refined MapGeometric Specification

Solve_Map_SOR()
Maps may have any

a common inherited class
with uniform functions

configuration, all share

Figure 4: Map layout
n, until the entire grid has reached a new
ibrium.

N EQUATION TRANSLATOR

e of the fundamental problems in allowing
del’s physics to be fully configurable is that
ans the model must be able to handle any
inable equation, that fits in with its general
ures. One option is to allow the model de-
r to compile their own object codes, written

native language of the model. The trou-
ith this approach is the modeler is forced to
more about programming than physics. An-
approach would be to have the modeler se-
re-compiled physics equations from an ex-
ive menu. This constrains the configuration
atever physics the system designer is aware
no menu is ever fully exhaustive.

is project follows a compromise between
two alternatives. An equation translator

along with an easy to edit library of equations is
supplied. The equation translator takes formu-
las expressed in a mathematically natural way and
converts these equations into a form that a C com-
piler can understand.

The equation translator runs in three modes
(configurable for each cell):

1. A strict mode which only accepts linear equa-
tions following a tightly defined syntax.

2. A mixed C mode where recognized simula-
tor symbols can be intermingled with raw C
code.

3. A literal mode, where C code is passed di-
rectly to the C compiler, and no translation is
done.

The basic element of any simulation is a cell.
Each cell has a set of equations associated with
it that define the physics of that cell as well as a

5 of 8

set of constan
of the cell (s
required to s
erties, all ce
physical law
configuration

rs_cell
<
<
.
<

}

An equatio
either consta
identifiers. T
way to recog
erty structure
Constant type
fined. A prop
erty names, f
dled exactly
that the mod
that the struc

rs_prop
<
<
.
<

} <prop

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)
Cell Definition

Materials Pointer
Cell_Update Pointer

Base Level Cell Map

Cell_Update_() {
 <prop_1>=<finite_diff_1>;

}
 <prop_2>=<finite_diff_2>;

Structure of User
Defined Cell Varaibles
<prop_1> ... <prop_n>

Materials Data Base
<const_id> definitions

Figure 5: Cell map
ts that define the material properties
ee Figure 5). Since not all maps are
upport the same set of variable prop-
lls need not support the same set of
s. A cell is described in the model
file as:

<const_id> <prop_id> {
prop_1>=<finite_diff_1>;
prop_2>=<finite_diff_2>;
..
prop_n>=<finite_diff_n>;

n may have three sorts of identifiers,
nts, variable properties, or external
he equation translator must have a

nize these, and so constant and prop-
s are mentioned in the cell definition.
s and property types must also be de-
erty type declaration is a list of prop-
ollowed by an identifier, and is han-
like a struct declaration in C, except
el generator makes note of the form
ture takes.

struct {
prop_1>;
prop_2>;
..
prop_n>;
_id>;

Constant types are described in an analogous fash-
ion. Constants have fixed values, and are defined
by a pointer to the materials library.

The general steady state finite-differenced
multi-group diffusion equation [8] is written as:� � � � � �
 �� � �

� �
� �� � � � � � �
 �� � �

� �
� �� � � � � �

(1)

 � " $� & ($ � � & * �, � � � � & - . �0
 1� & ($ 3 � & � � &5 � � � � &
Equations recorded for each cell are used as part

of an iterative solution to solve for the flux of the
map, all

� � �
where i represents the index value

of the local position, and g represents the energy
group level. This equation is reorganized to solve
for

� � �
and can in principle be written in standard

C notation and then be merged at compile time
with the iterative solver. This strategy may be used
with any finite differenced equation, although the
flux equation is used in the following examples.

In order to support hierarchical maps the model
must declare and array of pointers for each map
object. In standard C notation each cell has a
field pointing to its update function, a pointer to
the constants library (materials cross sections for
example), a pointer to a structure of variables to

6 of 8

solve for (flux or temperature). Variables in C no-
tation are identified as:

grid[x * this->X_MAX + y]
->property->phi[g]

Constants are identified as:

grid[x * this->X_MAX + y + 1]
->constant->Sigma_R[g]

The first job of the equation translator is to find
properties or constant definitions in a users equa-
tion and automatically insert the pointers. The
position in the grid array is computed based on
the current objects dimensions. Finite difference
methods work with neighboring cells, so the sub
index [E], [W], [N] and [S] are automatically
translated into the correct relative position for-
mula, if the reference is to the current cell, the po-
sition pointer is dropped. Using these conventions
variables can be referred to in the configuration
file more simply as:

phi[g] and Sigma[S][g]

The first and last terms from equation (1) are:6 7 9 ; < = > @B C D
< E

F G< E H J L 9
(2)

M DN > O9 P Q R S 9 P 7 9 PU < J L 9 P
(3)

Since summation is a common operation the
equation translator uses a short form to express
it. In the model configuration file term (3) can be
written as:

(Chi[g]/k) * Sum(g’=1..G, (4)
nu[g’] * Sigma_f[g’] * phi[g’])

For the summation operator to work correctly
the bounds must be known at compilation time.
Summation with more subtly expressed bounds
must be coded in C either using the mixed or lit-
eral cell equation mode as a for() or while() loop.
In strict mode the summation operator is handled
by unrolling the summation and listing each ele-
ment explicitly. This allows for very efficient ex-
ecution, and no chance of a non-terminating loop.

Subscripted variables are commonly marked
with a prime symbol (’). The equation translator
allows the prime symbol to be used as part of a lo-
cal variable to help distinguish it from other vari-
ables.

Term (2) can be written as:

(Sigma_R[g] + (5)
(D[E]+D[W]+D[N]+D[S])

/delta^2)*phi[g]

The [N], [S], [E], and [W] tags are converted
by the equation translator into their correct rela-
tive position, and the neighboring values of D are
returned in each case. Caret (^) is allowed to rep-
resent exponentiation as it does in Pascal, even
though this is not normally present in C. Since
term (5) has assumed that delta is uniform, and
since this may not always be the case, it is conve-
nient to have a special form of summation which
more closely matches the original equation. Term
(2) could also be written as:

(Sigma_R[g] + Sum(j=[N]..[W], (6)
D[j]/delta[j]^2)*phi[g]

In term (6) the mathematics expressed is the
same as the first term in the original equation. In-
stead of the limits of the sum being integers, [N],

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)

7 of 8

and [W], are used to suggest a clockwise tour of
the four directions.

V. PROJECT STATUS

The described simulation toolkit is still in the
early stages of its development. Currently the
model generator can handle two dimensional geo-
metrical grids, and plans are in place to extend the
solver to three dimensions. The equation transla-
tor allows for expressing the relative position of
variable properties, or constants, in neighboring
cells, with the use of the [N], [S], [E] and [W]
tags, and automatically inserts the correct pointer
information. The summation, and exponentiation
operators have not yet be implemented.

A method for integrating the existing codes into
the proposed simulator has not yet been thor-
oughly investigated. It is anticipated that C++
class wrappers can be used to encapsulate the in-
put and output of external executable programs,
and merge their output with the new structures.

Output generation of data files over the web has
been tested, and a basic version of the simulation
generator, and equation translator have also been
tested. Most of the base layers of the menu input
system are ready.

It is hoped that when the model generator is
ready it will be used to assist with routine analysis
jobs by providing a quick and ready estimate of
the reactors status. An early well integrated proto-
type capable of running a sophisticated simulation
should be ready in fall 2001.

References

[1] Garland W., “Thermalhydraulic Modeling of
the McMaster Nuclear Reactor”, MNR Tech-
nical Report 97-04, McMaster University,
1997.

[2] Fluent, “Fluent Inc, CFD Flow
Modeling Software and Services”,
http://www.fluent.com, 2001.

[3] Netlib, “Netlib Repository at UTK and
ORNL”, http://www.netlib.org, 2001.

[4] Smith L.P., May R.S., Divakaruni S.M.,
Deluba G.S., “An Overview of the Modular
Modeling System (MSS) Code and Applica-
tions”, Babcock & Wilcox, Technical Paper
TP1081, 1983.

[5] Nilsson B., Eborn J., “An Object-Oriented
Model Database for Thermal Power Plants”,
European Simulation Conference, 1995.

[6] Agee L. J., “Retran Overview”, Nuclear Tech-
nology Vol. 70, July 1985.

[7] Jeong J.J., Ha K.S., Chung B.D., Lee
W.J., “Development of a Multi-Dimensional
Thermal-Hydraulic System Code, MARS
1.3.1”, Annals of Nuclear Energy Vol. 26,
1999.

[8] Duderstadt J., Hamilton L.,
Nuclear Reactor Analysis, John Wiley
and Sons, 1976.

[9] Yeung, M. R., Jiang G. B., “Development of
an Efficient Three-Dimensional Reactor Core
Model For Simulator Applications”, Nuclear
Technology Vol. 97, March 1992.

__

Gilbert, D., "Foundation for a Visual Reactor Simulation Toolkit",
Proceedings of the Twenty Sixth Annual CNS-CNA Student Conference. Toronto (June 2001)

8 of 8

	CONFERENCE PROGRAM
	STUDENT SESSION S1
	TITLE: FOUNDATION FOR A VISUAL REACTORSIMULATION TOOLKIT
	ABSTRACT
	I. INTRODUCTION
	II. DESIGN OVERVIEW
	III. CARTESIAN EMBEDDED MAPS
	IV. AN EQUATION TRANSLATOR
	V. PROJECT STATUS
	REFERENCES
	EQUATIONS:
	Eq. (1)
	Eq. (2) to (6)

	FIGURES:
	Figure 1: Cell editor
	Figure 2: Model data flow overview
	Figure 3: Netscape used to view output
	Figure 4: Map layout
	Figure 5: Cell map

	<--RETURN

