

CANDU Safety #9 - Grouping & Separation

Dr. V.G. Snell Director Safety & Licensing

Purpose of Grouping & Separation

- **λ** protection against events affecting a limited area of the plant
- **λ** common cause failures:
 - turbine disintegration and resultant missiles
 - fires
 - small aircraft strikes
 - failure of common support system
 - common adverse environment
- a ensure that functional interconnections between systems do not change effectiveness for accidents

Two Group Design Philosophy

- A ensure two independent ways to achieve same safety functions:
 - shutdown
 - remove decay heat and/or prevent release of radioactivity
 - monitor the plant
- **λ** group safety-related systems into two groups
 - Group 1 and Group 2
- x reactor building is a natural barrier for some common cause events

– both Group 1 & Group 2 systems are within reactor building

Three Types of Safety-Related Systems

- **λ** special safety systems
 - shutdown system 1, shutdown system 2, ECC, containment
- **λ** safety support systems
 - provide electrical power, instrument air & cooling water to special safety systems
- **λ** safety-related process systems
 - process systems which can mitigate an accident

Grouping

- **λ** each safety-related system assigned to one Group
- **λ** each Group can independently perform all the safety functions
- λ Group 1
 - power production systems
 - some of the special safety systems
 - safety support systems required by these special safety systems
- λ Group 2
 - the remaining special safety systems
 - safety support systems required by these special safety systems

Systems Within Groups

Group 1 Normally Operating Process Systems Shutdown System 1 Emergency Core Cooling System Safety Support Systems

> <u>Group 2</u> Shutdown System 2 Containment Safety Support Systems (EPS, EWS)

Interconnection of support services Group 1 to Group 2 in Normal Operation Group 2 to Group 1 in accidents Group 1 to Group 2 in accidents

CANDU Safety - #9 - Grouping & Separation.ppt Rev. 0 vgs

System Grouping by Safety Function

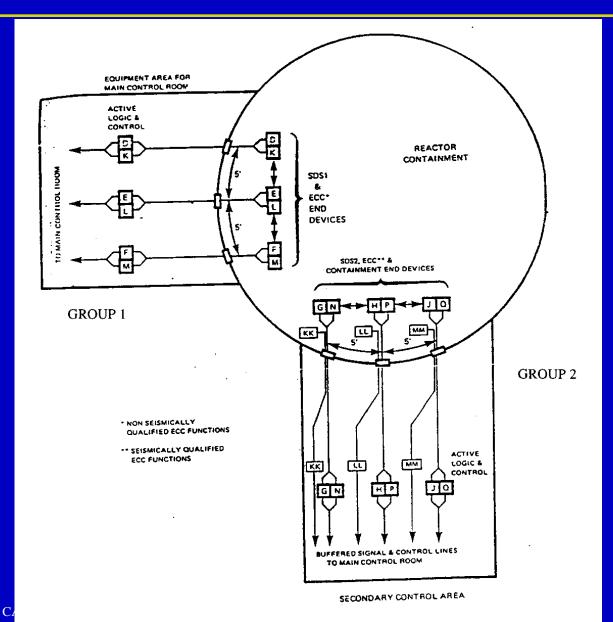
Safety Function	Group 1 Systems	Group 2 Systems
Shutdown	Reactor Control System Shutdown System 1	Shutdown System 2
Heat Removal From Fuel	Heat Transport System Steam & Feedwater Systems Shutdown Cooling System ECC Moderator	Emergency Water System
Contain Radioactivity	Reactor building air coolers	Containment & containment subsystems
Monitoring & Control	Main Control Centre	Secondary Control Area

Rationale

- two shutdown systems are in separate groups so that a single event cannot prevent shutdown
- λ ECC and containment are in separate groups so that a single event cannot damage fuel and allow radioactivity to escape
- on CANDU 9, the grouping of containment and ECC has been switched for convenience in cable routing

Safety Support Systems

Safety Support Function	Group 1 Safety Support	Group 2 Safety Support
Electrical power	Class IV Class III diesels Class II Class I	EPS Diesels Class II Class I
Service Water	Raw Service Water Recirculating Service Water	Emergency Water System
Instrument Air	Instrument Air System	Local Air Tanks



Separation Between Groups

- **λ** outside reactor building, Groups in different areas of the plant
- **λ** typically 90 degree separation
- x separate buildings for Emergency Power System diesels, Emergency Water System
- inside reactor building: barriers and physical separation to extent practical
- x separation barrier or distance assessed to show adequacy fire missiles, barsh environment
 - fire, missiles, harsh environment
- nain control room protected from steam line breaks and external events so operators can proceed to SCA; access route protected

Plant Layout

Avoidance of Common Cause Failures

- **λ** where specified separation cannot be achieved:
 - show no credible hazard in area
 - another Group 2 system outside the area will mitigate
 - system or component protected by barrier
 - system or component is fail safe
 - component designed to withstand hazard
- **λ** Group 2 systems generally seismically qualified
- **λ** location above flood levels

Instrumentation Cable Designations

System Group	System Name	Channel Designation		
1	Reactor Regulating System	Α	В	С
1	Shutdown System No. 1	D	Ε	\mathbf{F}
1	Emergency Core Cooling System	K	L	\mathbf{M}
2	Shutdown System No. 2	G	Н	J
2	Containment System	Ν	Р	Q
1	Emergency Core Cooling System	KK	LL	MM
	(seismically qualified)			

Separation Within Groups (Examples)

- x safety system triplicated instrumentation channels within a group separated by 1.5 metres
- **λ** "ODD" & "EVEN" cables separated by 1.5 metres
- single channels within same Group can share common routing (e.g., A, D, K)
- **λ** buffering of connections between Main Control Room & SCA
- λ power cables >600 volts must be 0.45m. above instrumentation cables

Isolatable or Buffered Interconnections - 1

- » Buffered control and instrumentation cables between the Main Control Room and the Secondary Control Area
 - to enable Group 2 equipment to be controlled from the Main Control Room
- **λ** Buffered post-accident monitoring and control cables
- Lectrical power supply from the grid or from the turbine generator to Group 2 components, where required for reliability
- X Cooling water supply from Group 1 to Group 2 components, where Group 1 supplies remain available or can be reestablished for long-term reliability

Isolatable or Buffered Interconnections - 2

- Compressed air supply from Group 1 for the supply of air storage tanks during normal operation of the plant
- Support services from Group 2 (i.e., EWS, EPS) to Group 1 Special Safety Systems and other safety related components (e.g., supplies to ECC)
- interconnections must ensure that failures cannot propagate from one Group to the other

LWR Approach (simplified)

 two to four spatially separated identical trains

•little or no redundancy within a train

each train fully qualified

CANDU Approach (simplified)

 two diverse, separated Groups redundancy within each Group qualification determined by safety function

CANDU Safety - #9 - Grouping & Separation.ppt Rev. 0 vgs

- x common cause failures handled by grouping & separating mitigating systems
- **λ** each group can perform key safety functions
- x separation protects against common cause failures of both groups
- A groups have limited cross-connections to increase reliability of mitigation for more frequent events
- **λ** diversity is more important than redundancy
- x qualification depends on each specific accident to be mitigated