ACR TECHNOLOGY BASE: REACTOR PHYSICS

By Peter G. Boczar, Director Reactor Core Technology Division

Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 26, 2002

Outline

- Analysis basis
 - original, current
- ZED-2 reactor physics measurements
- Validation of the reactor physics toolset
 - for CANDU
 - for ACR

Original CANDU Physics Analysis Basis

- generally good accuracy
- many parameters tuned to give agreement with measurements
- not of general applicability

Reactor Code

- RFSP
- steady state, kinetics (with T/H coupling), xenon transients
- diffusion theory in 1.5 energy groups

3D Reactivity Device Code

- MULTICELL
- "incremental cross sections" added to cell-average cross sections for reactivity devices Pg 3

Lattice Code

- POWDERPUFS-V
- "Westcott" cross-section convention, 4-factor formula
- cell-average cross sections

Current CANDU Physics Analysis Basis

- good accuracy and of general applicability
- part of the "Industry Standard Toolset" (IST)
- theoretically rigorous treatment

- RFSP
- 2-energy group diffusion theory

Lattice Code

- WIMS
- multi-group, 2-D transport theory

3D Reactivity Device Code

- DRAGON
- multi-group, 3D transport theory

MCNP

 Monte-Carlo code MCNP increasingly used in design and validation as benchmarking tool

ZED-2 Reactor

- Tank-type critical facility, 3.3 m (11 ft) in diameter & depth
 - runs at a few watts
- Flexible facility
 - allows testing of a variety of fuels, different pitches, different coolants: D₂O, H₂O, air (voided)
- D₂O moderated
- Typical lattice arrangement is hexagonal, with 55 channels, each containing 5 bundles
- 7 "hot sites" can be located in center
 - 10 MPa (1450 psi), up to 300 °C (570 °F)
- Shielding insufficient for measurements on irradiated fuel

ZED-2 Measurements

- Buckling (reactivity)
 - full core flux maps & substitution experiments
 - reactivity coefficients
 - void reactivity; fuel temperature; coolant temperature & purity; moderator temperature, purity, and poison
- Worth of reactivity devices (shutoff rod, adjuster rod)
- Reactor period measurements (for neutron kinetics)
- Reaction rates in foils
 - U-235, Pu-239, Dy-164, Cu-63, Mn-55, Au-197 In-115, Lu-176
 - reaction-rate ratios are sensitive indicators of the energy spectrum
 - Pu-239/U-235 fission, Lu-176/Mn-55 capture, Au-197/Cu-63 capture
- Thermal flux through lattice cell (Cu-63)

Typical Set-up for Substitution Experiment

- Booster Channel
- O Driver Channel
- MOX Channels

Activation Foils in a CANFLEX Bundle

Fuels Measured in ZED-2

- Geometries
 - 28-element, 37-element, 43-element CANFLEX
- Compositions
 - fresh NU
 - simulated "mid-burnup" NU fuel
 - 0.4 wt% U-235, 0.3 wt% Pu (75% fissile), 0.05 wt% Dy
 - "low void reactivity fuel" (LVRF)
 - 37-element; 7-rod substitution measurements
 - CANFLEX high burnup LVRF; single rod (5 bundle) substitution measurements
 - similar to ACR fuel

LVRF Bundles Tested in ZED-2

37-element LVRF

CANFLEX LVRF

Other Reactor Physics Measurements

- NRU
 - isotopic depletion and burnup from experimental bundles irradiated in NRU: NU, SEU, LVRF, Dy-doped elements
- CANDU power reactors
 - physics tests during commissioning
 - in-core flux detector measurements during operation
 - thermal-power measurements in some channels
 - burnup of discharged bundles
 - kinetic behavior (slow and fast transients, shutdown-system tests)
 - realistic in terms of scaling, but
 - always "integral" measurements (rather than separate effects)
 - larger measurement uncertainties than in ZED-2
 - not completely known boundary conditions

Validation of Reactor Physics Toolset

- Followed standard methodology (described in workshop)
- Validation involved
 - comparison against ZED-2 measurements
 - comparison against power reactor measurements
 - extrapolation / scaling using MCNP
- Validation identified bias and uncertainty for key parameters
 - for example, WIMS over-predicts void reactivity (ie, is conservative) in operating CANDU reactors with a bias of between +1.6 to +2.0 mk, with an uncertainty of +/- 1 mk
 - CNSC and industry commissioned Independent Expert Panel (IEP) to review industry conclusions wrt void reactivity, fuel temperature reactivity coefficient, & delayed neutron data
 - draft report by IEP released in Aug 2002 was in the end generally in agreement with numbers used by Industry
 - final report expected in October

ACR Physics

- Key differences affecting physics
 - fuel type
 - 2% SEU with Dy in central element
 - lattice
 - H₂O cooled, tight lattice pitch
 - fuel channel
 - larger gap between pressure tube and calandria tube
 - core geometry
 - reflector has greater importance

ACR Physics Analysis Basis

- Current physics toolset will be used
 - WIMS, DRAGON, RFSP
- Currently confirming suitability of toolset
 - number of energy groups in full-core diffusion calculations
 - suitability of diffusion theory throughout core
 - estimated accuracy in key parameters
 - nuclear data library
- Assessment includes inter-code comparisons with MCNP and multigroup diffusion code DONJON

Validation of Physics Codes for ACR

- ZED-2 experiments
 - buckling measurements
 - full core and substitution
 - reactivity coefficients
 - reaction rate measurements
- Measurements from NRU irradiations
 - isotopic depletion and burnup from prototype ACR fuel irradiated in NRU
- Extrapolation / scaling with help of MCNP

Summary

- Reactor physics toolset recently upgraded to more rigorous methods
 - currently confirming suitability of toolset for ACR
- Validation of reactor physics toolset based on decades of measurements in ZED-2
 - ZED-2 measurements will provide validation data for ACR physics
- CANDU analysis and measurement methodologies well established
 - independent international expert review of our methods

