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Summary: 

Delayed precursors are introduced into the general neutron balance equations to account for 
this delayed neutron source.  These delayed neutrons are crucial in determining the transient 
response of a reactor to reactivity perturbations. The model is drastically simplified to yield the 
classic point kinetics equations, which are investigated to reveal the kinetic behaviour of typical 
reactor systems. 
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Figure 1 Course Map. 

1.2 Learning Outcomes 
 
The goal of this chapter is for the student to understand: 

• The derivation and limitations of the point kinetics equations 
• How to determine the neutron response to reactivity perturbations 
• The important role played by delayed neutrons 
• The inverse method and how it might be used 
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2 Point Kinetics Equations 
 
We had the general multigroup neutron diffusion equations: 

 

( ) ( ) ( ) ( ) ( )
G

g g g a g g sg g sg 'g g '
g g ' 1leakage loss by removal by

absorption scattering scattering into group g

g

fraction
appearing
in gr

1  r, t  =   D  (r) r, t (r) r, t (r) r, t (r) r, t
v t =

∂
φ ∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ

∂

+ χ

∑

( )
G

ext
g ' f g ' g ' g

g ' 1
external sourcetotal fission

oup g production

( ) r, t S
=
ν ∑ φ +∑ r

(2.1) 

and in one-speed form, this simplifies to  

 a f
1  ( , t) =   D ( ) ( ,t) Σ ( ) ( , t) + ( ) ( , t)
v t

∂
φ ∇⋅ ∇φ − φ ν∑ φ

∂
r r r r r r r  (2.2) 

In both those forms, the neutrons are assumed to all appear as soon as fissioning occurs.  The 
term  in equation 2.2 has dimensions of neutrons / cmf ( ) ( , t)ν∑ φr r 3-s, representing the rate of 
neutron production.  But, in reality, a small fraction of the neutrons come, not from the fission 
directly, but from the subsequent decay of fission products (termed the delayed precursors).  We 
need to mathematically account for this delayed source of neutrons is we are to model the 
transient behaviour of neutron flux correctly.   
 
In this chapter we focus on the transient behaviour of the flux and we will virtually ignore the 
spatial effects and the energy effects.  Obviously this is an approximation that has its limitations 
but it does serve admirably to illustrate reactor kinetics.   
 

2.1 Delayed Precursors 
 
We modify equation 2.2 by acknowledging that a fraction, β, of the neutrons produced in fission 
are the result of the decay of the delayed precursors: 

 
( )

6

a f
i 1

i i i i f

1  ( , t) =   D ( ) ( ,t) Σ ( ) ( , t) + 1- ( ) ( , t) C
v t

C (r,  t) C (r,  t)  (r) (r, t)
t

=

∂
φ ∇ ⋅ ∇φ − φ β ν∑ φ + λ

∂

∂
= −λ + β ν∑ φ

∂

∑r r r r r r r i i
 (2.3) 

There are a large number of fission product isotopes that decay by neutron emission and, thus, 
are members of the delayed precursor family.  For the purposes of modeling their effect on 
neutron kinetics, it is sufficient to group them into 6 groups (C1…C6) according to their half-life. 
 The delayed precursors are assumed to not diffuse in solid fuel but the delayed precursor 
densities, Ci will be space dependent since the flux is space dependent.  Typical values are: 
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Group #→ 1 2 3 4 5 6 

T1/2 54.51 21.84 6.0 2.23 0.496 0.179 
λI 0.0127 0.031 0.1155 0.310 1.397 3.871 
βi/β .038 0.213 0.188 0.407 0.128 0.026 

βI 0.0002641 0.00148035 0.0013066 0.00282865 0.0008896 0.0001807 

Table 1 Typical precursor coefficients. 

For the values in table 1, =0.0065.  So the delayed precursors only account for 0.65% 

of the neutrons.  However, the long time constants (up to a minute) compared to the short fission 
and slowing down times (about 10 µsec to 1 msec or so, depending on the reactor design), means 
that these delayed neutrons have a large effect on the system time constants, as we shall see. 

6

i
i 1=

β ≡ β∑

 

2.2 Derivation of the Point Kinetics Equations 
 
So now, with the addition of the delayed precursors, we have 7 equations to solve for every point 
in space and time.  To focus on the time behaviour, we will assume that the media is 
homogeneous and that the flux shape is known, ie: 
 2 2

gB 0∇ φ+ φ =  (2.4) 
which, when used in equation 2.3 to replace the diffusion term, gives: 

 ( )
6

2
g a f i

i 1

1   =   DB Σ + 1- C
v t =

∂φ
− φ− φ β ν∑ φ+ λ

∂ ∑ i  (2.5) 

We employ the “adiabatic” approximation that the flux can be factored into an amplitude part 
and a spatial part: 

 
( ) ( )
( ) ( )i i

r, t v n(t) r

C r, t (t) r

φ = ψ

= ψ
 (2.6) 

giving: 

 
( )( )

6
2
g a f i

i 1

i i i i f

n  DB    1- vn
t

  vn
t

=

∂
= − −Σ + β ν∑ + λ

∂

∂
= −λ + β ν∑

∂

∑ i
 (2.7) 

Defining: 

 
( )

f a
2 2 2 2

g a g

/ 1k , neutron lifetime
1 L B v 1 L B
ν∑ ∑

= = =
+ ∑ +

 (2.8) 

we can rearrange equation 2.7: 
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( )
2 6
g

a f
a i 1k

i i i i f
k

DBn  1 vn 1- v n
t

  v n
t

=

 ∂  = −∑ + + β ν∑ + λ
 ∂ ∑ 

∂
= −λ + β ν∑

∂

∑ i i

 (2.9) 

Noting that
2
g 2 2

g
a

DB
L B=

∑
 and that f

k v= ν∑ we get this simplified form: 

 

( ) 6

i i
i 1

i i i i

k 1- 1n(t)  n(t) (t)
t

k(t) (t)  n(t)
t

=

β − ∂
= + ∂  

∂
= −λ + β

∂

∑λ
 (2.10) 

We make two further substitutions, k 1 reactivity
k
−

ρ ≡  and = mean generation time
k

Λ ≡ = to 

arrive (finally) at the Point Kinetics Equations: 

 

( ) 6

i i
i 1

i
i i i

-n(t)  n(t) (t)
t

(t) (t)  n(t), i 1...6
t

=

ρ β∂
= + λ

∂ Λ

∂ β
= −λ + =

∂ Λ

∑
 (2.11) 

These are the classical form of the space independent kinetics equations, derived early on in the 
history of reactor design.  The parameters ρ, β, etc, are the embodiment of the net effects of the 
more fundamental and physically based parameters such as cross sections, etc. that we see in the 
general neutron balance equation.  So it is more difficult to see the direct effect on the reactor 
system of changes in cross sections, etc.  But the Point Kinetics Equations are wonderfully 
succinct and allow us to get an analytical solution that we can use to investigate the nature of the 
reactor system, specifically its response to changes in reactivity, ρ. 
 

2.3 Solution of the Point Kinetics Equations 
 

In general, ρ = .  The dynamic effects includes feedback effects due to 

temperature, power, fuel depletion, etc.  The kinetic effect includes direct control rod action, etc. 
 For the moment, we will assume only kinetic effects exist, ie, we impose a prescribed ρ = . 

( )
kineticsdynamics

n t , t
 
ρ
 
 



(t)ρ
 
The case of constant ρ can be readily solved analytically but the solution is a bit messy.  We start 
by assuming an exponential nature for the flux and delayed precursor concentrations: 
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t

t
i i0

n Ae
e

ω

ω

=

=
 (2.12) 

Exponential behaviour would be expected since the Point Kinetics Equations are proportional to 
themselves.  Substituting into the precursor part of equation 2.11 

 t
i0 eωω t

i i0 eω= −λ ti A eωβ
+

Λ
 (2.13) 

which gives 

 
( )

i
i0

i

A β
=

Λ ω+λ
 (2.14) 

Just as you would expect, the precursor concentrations are proportional to the neutron density (or 
flux).  We substitute this back into the neutron equation to give: 

 

A teωω
( )-

A
ρ β

=
Λ

teω i
i

Aβ
+ λ

( )
t

i
eω

Λ ω+λ

( )
( )

6

i 1

6
i

i
ii 1

-

=

=

⇓

ρ β β
ω = + λ

Λ Λ ω+λ

∑

∑

 (2.15) 

The is a transcendental equation, ie, ω depends on itself.  We can solve this graphically.  For a 
given physical setup, λi, βi, etc, are set.  The ρ is variable and Λ is a function of ρ.  It makes 
sense, then to plot ρ against ω.  Physically, this is plotting the input (ρ) against the response (ω). 
 But before we can do that, we need to get rid of the ρ dependency of Λ.  We rewrite equation 
2.15: 

 

( )

( )

( )
( )

( )

6
i

i
ii 1

6
i i

i
ii 1

6
i i i i

ii 1

6
i

ii 1

=

=

=

=

 β
Λω = ρ+ λ −β  ω+ λ 

⇓

 λ β
Λω = ρ+ −β  ω+ λ 

⇓

 λ β − ω+λ β
Λω = ρ+   ω+ λ 

⇓

 ωβ
Λω = ρ−   ω+ λ 

∑

∑

∑

∑

 (2.16) 

But  

 (1
k

)Λ ≡ = −ρ  (2.17) 
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( ) ( )

( ) ( )

6
i

ii 1

6
i

ii 1

1

1

=

=

 ωβ
ω −ρ = ρ−   ω+ λ 

⇓

 ωβ
ρ +ω = ω +   ω+ λ 

⇓

∑

∑
 (2.18) 

Dividing through we arrive at The Inhour Equation: 

 
( ) ( ) ( )

6
i

ii 1

1
1 1 =

 ω
ρ = + 

ωβ
+ω +ω ω+λ 

∑  (2.19) 

 
Figure 2 The roots of the inhour equation. 

Note that there are 7 roots, ie there are 7 values of ω for a given value of ρ.  That means we 
should have written the solution in the form: 
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j

j

7
t

0 j
j 1

7
t

i i0 ij
j 1

n n A e

B e

ω

=

ω

−

=

=

∑

∑
 (2.20) 

We could go through the drudgery of solving for the coefficients but there is really no need.  All 
we were really after was the relationship between the rate that the flux responds, ie the ω’s, to 
the input ρ.  Usually ρ is ρ(t) and we solve the point kinetics equations numerically.  So we will 
move on. 
 
Notice, in figure 2, that for ρ>0, there is only one ω>0.  All the other ω’s are <0, ie, they 
represent dieing components.  If we plug in a ω into the inhour equation, we can directly 
calculate the ρ that must have caused it.  Figure 3 shows such a calculation done with a 
spreadsheet.  This brings us to two questions to contemplate: 

1. How might this be used to calibrate a regulating rod? 
2. How can the calibrated regulating rod be used to calibrate the control rods in MNR? 

 
Figure 3 Reactivity for a given period. 
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3 Prompt Effects 
 

3.1 The Prompt Jump 
 
Consider a step change in ρ from a steady state situation.  Before the change, the point kinetics 
equations in steady state are: 

 ( ) 6
0

i i
i 1

-
0 n(0) (0)

=

ρ β
= + λ

Λ ∑  (3.1) 

This gives the steady state value of the summation term just prior to the ρ insertion.   
 
After the ρ insertion, the φ (or n) changes quickly but the precursors take some time to react.  
Thus we can use the steady state value for the summation term.  Thus: 

 ( ) ( )0- -n(t) n(t) n(0)
t

ρ β ρ β∂
= −

∂ Λ Λ
 (3.2) 

Solving gives: 

 
t

0n(t) n(0)e n(0) 1 e
ρ−β ρ−β
Λ

t
Λ

 ρ −β
= + − ρ −β  

 (3.3) 

For ρ < β, 

 0n(t) n(0)ρ −β
→

ρ−β
 (3.4) 

thus: 

 0n(t)
n(0)

0ρ −β β−ρ
→ =

ρ−β β−ρ
 (3.5) 

For ρ > ρ0, 
n(t) 1
n(0)

> , ie, the neutron flux jumps, as sketched in figure 4.  Note that in the prompt 

jump, the quickly decaying components of the solution (associated with the 6 negative ω’s) 
generate a short lived spat of extra neutrons that induce addition fissions.  This brings the power 
to a new and higher level  But these components decay away, leaving the neutron level at a 
plateau.  Eventually the one ω > 0 causes the flux level to increase exponentially.  This rapid 
jump to a new neutron level is called the “prompt jump”. 
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n(t)

t

prompt jump

 
Figure 4 The prompt jump. 

3.2 Prompt Critical 
 
Looking once again at the point kinetics equations: 

 

( ) 6

i i
i 1

i
i i i

-n(t)  n(t) (t)
t

(t) (t)  n(t), i 1...6
t

=

ρ β∂
= + λ

∂ Λ

∂ β
= −λ + =

∂ Λ

∑
 (3.6) 

notice that, in a critical reactor, the L.H.S. of both equations = 0.  The delayed precursors 
provide a small number of neutrons, topping up those provided by the prompt generation term.  
The prompt term has a characteristic response time of Λ sec (typically about 100 µsec) while the 
delayed term has a characteristic response time of seconds to minutes.  The reactor is actually 
sub-critical on prompt neutrons alone.  If the reactor were critical on prompt neutrons, then the 
response time of the reactor system would be too fast for a physical control system to handle – 
the reactor would be uncontrollable.  It is only because of the delayed neutrons that the average 
response time is slow enough for the system to be controllable. 
 

In mathematical terms, the prompt term, ( )-
n(t)

ρ β
Λ

, is typically < 0 (that is, ρ ~0, β~0.0065), the 

delayed term is >0 and the two balance each other out.  But what would happen if 

?  In that case, the reactor would be critical or super-critical on prompt neutrons alone!  
This condition, called 

6

i i
i 1

(t)
=
λ∑

ρ ≥ β
prompt criticality is to be avoided above all else. 

 
0  0.0065=6.5 milli-k (Canada) = 1$ (US)=100 cents

This is the  condition.

ρ−β
= ⇒ρ = β = ≈

Λ
prompt critical

 (3.7) 
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4 Inverse Method 
 
Here is a rather interesting, mind expanding way of looking at neutron dynamics.  As we shall 
see, it gives us a way to determine ρ(t), given a n(t) history.   
 
In time dt′ at time t′, the change in precursor density due to production is: 

 ( )i
idC n t ' dt 'β
=
Λ

 (4.1) 

At some later time, t, there will remain 

 ( ) ( ) ( ) ( )i it t ' t t 'i
idC e n t ' e dt ',  where t > t'−λ − −λ −β

=
Λ

 (4.2) 

Thus, at any given time, t, the total precursor concentration is the sum (or integral) of the little 
bits produced in the past, accounting for decay, ie: 

 ( ) ( )i

t
t t 'i

iC (t) n t ' e dt−λ −

−∞

β
=

Λ∫ '  (4.3) 

where the implicit assumption is that, at t = - ∞, no precursors existed. 
 
Letting , t tτ = − '

 ( ) (i

0
i

iC (t) n t e d−λ τ

∞

β )= − τ −τ
Λ∫  (4.4) 

ie: 

 ( ) ii
i

0

C (t) n t e d
∞

−λ τβ
= − τ τ

Λ∫  (4.5) 

Note that t = now and t′ is some time in the past, therefore t t 'τ = −  = time from now to then, ie, 
τ = 0 is now and τ=1 is 1 second ago.  Likewise, t-τ = t′, thus, n(t-τ) = neutron density back then, 
τ seconds ago. 
 
Now that we have the delayed precursor concentration, we can plug it into the neutron balance 
equation to give: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

i

i

6
i

i
i 10

6
i

i
i 10

delayed neutron      
          kernal

0

-n(t)  n(t) e n t d
t

-
n(t) e n t d

-
n(t) D n t d

∞
−λ τ

=

∞
−λ τ

=

∞

 ρ β∂ β
= + λ − τ ∂ Λ Λ  

 
 ρ β β β = + λ −

Λ Λ β 
  

ρ β β
≡ + τ −

Λ Λ

∑∫

∑∫

∫

τ

τ τ

τ τ

 (4.6) 
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The delayed neutron kernal, D(τ), is the probability that a delayed neutron will be emitted in 
time dτ at time τ after a fission. 
 
Solving equation 4.6 for ρ: 

 

( ) ( )

( ) ( )
0

0

n tdn(t) D d
n(t) dt n(t)

n td ln n(t) D d
dt n(t)

∞

∞

− τΛ
ρ = β+ −β τ τ

− τ
= β+ Λ −β τ τ

∫

∫
 (4.7) 

Thus we can determine ρ(t) given n(t).   
 
This is useful for: 

1. Control design 
2. Diagnostics. 
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5 Multigroup Diffusion with Delayed Precursors 
 
Now that the point kinetics equations have been explored to illustrate the transient nature of the 
neutron balance equations when delayed precursors have been included, we can appreciate the 
full blown multigroup neutron diffusion equations with delayed precursors.  Starting with the 
multigroup equations that we have seen before, we simply make the adjustment for the proper 
accounting of the prompt and delayed neutrons: 

 

( ) ( ) ( ) ( ) ( )
G

g g g a g g sg g sg 'g g '
g g ' 1leakage loss by removal by

absorption scattering scattering into group g

P
g

fraction
appearing
in g

1  r, t  =   D  (r) r, t (r) r, t (r) r, t (r) r, t
v t =

∂
φ ∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ

∂

+ χ

∑

( ) ( ) ( )
G N

C e
g ' f g ' g ' g i i g

g ' 1 i 1prompt fraction
fraction appearing external total total fission

roup g in  group g sourcedelayedproduction
source

1 (r) r, t C r, t S
= =

−β ν ∑ φ + χ λ +∑ ∑ xt
(5.1) 

 
 

 ( ) ( ) (
th

G

i i i i g ' f g ' g '
g ' 1i  part

of delayed total number ofneutrons, fission neutronssplit by 
decay
constants

C r, t C r, t (r) r, t
t =

∂
= −λ + β ν ∑ φ

∂ ∑ )  (5.2) 

 
Note that the energy spectrum of the prompt fission neutrons, P

gχ , is not quite the same as the 

energy spectrum of the delayed neutrons, C
gχ .  The delayed neutrons tend to be of a slightly 

lower energy that the prompt neutrons. 
 
It is instructive to have a look at the steady state version of these equations to see if they reduce 
to the steady state equations we have see before we introduced the delayed precursors into the 
picture.  Were we justified in ignoring the delayed precursors in the steady state?  Intuitively, we 
would say yes because, in the steady state, it shouldn’t matter when a neutron was born, just how 
many. 
 
Equation 5.2 in the steady state is: 

 
G

i i i g ' f g ' g '
g ' 1

C
=

λ = β ν ∑ φ∑  (5.3) 

which we can substitute into equation 5.1 to give: 
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  (5.4) 

( )

G

g g a g g sg g sg 'g g '
g ' 1

G G
P C
g g ' f g ' g ' g g ' f g ' g ' g

g ' 1 g ' 1

0 =   D

1 S

=

= =

∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ

+χ −β ν ∑ φ + χ β ν ∑ φ +

∑

∑ ∑ ext

'

)

Grouping the fission terms we have: 

  (5.5) 

( )

G

g g a g g sg g sg 'g g
g ' 1

G
P C P ext
g g g g ' f g ' g ' g

g ' 1

0 =   D

S

=

=

∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ

 + χ + χ −χ β ν ∑ φ + 

∑

∑

The factor ( C P
g gχ −χ  will only be = 0 if the two energy spectrums are equal.  If a coarse 

grouping model were chosen (say a 4 group model with two thermal groups, an epithermal group 
and one fast group, then all the neutrons that are born, whether by prompt fission or by decay 
from the precursors, would be born in the fast group.  In that case, C P

1 1 1χ = χ =  and all the other 
χ’s = 0.  If this is true, then the steady state neutron balance equation has no mention of delayed 
precursors and we were justified in not mentioning them in previous chapters.  But, if a fine 
energy structure is being used, then we must use the steady state form in equation 5.4 or 5.5 so 
that the neutrons are born in the correct neutron group. 
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