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The goal for the McMaster Nuclear Reactor Simulator (MNRSIM) is a first order visual approx-
imation of the major elements of the reactor including flux calculations, reactor control, thermal
hydraulic calculations and eventually fuel management all within a graphical windows environment.
The main purpose in the development of this tool is not to provide a high accuracy competitor to
the existing simulation tools, but is rather to provide the staff and researchers at the reactor with
a tool for understanding the reactor as an integrated system of simulations. The tool follows an
extensible modular program design.

1 Introduction

Light weight simulators which are used as teaching or training tools are not a new idea in the
nuclear industry. There are a variety of commercially available simulators see for example [1, 2|.
The reactor simulation research group at McMaster needed a model which on the one hand could
be used to study the McMaster reactor as a system for teaching and training, and on the other
hand could also be used as the basis for the existing research program. An on-going problem
with software developed by successive generations of graduate students was that the software was
usually designed to answer a single specific modeling question, and was rarely reused.

To facilitate reuse of modeling software it was decided that a modeling core, or base should
be designed. The modeling base represents the fundamental simulation elements of the MNR and
allows for flexible extension. This article will describe the design of MNRSIM’s program core, both
in terms of the physical models, and in terms of the program design. MNRSIM is freely available
for download, both the compiled binary version along with the C source code can be found on the
primary web site [3].

The current version of MNRSIM simulates two major physical processes, the reactor core,
and the reactor cooling system using six basic nuclear physics modules: a cross section collapsing
module, a two dimensional core flux module, a hydraulic pressure module, a cooling system heat
transfer module, a core heat transfer module, and a simple control and instrumentation module
(See Fig 1).

This paper will first present an overview of the modular software structure, and will then present
a short discussion of each module in turn. Finally the preliminary calibration and validation of the
model using both experimental data and data from more accurate simulations will be discussed.



2 Software Design

MNRSIM is written in C and compiles under LabWindows, which is a compiler supplied by Na-
tional Instruments. This compiler was chosen for several reasons, firstly LabWindows provides a
functional set of Microsoft-based windows controls including buttons, sliders, and dialogue boxes.
Secondly the LabWindows C compiler is compatible with the same set of data acquisition hard-
ware that LabView is capable of using. Although Linux and Unix based implementation offer
an attractive set of advantages in terms of stability, network access and free development tools,
since software reuse was a primary concern, and since the majority of incoming students only have
experience with Microsoft operating systems a Unix based design was not considered. For the
similar reasons C rather than C++ was chosen as the implementation language.

One of the principle problems in choosing C as a programming language is that C does not offer
some of the more advanced programming structures that can be found in languages like C++-, Java
or Visual Pascal (Delphi) might have like classes, and object structures. Java, Pascal or Visual
Basic might have been better language choices for accommodating students with only a few courses
in programming since these languages do not depend on the use of pointers or explicit memory
allocation and deallocation. Both Java and Pascal also have well developed user interface design
platforms. C is however well known for its high performance characteristics and in the last 20
years has become an almost defacto standard choice for teaching introduction to computing.
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Figure 1: modules and concurrency

To address the need for structure within the program’s design, the concept of a module was
used as a basic building block. Modules are defined for the purposes of MNRSIM as a C file which
contains a collection of related functions which all use similar names. For example, the hydraulic
pressure module is contained in a file named hyd.c and has functions with names like hyd _main(),
hyd friction(), hyd pipe junct(), hyd solve() and so on. This gives the flavor of a C++ class
with a single object instance without actually requiring programmers to learn C++ syntax.



The program itself is over 12,000 lines of code, or roughly 250 pages, consisting of 20 modules,
9 of which are dedicated to the user interface, 7 handle physics related issues, and 4 are for general
program maintenance. Over half of the development time was spent on the user interface.

2.1 Concurrency

Since there are several physical processes which are modeled in what should appear to be a si-
multaneous fashion some model for concurrency had to be chosen. The guiding principle of choice
again was software reusability and ease of understanding. LabWindows provides a threads-based
package, and this was experimented with early on in the design process. Threads are normally
defined as light weight processes, and in LabWindows are implemented with special primitives
which create an independent execution context from a function. While this seemed to be an ele-
gant model of concurrency, it was decided that the threads package would be inappropriate since
threads would probably be unfamiliar to most of the project programmers.

A simpler alternative was chosen based on a time management module. When the simulation
is initiated by the user the time module runs each physics module in sequence and provides each
with a time slice to simulate (see Fig. 1). Each physics module is expected to return control to the
time module after completing. This is sometimes called the good citizen approach to concurrency
since it trusts that each module will consume only a small portion of the CPU, and that each
module will always return to the scheduling function time_ sim().

2.2 Shared Variables

Since several modules must access the same set of simulation variables, in some cases concurrently,
structures for sharing information across function calls were needed. Global variables were rejected
as a data sharing principle since they can dramatically complicate the development of a large
project and using them is considered to be bad programming practice. Instead a convention called
shared variables was adopted. When a function needs access to a specific set of variables, the flux
shape for example, it makes a call to a function named share access() which returns a pointer
to the flux array. When the function is finished with the data structure it releases it by calling
share _release(). All major variables are stored in a global variable store and are accessed through
these special function calls which lock the variables effectively ensuring that their usage is exclusive.
An active variable function log is kept to sort out conflicts when they do arise.

2.3 User Interface Design

The physical systems that are modeled by MNRSIM are represented diagrammatically by a
schematic figure which appears on the upper right of the main MNRSIM window (see Figure
2). The user may select a variety of views, one of either the control panel mockup, the core dis-
play, the primary or secondary thermal hydraulic loops. Several other views have been suggested
for the simulator including a fuel management panel, a panel for studying beam experiments, and
a panel for examining the ventilation systems of the reactor. Selecting a new view activates one or
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Figure 2: MNRSIM time-line and reactor schematic

more sub windows in the lower left of the screen, but the time-line and schematic always remain
visible. The simulation also supplies a set of VCR like buttons for controlling the time-line. The
simulation can be started and stopped at various stages, and can also be rewound and restarted
with new control settings.

3 Physics Processes

Two major physical processes are modeled in MNRSIM, reactor core physics, and heat transfer
from the core and throughout the cooling system. These models have a variety of limitations, and
were designed as coarse approximations only. The reactor core is modeled in two dimensions and
only for the steady state case. Transient core physics is modeled simply by maintaining the core
flux shape and modifying the total core power.

Thermal hydraulics are modeled with a combination of a steady-state Hardy-Cross model, and
a transient heat advection routine which uses the flow rates computed by the Hardy-Cross method.
Heat transfer from the core to the heat transport system is modeled in detail on a fuel channel by
fuel channel basis, the amount of heat transfered to each channel is determined by the flux shape.

3.1 Reactor Core Physics

One of the goals for MNRSIM is to incorporate several selectable approximations for each module,
depending on precisely what the user is interested in studying. One, two and three dimensional
approximations of the reactor core have been planned, but at this stage core physics is only modeled
in two dimensions.

The materials cross section module, named cell in the code architecture, reads in a simplified
data base of material constants extracted from the WIMS-AECL code. Four energy group data is
used to represent cross sections from 34 elements typically needed for reactor simulations. A second
configuration file defines typical cells in the reactor, such as fuel cells, control rods, irradiation
points, and moderator cells based on a proportional weighting.

Currently the flux module only computes a steady-state shape for the core flux based on the



neutron diffusion equation. Even though the core mesh is quite coarse, usually on the order of
20x30 cells, the calculation is still slow enough that it is only performed once before the transient
modules begin. The multi-group neutron diffusion equation that is solved is derived from [4] and
in second order finite difference form is written as:

g 4 Dy 4 D & o X & g
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Where the superscript g represents the energy group, G is the total number of energy groups, the
subscripts ¢ and j represent spatial indecies, 1/k and represents the first eigenvalue. ¢ represents
the neutron flux, ¥g, 3,, ¥; the removal, scattering, and fission cross sections respectively, D is
the diffusion length, A is the diffusion distance, y represents the fission spectrum, and v is the
number of neutrons produced per fission. The delayed precursors are not included in the steady
state calculation. A simple successive over relaxation solver is used.

VNC: 1319u8 i
[ i % =181 %]

=
3 MAH Simulator
File:: Edili: Siew Librant’ Tianf

i o S ElE

Time Configuration
0 [ (geok | Ewd | NN RS
[oHr Omin Mop| Jrak
|3 Core Display !E[
Gioup
- B m—
i 1234 Yentiation and AC
Experiments
s Flus lterations W param for SOR Dafined Cell '@ Contal
= | =)
100 1.0 znm; 2 ' Beam Ports
Fiax Tol Il Mult se Thent Hue 12 o (Il \
001 [0 sl e
Ma Crit lterations  Initial Flux Profile. PU33 Therrn Hyd L1
VOIF —
200 [io MOD B =18l
MutCorgtTol | Recal Em‘z Eneray froup
. i
GR& |
o001 I Momalize Flus i LI i ‘2 é “1
K Mul Bate [135331  Eneimy Gioup
Cj J .f'. i TableView [Detal: |
1234
&b 1 2 3 4 5 g T 8
7 |MOD 0000 MOD 0.007 |MOD 0.004 MOD 0.005 [MOD 0.007 |MOD 0.007 MOD 0.007 MOl
\j) 5 |MOD 0007 MOD 0.007 |MOD 0.033 MOD 0.049 [MOD D.066 |MOD 0.085 [MOD O.0B1 |Mal
'3 [MOD 0.00¢ |MOD 0.032 [FUELD.223 [FUEL0334 |FUEL 0450 [FUELDA41 [FUEL 0420 [FUE
4 |MOD 0005 MOD 0046 [FUEL 0317 |shm] 0310 [FUEL 0659 [shmz 0428 [FUELOBIE |otll
5 |MOD 0006 MOD 0.055 [FUELD.390 FUELOG10 [FUEL0G1T |FUELD993 [FUELOS6T |FUE
5 |MOD D005 MOD 0042 [FUEL 0298 |shmi 0343 |FUEL 0867 |FUELD993 [FUEL1000 |FUE
7 |MOD 0002 MOD O.015 |MOD 0.098 FUELO.378 [FUELO.632 [shm3 0481 [FUEL0722 |shm
g |MOD D007 MOD 0017 MDD D050 WOIF 0308 [FUEL 0384 |[FUELD443 [FUEL 0485 |FUE
5 |MOD 0000 MOD 0.003 |MOD 0.019 MOD 0.088 [MOD D.061 |MOD 0085 |MOD 0.069 |WOL
10 |MOD D000 MOD 0007 |MOD D.003 MOD 0.009 |MOD 0.007 |MOD 0008 [MOD 0.008 MOl
JIEEes i ol

st | 4 & = || hlobwindowsicit [BEwem. A4 SR 1034au

Figure 3: core assembly window

The core assembly window (Fig. 3) allows the user to pick up core elements as defined by the
cross section module and arrange them into a wide variety of configurations. Core configurations
can be stored on the disk allowing the user to build up a catalog of reactor core testing scenarios.
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3.2 Core Heat Transfer

The core heat transfer module uses the two dimensional flux array computed by the flux module to
model the transfer of the heat generated in the fuel plates to the coolant. The McMaster Nuclear
Reactor uses plate style fuel, with 18 plates per assembly, 16 inner fueled plates, 2 outer dummy
plates, and a total of 17 flow channels.

Four approximations to the full core heat transfer calculation are supplied. The user may simply
specify the temperature increase which should occur across the core, or may use an approximation
which computes heat transfer for a single plate, a single assembly or for the entire core. In the
figure (Fig. 4) the left most fuel plate (#1) is selected. The heat profile for this plate is somewhat
assymetrical since this plate is the first in the assembly. The heat profile for the coolant channels
on either side of this fuel plate are plotted in red and blue.
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Figure 4: core heat transfer view, showing thermal distribution within plate and channel

Heat distribution within the plate is straight forwardly derived from:
oT o JT
p ' — q/l/ _k_
ot Or Ox
C, and p represent the density and the heat capacity for water respectively, ¢ is the heat
generated by the nuclear reaction per volume, 7" is the temperature, and k is the heat diffusion

_|_
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constant. Several numerical implementations of this formula were tried including, implicit, ex-
plicit, semi-implicit and Crank Nicholson. Since the fuel plate is so thin, a very small time step
was required to maintain stability in the computation. While both the implicit and semi-implicit
formulations allowed for larger time steps, they both tended to produce results which were inac-
curate by about an order of magnitude. A Crank Nicholson formulation provided a reasonable
compromise between the two extremes of the unstable explicit formulations, and the inaccurate
implicit formulations.

Heat advection through the coolant is solved by treating the coolant as a single phase channel.
The coolant temperature is used by the plate heat distribution calculation as an external boundary
condition. The last plate division is used to compute the surface temperature of the fuel plate,
and the heat flux into the fluid volume element. The energy balance within the fluid is defined as:

o on

A represents the plate area w represents the flow rate, h represents the enthalpy of the fluid, ¢’
is the energy transfered to the fluid from the fuel. Implementation of the heat advection formula
was straightforward. The current version always assumes that w > 0, which cannot model certain
core failures where the flow out of the core is stopped altogether and the core flapper opens to
allow reverse flow. Water boiling is also not accounted for.

3.3 The Hardy-Cross Method

The Hardy-Cross method [5] is used to compute flow rates within the thermal hydraulic system.
During normal operations the transient phases which include opening the pool and hold-up tank
valves and starting the primary pump are very short, and at least in terms of flow rates the inertial
effects of water starting and stopping motion are negligible. Since Hardy-Cross is a steady state
model, a sequence of steady states must be computed as the fluid levels in the reactor pool and
hold up tank change. While certain hydraulic effects are neglected by this approximation it was
felt that the advantage in terms of real time responsiveness of the model was worth the loss in the
precision.
The general momentum equation for flow in a pipe is given as follows:

ov fL pv?
LAp— = A |AP — | — +k —pg Az
R R T
L, A, and D are the length, cross-sectional area and diameter of the pipe respectively, AP
represents the pressure drop across the pipe, f is the friction factor, £ is the minor loss coefficient,
g is the acceleration due to gravity, h is the drop in elevation of the pipe, v is the fluid velocity
and g, is the mass pressure conversion ratio which = 1 . Since we are interested only in a steady
v

state scenario we set 5 = 0, and we lump together the pressure terms due to a change in height

with those induced by the flow so that rather than discussing

2
02AP—<%—I—I{:> g; —pg Az
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Figure 5: thermal hydraulics, primary loop view

We now rewrite the flow equation as:

P*=P+pg Az

fL pv?
0=AP" — =4k | —
D * 29,
Rewriting this equation again in terms of flow rather than velocity, and lumping constants
together as K we get:
fL 1

K=|—+k|——
D+ 2pA%q,

0= P — Py — Kuw?

This means that for an arbitrary connection where #links pipes meet, the net flow at this
connection must be zero, so we now have a general non-linear formula for solving the pressure at
every point in the pipe network:



1 #links P

P, = Hlinks 1 X Z . -
3 i=1 \/\Pj — P K, +¢
j=1 \/‘P;—P;; Kj+e

Since the Hardy-Cross method is not designed to handle situations where the flow rate drops to
zero we have included a small e = 0.000001 in the denominator of the fractions to prevent division
by zero. To recover the true pressures from the P*pressures we simply use P = P* — pg A z.

In practice the Hardy-Cross method performs reasonably well. A fixed point iterative solver
was used to solve the non-linear system. It was found that if an SOR style acceleration method
was applied to the pressure calculations that good convergence was observed.

3.4 Heat Transport

Figure 6: Pipe network example

Heat transport is computed using a second order Crank Nicholson time integration scheme
based on the flow rates computed by Hardy-Cross. Both primary and secondary thermal hydraulic
loops are computed. The basic heat transport equation used takes the following form:

Cppv% = mep,—rm - wouthTout + Qz

V represents the volume of the pipe or vessel, and @); represents the amount of heat removed
through the walls of the pipe. This equation was implemented by examining the amount of heat
energy that flowed into one end of a pipe and out of the other end of the pipe. Since all flow rates
are known as calculated by the Hardy-Cross method solving for the temperature of a given volume
of water contained in one of the pipes turns into a book keeping problem.

In Figure 6 fluid is flowing in a pipe with end points 1 and 2, from 1 to 2. To compute the
change in enthalpy for this pipe we use the following equation:

OH #links
i = 2wl
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The data structures in the program must maintain a convention which allows the program
to correctly determine the sign of the flow for connected pipes. The same convention is used to
determine which end the pipe gains heat energy from. In Figure 6 since fluid is flowing out at end
2 the energy lost from pipe 1-2 will be part of the net gain for the remaining pipes connected to
end 2. Likewise the net flow into end 1 of pipes 1-2 will represent the total energy gained at this
end of the pipe. The Hardy-Cross method guarantees that the positive flow from end 1 to end 2,
will be made up of the sum of all flows into end one, so the gain in enthalpy of the pipe can be
deduced from the flows.

Implementing this model also required the use of a Crank Nicholson approximation to achieve
adequate accuracy. As in the heat transfer module explicit methods required excessively small
time steps to remain stable, and implicit methods had accuracy problems. The (); term which
represents heat losses which are not due to fluid flows (radiative, or conductive) is only implemented
for the heat exchanger. Much energy is lost to the atmosphere of the containment building and
this phenomena is not modeled.

3.5 Control Panel
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The control panel provides the MNRSIM operator with a basic mock up of the actual MNR
control panel. The sliders and knobs adjust the boundary conditions of the various modules and
give an operator’s point of view for the simulation. Several strip charts allow the operator to track
trends and help to identify potential problems with the system. The current version of the control
panel is incomplete, the alarms are inactive, and several important controls are missing from the
panel.

4 Calibration and Validation

Model validation has been fairly simple at this stage. The MNR staff' graciously supplied several
weeks worth of data recorder information from the winter of this year to use as calibration data.
The data recorder monitors temperatures at several key points in the reactor, this information was
used to both calibrate and verify the primary and secondary thermal loops.

time | core.out | core.in | P.out HX | 2.out HX | 2.in HX | Pool | Air | Power | Flow Pool HUT
C C C C C C C % KG/s | meters | meters
14:00 274 27.44 22.11 n/a 22.83 28.06 | -20 90 98.5 9.25 2.27
15:00 31 26.78 22.06 20 16.67 27.72 | -16 91 98.5 9.25 2.27
16:00 31.5 26.28 22.00 n/a 17.00 27.11 | -15 93 98.5 9.1 2.31
17:00 31.8 26.67 21.94 20.28 17.17 27.11 | -15 93 98.5 9.1 2.31

Table 1: Example Thermal Hydraulic Data

From previous studies and several internal reports it was also possible to collect information on
the lengths and diameters of the major pipe components and the core design. When the model’s
core is calibrated to 2 MW, we are able to observe the typical temperature rise of about 5.5 degrees
Celsius across the core, and we also observe a .5 degree temperature span within each fuel plate.
These values are in good agreement with standard measurements and calculations (roughly -+-
5%).

Several parameters of the simulation are treated as unknowns since in practice they cannot
be easily measured or calculated. These constants were adjusted to calibrate the model. Among
these are:

e minor loss friction coefficients for both primary and secondary sides of the heat exchanger

e minor loss friction coeflicient of the reactor core

The friction coefficients determine the flow rates on the primary and secondary sides, the geometry
of the core and heat exchanger are too complex to permit a direct calculation of its friction
coefficient. Also the friction coefficient of the heat exchanger has changed over time due to the

'Robert Pasuta, MNR analyst
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build up of particulate matter from the coolant. This effect is especially prevalent on the secondary
side.

Our core model only computes a shape for the flux profile at this stage, so the core flux model
has only received basic verification. The flux shape shows reasonable agreement with closed form
models, and also shows reasonably good agreement with simulation runs on more detailed models.
The next stage in model development will include much more rigorous testing and calibration.
Currently we consider a computed value to be in reasonable agreement if it falls within 10% of a
measured value.

5 Conclusion

The attempt has been to design a tool which will help an operator to understand what the result
of a decision would be if a certain course of action were taken. This strategy is helpful for both
the novice learning the control and behavior of the reactor, but also potentially for the expert who
needs a quick cause and effect sketch so the results of certain actions can be estimated.

This is an open project which will hopefully continue for many years; the work which still needs
to be done is extensive. The model needs much more careful validation, in particular, comparisons
with more detailed simulations will provide helpful insight into correcting the model’s behavior.
The software design is intended to encourage collaborative work by clearly defining interfaces for
interacting modules. Two projects which plan to use the simulation include a failure modelling
system which uses the simulation to build up a history of simulated failure scenarios. A second
proposed project is the detailed modeling of the MNR'’s control panel and alarm system. Other
suggestions include detailed modeling of fluid flows in the core, and in the pool, as well as detailed
air flow models within the building.
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